
FIIL PIA Project :

Equivalence between Regular Expressions

and Nondeterministic Automata with ε-transitions

for RegExps with Interleave

October 23, 2018

Burkhart Wolff, Master FIIL Université Paris Saclay

Abstract

This project aims at proving completeness and correctness of a compiler converting regular expres-
sions into nondeterministic automata with ε-transitions. The objective is to acquire basic knowledge
in interactive theopry development in isabelle/HOL; the goal is to complete a skeleton of theories
to this end. The work is based on an existing theory — the challenge is to extend it by extendind
the regular expression language by the interleave-operator and, via the definition of an adequate rep-
resentation in terms of automata operations, proving proof that the interleave operation maintains
regularity.

Modelization

The theory skeleton consists of the following components:

1. RegExp.thy contains a the abstract syntax of regular expression together with a denotational se-
mantics, a function L that assigns to each regular expression r the “language” it denotes: L(r).

2. Automata.thy defines non-deterministic and deterministic automata, the generalized transition
functions as well as the corresponding acceptance conditions for a word in the automata.

3. RegExp2NAe.thy contains the compiler and its corresponding correctness nad completeness condi-
tions.

Regular Expression

There is a abstract syntax of regular expression and a function L give the language of this regular
expression.

1

A function L give the language of this regular expression.

Nondeterministic automata

na represent nondeterministic automata. It is defined In the theory Automata using record.

Delta to calcul a set of states reachable after a word in term of w from initial states.

Accepts A Definition decide if a word ca be accepted by nondeterministic automata na which is defined
here.

Nondeterministic automata with epsilon transitions

nae is defined for nondeterministic automata with epsilon transitions, which is defined in RegExp2DAe.thy.
nae is an instance of the nondeterministic (in)finite automaton(na), which allows a transformation to a
new state without consuming any input symbols.

From regular expressions directly to nondeterministic automata with epsilon

The transition function rexp2nae converts regular expressions into such automata and is defined in file
RegExp2DAe.thy. It use 5 definitions for the Atom Conc Union Star case which are defined in the
same file. The goal of this project is showing the correctness of this translation.

A key-problem of the construction is that the nodes from which automatas were constructed must be
disjoint when “gluing” several automatas together; the present modelization realises this by a re-labelling
discipline on node-names which were represented as bitstrings.

We present some diagrams to illustrate transition function of these automatas.

Atom: The Atom case. In its initial state [True] , it may consume Some a (of any type), and go over
to accepting state [False] . Here is the formal definition:

2

... reflecting the automaton:

[True]start [False]

Some a

Conc: The conc case. It takes two NAe l and r and returns a new NAe. What is interesting here is
the injective re-labelling of the nodes; any node label in the left automaton is prefixed by True, any node
label in the right automaton is prefixed by False. Since the translation of regular expressions will be
done recursively over the structure of regular expressions, the construction assures that the node sets are
always distinct.

Here is the example of the concatenation of two automata l and automata r which happen to be the
atomic automaton of the previous example.

[True, True]start [True, False] [False, True] [False, False]
b=Some a a = None Some a

Tasks:

1. Study the theory in Isabelle.

2. Fill in the holes (sorry’s) in the various levels of proofs, in particular soundness and completeness of
the translation, reflected by the theorem, that all accepted words of the translation were contained
in the language of the original regular expression.

3. add the interleave operation Interleave || in the regexp-syntax. (If you need to simplify: You may
assume that || occurs only in outermost positions in a regexp.)

3

4. The semantics of this operation is already denotationally defined.

5. define the translation ans prove correctness and soundness.

Submission

The final version of the files together with a 3-6 pages report of the theory development are due monday,
21.1.2019 per mail at wolff@lri.fr.

4

