
Master FIIL : Preuve interactives et Applications
Année 2018-2019

Prof. Burkhart Wolff
wolff@lri.fr

TP 2 - Datatypes and Induction in Isabelle/HOL
Semaine du 25 septembre 2018

Exercice 1 (Simple Logical Backward - Proofs)
State the following properties as lemma and prove them :

1. A ∧B ∧ C → B ∧A

2. ((A → B) → A) → A (Pierce Law)
3. (∀x.A → B(x)) = (A → (∀x.B(x)))

Objective : try to solve these proofs with elementary Isabelle proof methods, i.e. rule,
rule_tac, erule, erule_tac before applying more advanced automated procedures like simp
and auto. Hint : search for basic logical rules from the HOL theory involving the logical connec-

tives/quantifiers.

Exercice 2 (Simple Induction Proofs)
1. Define an own inductive datatype for lists (called ’a seq) with the variants Empty and

Seq

2. Define a function revert and prove the property : revert(revert s) = s by induction.
3. Define a function conc (concatenate) and prove the properties : conc xs Empty = xs

and conc (conc xs ys) zs = conc xs (conc ys zs) (associativity) by induction.
4. Define an own inductive datatype for trees ’a tree (with labelled Nodes and anonymous

Leaf’s).
5. Define an own inductive datatype for trees ’a tree (with labelled Nodes and anonymous

Leaf’s).
6. Define reflect ′a tree ⇒′ a tree, replace nat list ⇒′ a tree ⇒′ a tree ⇒′ a tree

suitably (the index list should be a Dewey-position in the term to be replaced) and
prove the lemmas : reflect(reflect t) = t and
replace s t (replace s t t’) = (replace s t t’).

7. Define an abstract syntax tree for the IMP language involving SKIP, the assignment, the
IF-THEN-ELSE and the WHILE loop.

Hints :
1. use the specification constructs datatype (for inductive datatype definitions) and fun

for recursive function definitions.
2. apply it as suitably instantiated (substitution !) rule via the variant rule_tac
3. apply variant with the proof method : induct.

1



Exercice 3 (Modeling Exercise)
1. Define an abstract syntax tree for the IMP language involving SKIP, the assignment, the

IF-THEN-ELSE and the WHILE loop.

Hints :

1. you may use the following type synonyms for the task :

type_synonym vname = string
type_synonym val = int
type_synonym state = "vname => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool"

2. You may define a concrete syntax via syntax-paraphrasings like
("IF _ THEN _ ELSE _" [65, 60, 61] 60)
(compare with the ‘a list definition from the HOL library.

2


