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Motivation: Why ITP ?
 

 
!  Program verification:

• SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS
• Compcert (Coq, Inria), optimizing C compiler
• Security : moderlling  of JavaCard plateforms 
• Mathematics :  4 color theorem, Kepler conjecture, 

       Feit-Thompson conjecture. . .
• Formal proofs in informatics
• machine arithmetics (nombres flottants) 
• crypt algorithms, combinatory algorithms
• program language semantics 
• Back-end for other provers (reverifying proof traces),
• proof obligations in program verification
• test-case generations
• ... much stuff in Phd-thesis and the scientific literature ...
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Plan of this Course
  
• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
  represent logical systems
• What is „natural deduction“ ?
 (from another perspective)
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Foundation: The λ-calculus 
• Developed in the 30ies by 
  Alonzo Church (and his 
  students Kleene and Rosser)
• ... to develop a representation
 of Whitehead‘s and Russel‘s
  „Principia Mathematica“
• ... was early on detected as
  Turing-complete and actually
  a “functional computation model“ (Turing)
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The λ-calculus 
!  The „Pure λcalculus“ : a term language.
  λ-terms T  are built (inductively) over:

• V, a set of “variable symbols”
• λV. T, a term construction called
“λabstraction” ,

• T T , a term construction called
“λabstraction“

• A version adding a set of constant 
symbols is called „the applied λcalculus“
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The λ-calculus 
 This produces expressions like:

      (λx.λy.(λz.(λx.z x) (λy.z y)) (x y))

parenthesis can be dropped: 

      ((f x) y)     is written just  f x y 

  f(x)         is written just  f x.
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The λ-calculus 
 The most important aspect of „variables“ are
 that they „stand for something“, i.e. they can
 be „substituted“ by something.

 A key-motivation for the λcalculus is that key-
 ideas of binding and scoping of variables 
 (as occurring mathematics and programming   
  languages) should be treated correctly.

 λabstractions build a scope: in λx. x x   x appears 
“bound”. If a variable occurrence in not bound, is is 
called ”free”. 
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The λ-calculus 
 Example:

(λx.λy.(λz.(λx.z a) (λy.z y)) (x y))

 The free variables can be computed recursively:

free(x)       = {x}            for any x  ∈ V
      free(T T’)   = free(T) ∪ free(T’) 
      free(λx. T) = free(T) \ {x}  
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Substitution and Conversions 
 Bound variables can be arbitrarily 
 renamed, provided that this does not 
“capture” a free variable (make it bound).
 This is reflected by the notion of 

     α-conversion (written ↔α).
 Example:

(λx.λy.(λz.(λx.z a) (λy.z y)) (x y)) ↔α  
      (λx.λy.(λz.(λy.z a) (λy.z y)) (x y))  but not:
      (λx.λy.(λz.(λa.z a) (λy.z y)) (x y))  
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Substitution and Conversions 
 Free-ness of variables and ↔α together 
give a notion of capture-free substitution.

• x[x:=r] = r
• y[x:=r] = y
• (ts)[x:=r] = (t[x:=r])(s[x:=r])
• (λx.t)[x:=r] = λx.t
• (λy.t)[x:=r] = λy.(t[x:=r]) if x≠y and y is not in 

the free variables of r. 
The variable y  is said to be 
"fresh" for r.
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Substitution and Conversions 
 Example:

• (λx.x)[y:=y] = λx.(x[y:=y]) = λx.x
• ((λx.y)x)[x:=y] = ((λx.y)[x:=y])(x[x:=y]) = (λx.y) y

• Counterexample (ignoring freshness condition) : 

(λx.y)[y:=x]=λx.(y[y:=x])=λx.x

   so we would convert a constant function into 
  an identity ...
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Substitution and Conversions 
 The “Motor” of the λ-calculus: the
 -conversionβ  (written ↔β) or its one- 
 directional version, the -reductionβ  
 (written →β). It captures the notion of   
 applying functions to their arguments:

• (λx.t) E ↔  β t[x:=E]

• (λx.t) E →  β t[x:=E]
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Substitution and Conversions 
The -conversionη  (written ↔η) or its one-
directional version, the -reductionη  (written 
→η) captures the notion of extensionality on 
functions:

• (λx.f x)  ↔  η f       where x does not occur free in f

• (λx.f x) →  η f where x does not occur free in f

All conversions/reductions are congruences, i.e. can be 
applied to any subterm.
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Substitution and Conversions 
Example: 
λg.(λx.g (x x)) (λx.g (x x))    (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f) 

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.

09/25/19 B. Wolff - M2 - PIA 15

Substitution and Conversions 
Example: 
λg.(λx.g (x x)) (λx.g (x x))    (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f) 

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.



09/25/19 B. Wolff - M2 - PIA 16

Substitution and Conversions 
Example: 
λg.(λx.g (x x)) (λx.g (x x))    (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f) 

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.

09/25/19 B. Wolff - M2 - PIA 16

Substitution and Conversions 
Example: 
λg.(λx.g (x x)) (λx.g (x x))    (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f) 

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.



09/25/19 B. Wolff - M2 - PIA 17

Substitution and Conversions 
Example: 
0 ≡ λf.λx. x   
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)

PLUS ≡ λm.λn.λf.λx.m f (n f x)

Consider:
PLUS 2 3    →β

*   5

09/25/19 B. Wolff - M2 - PIA 17

Substitution and Conversions 
Example: 
0 ≡ λf.λx. x   
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)

PLUS ≡ λm.λn.λf.λx.m f (n f x)

Consider:
PLUS 2 3    →β

*   5



09/25/19 B. Wolff - M2 - PIA 18

Substitution and Conversions 
Example (Church Numerals): 
0 ≡ λf.λx. x   
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)
PLUS ≡ λm.λn.λf.λx.m f (n f x)
MULT ≡ λm.λn.λf.m (n f)

Consider:
PLUS 2 3    →β

*   5

09/25/19 B. Wolff - M2 - PIA 18

Substitution and Conversions 
Example (Church Numerals): 
0 ≡ λf.λx. x   
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)
PLUS ≡ λm.λn.λf.λx.m f (n f x)
MULT ≡ λm.λn.λf.m (n f)

Consider:
PLUS 2 3    →β

*   5



09/25/19 B. Wolff - M2 - PIA 19

Substitution and Conversions 
Example (Boolean Logics): 
TRUE ≡ λx.λy.x
FALSE ≡ λx.λy.y          (Note that FALSE is equivalent to the Church numeral zero defined above)
AND ≡ λp.λq.p q p
OR ≡ λp.λq.p p q
NOT ≡ λp.p FALSE TRUE
IFTHENELSE ≡ λp.λa.λb.p a b

Consider:
AND TRUE FALSE    →β

*   FALSE
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Substitution and Conversions 
Example (Recursive Function): 
FAC ≡ λfac. λn. IFTHENELSE (ISZERO n)(1) (MULT n (fac(PRED n)))
Y ≡ λf. ( xλ . f(x x)) ( xλ . f(x x))

Consider:

(Y FAC) 4     →β
*   24
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The untyped λ-calculus
Theoretical Properties (Pure/Applied)

• it is “a universal language“ (i.e. it has the same  
  computational power than, say, Turing Machines
• there may be calculations that „diverge“ (loop)
• it is Church-Rosser:

 

        (for * be  reductions, β
         α -conversions)η

• the equality on -λ terms is undecidable.
• the difference between “Pure” and “Applied” irrelevant
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Plan of this Course
  
• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
  represent logical systems
• What is „natural deduction“ ?
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The typed λ-calculus
Motivation: 

• a term - language for representing
  maths (with integrals, limits and stuff - 
 thus: variables and binding.) in a logic
  [seminal paper by Church in 1940]
• no divergence admissible
  [what would a „divergent term“ mean 
   in a logic ?]
• equality on terms decidable
• turned out to be easy to implement.
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The typed λ-calculus
Idea: 

• we use an applied λ-calculus
  (and constant symbols will be subtly   
  different from variables in the typed λ)
• we introduce the syntactic category of
  types
• we require all „legal“ terms to be typed, 
  i.e. an association of a term to a type 
  according to typing rules must be possible.
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The typed λ-calculus
Types (1): 

• We assume a set of type constructors  withχ
  symbols like bool, nat, int, _list, _set, _ _, ...⇒  
• For type constructors (and constant symbols),
 we will allow infix/circumfix notation: 

  we will write: 

    nat list for (list_)(nat)
   bool  nat  ⇒ for (_ _)(bool, nat)⇒

     . . .
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The typed λ-calculus
Types (1):
 
• The set of types  is inductively τ
  defined: 

        τ ::=  TV |  χ(τ1,...,τn)

  where TV is a set of type variables α,β,γ.
  Note: For nat() we just write nat. 
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The typed λ-calculus
Types (2): 

• A C-environment which assigns 
  each constant symbol a type:

  Σ :: C  ↦ τ 
• A V-environment which assigns to 
  each variable symbol a type: 
        Γ :: V  ↦ τ       
                  (we write a↦τ1, b↦τ2, c↦τ3 ...) 
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The typed λ-calculus
Types (3): 

• A Type Judgement stating 
  that a term t has type τ in 
  environments Σ and Γ  

     Σ  Γ    ⊢ t :: τ    
• ... and a set of type inference 
  rules establishing type judgements.

09/25/19 B. Wolff - M2 - PIA 28

The typed λ-calculus
Types (3): 

• A Type Judgement stating 
  that a term t has type τ in 
  environments Σ and Γ  

     Σ  Γ    ⊢ t :: τ    
• ... and a set of type inference 
  rules establishing type judgements.



09/25/19 B. Wolff - M2 - PIA 29

The typed λ-calculus
• Type Inferences:
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The typed λ-calculus
• Note that constant symbols where
  treated slightly different than variable
  symbols:

  constant symbols may be instantiated
  (the type variables may be substituted
   via    )

  a constant symbol may therefore have 
  different types in a term.
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Typed λ-calculus 
•  We assume Σ = 
      {“_+_”↦ nat→nat→nat, “0”↦ nat,“1”↦ nat,“2”↦nat,“3”↦nat, 

         “Suc _”  ↦ nat→nat, 

         “_=_”↦ α→α bool, → “True”↦bool),“False” ↦ bool}

09/25/19 B. Wolff - M2 - PIA 31

Typed λ-calculus 
•  We assume Σ = 
      {“_+_”↦ nat→nat→nat, “0”↦ nat,“1”↦ nat,“2”↦nat,“3”↦nat, 

         “Suc _”  ↦ nat→nat, 

         “_=_”↦ α→α bool, → “True”↦bool),“False” ↦ bool}



09/25/19 B. Wolff - M2 - PIA 32

Typed λ-calculus 
•  Example:  does λx. x + 3 have a type,
    and which one ?
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Revisions: Typed λ-calculus 
• Examples: Are there variable environments ρ
   such that the following terms are typable in Σ:
   (note that we use infix notation: we write
    “0 + x” instead of “_+_ 0 x“)

– (_+_ 0) = (Suc x)
– ((x + y) = (y + x)) = False
– f(_+_ 0) = (λc   g c) x
– _+_ z (_+_ (Suc 0)) =  (0 + f False)
– a + b = (True = c) 
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Revisions: β-reduction
• Assume that we want to find typed solutions for 

?X, ?Y, ?Z such that the following terms become 
equivalent modulo α-conversion and β-reduction:

– ?X a                     =?=    a + ?Y
– (λc   g c)            =?=    (λx   ?Y x)
– (λc   ?X c) a       =?=   ?Y
– λa   (λc   X c) a    =?=    (λx   ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles Rule-
Instantiation Mechanism

• Are the solutions for schematic variables always 
unique ?09/25/19 B. Wolff - M2 - PIA 34

Revisions: β-reduction
• Assume that we want to find typed solutions for 

?X, ?Y, ?Z such that the following terms become 
equivalent modulo α-conversion and β-reduction:

– ?X a                     =?=    a + ?Y
– (λc   g c)            =?=    (λx   ?Y x)
– (λc   ?X c) a       =?=   ?Y
– λa   (λc   X c) a    =?=    (λx   ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles Rule-
Instantiation Mechanism

• Are the solutions for schematic variables always 
unique ?



09/25/19 B. Wolff - M2 - PIA 35

Plan of this Course
  
• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
  represent logical systems
• What is „natural deduction“ ?
  (from another perspective)
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Deduction
• Logic Whirl-Pool of the 20ies (Girard)
as response to foundational problems 
in Mathematics

– growing uneasiness over the question:

What is a proof ? 

Are there limits of provability ?
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Deduction
• Historical context in the 20ies:

– 1500 false proofs of 
 „all parallels do not intersect in infinity“

– lots of proofs and refutations of 
 „all polyhedrons are eularian“ (Lakatosz)

– Frege‘s axiomatic set theory proven 
inconsistent by Russel

– Science vs. Marxism debate (Popper)

E = F + K - 2    ???
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Deduction
• Historical context in the 20ies:

– this seemed  quite far away from 
Leipnitz vision of

„Calculemus !“  (We don‘t agree ?
                         Let‘s calculate ...)

of what constitutes, well,

Science ...
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Deduction
• Historical context in the 20ies:

– attempts to formalize the intuition of
„deduction“ by Frege, Hilbert, Russel, 
Lukasiewics, ...

– 2 Calculi presented by Gerhard Gentzen
in 1934.

• „natürliches Schliessen“ (natural 
deduction):

• „Sequenzkalkül“  (sequent calculus)           
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Deduction
" An Inference System (or Logical Calculus) allows to 

infer formulas from a set of elementary judgements 
(axioms) and inferred judgements by rules:

“from the assumptions A1 to An, you can infer the 
conclusion An+1.” A rule with n=0 is an elementary fact. 
Variables occurring in the formulas  An can be 
arbitrarily substituted.09/25/19 B. Wolff - M2 - PIA 40
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Deduction
" judgements discussed in this course (or elsewhere):

t : τ  “term t has type τ”
Γ  φ    ⊢ “formula φ is valid under assumptions Γ”

 ⊢ {P} x:= x+1 {Q} “Hoare Triple”

φ prop “φ is a property”
φ valid “φ is a valid (true) property”
x mortal  sokrates mortal      --- judgements with free variable⟹

etc ...
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Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).
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Natural Deduction
" the same thing presented a bit more neatly (without 

prop):

(equality on functions as above (“extensional equality”) is 
an HO principle, and it is a classical principle).
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Representing logical systems
in the typed λ   calculus

• It is straight-forward to use the typed λ-terms as a 
syntactic means to represent logics; including 
binding issues related to quantifiers like     ... 

• Example: The Isabelle language „Pure“:
It consists of typed λterms with constants:

– foundational types “prop” and “_ => _” (“_  ⇒ _”)

– the Pure (universal) quantifier
          all :: “(α → Prop) → Prop”

      (“⋀x. P x”,“\<And> x. P x”   “!!x. P x”)

– the Pure implication “A ==> B” (“_  ⟹ _”) 
– the Pure equality     “A == B”     “A  B”≡  09/25/19 B. Wolff - M2 - PIA 44
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„Pure“: A (Meta)-Language 
for Deductive Systems

! Pure is a language to write logical rules.
! Wrt. Isabelle, it is the meta-language, i.e. the built-in 
formula language.

! Equivalent notations for natural deduction rules:

  A1  (…   (A⟹ ⟹ n  A⟹ n+1)...), 

   A⟦ 1; …; An     A⟧ ⟹ n+1, 

theorem
    assumes A1

   and … 

   and An

  shows An+1 
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„Pure“: A (Meta)-Language 
for Deductive Systems

! Some more complex rules involving the concept
of “Discharge” of (formerly hypothetical)
assumptions:

   (P  Q)  R :  ⟹ ⟹

   theorem
      assumes "P  Q"⟹
      shows "R" 
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Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

impI mp

disjI1

notnotE

disjI2
disjE
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Key Concepts: Rule-Instances 
! A Rule-Instance is a rule where the free 
variables in its judgements were substituted
by a common substitution :σ

where  is σ {A  3<x, B  x≤y}.↦ ↦

conjI
σ
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Key Concepts: Formal Proofs 
" A series of inference rule instances is usually 

displayed as a Proof Tree (or : Derivation or: Formal Proof)

" The hypothetical facts at the leaves are called the 
assumptions of the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst
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Key Concepts: Discharge 
" A key requisite of ND is the concept of discharge of 

assumptions allowed by some rules (like impI)

" The set of assumptions is diminished by the discharged 
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

sym subst

trans refl

subst

[
subst

][ ]
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Key Concepts: 
Global Assumptions

" The set of (proof-global) assumptions gives rise to the 
notation:

             written:

  A ⊢ φ

             or when emphasising the global theory
             (also called: global context):        
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Sequent-style calculus
" Gentzen introduced and alternative “style” to 
natural deduction: Sequent style rules.

– Idea: using the tuples A ⊢ φ as basic judgments 
of the rules.
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Sequent-style calculus
" in contrast to:
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Sequent-style vs. ND calculus
" Both styles are linked by two transformations called 
“lifting over assumptions” Lifting over assumptions 
transforms:

where we consider
for the moment

 ⊢ just equivalent to
meta implication ⟹ 
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Quantifiers
" When reasoning over logics with quantifiers (such as FOL,

set-theory, TLA, ..., and of course: HOL), the additional 
concept of “parameters” of a rule is necessary. We assume 
that there is an infinite set of variables and that it is 
always possible to find a “fresh” unused one ...

– Consider:
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Quantifiers
" For allI, Isabelle allows certain free variables ?X, 

?Y, ?Z that represent „wholes“ in a term that can 
be filled in later by substitution; Coq requires the 
instantiation when applying the rule.

" Isabelle uses a built-in (“meta”)-quantifier ⋀x. P 

x already seen on page  13; Coq uses internally a 
similar concept not explicitly revealed to the user.
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Introduction to 
Isabelle/HOL 
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Basic HOL Syntax
! HOL (= Higher-Order Logic) goes back to
Alonzo Church who invented this in the 30ies …

! “Classical” Logic over the λ-calculus with
Curry-style typing (in contrast to Coq) 

! Logical type: “bool” injects to “prop”. i.e

      Trueprop :: “bool ⇒ prop“

is wrapped around any HOL-Term without being printed:

     Trueprop A   ⟹ Trueprop B  is printed: A   ⟹ B but A::bool!
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Basic HOL Syntax
! Logical connective syntax (Unicode + ASCII):

input:              print:        alt-ascii input   
– “_ \<and> _”   “_∧_”      “_ & _”
– “_ \<or> _”   “_ ∨_” “_ | _
– “_\<longrightarrow>_”  “_ → _” “_ --> _”
– “_ \<not> _”        “!_"  “~ _”  
– “\<forall> x. P“   “Ax. P” “! x. P x”
– “\<exists> x. P“   “Ex. P” “? x. P x”  
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Basic HOL Rules

! HOL is an equational logic, i.e. a system with 
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext
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Basic HOL Rules

! Some (almost) basic rules in HOL

conjIconjE
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HOL Rules

! The quantifier rules of HOL:

allI allE
(safe, but
 incomplete)

again
: w

hat m
akes 

these
s H

OL „h
igher-

order“
 ??

?
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HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)
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HOL Rules

! The quantifier rules of HOL:

exEexI
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HOL Rules

! From these rules (which were defined actually 
slightly differently), a large body of other
rules can be DERIVED (formally proven, and 
introduced as new rule in the proof 
environment).

Examples: see exercises.
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Typed Set-theory in HOL
! The HOL Logic comes immediately with
a typed set - theory: The type

      α set   ≅  α  bool,    that's it !⇒

can be defined isomorphically to its type
of characteristic functions !

! THIS GIVES RISE TO A RICH SET THEORY
DEVELOPPED IN THE LIBRARY 
(Set.thy).
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Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input:               print:        alt-ascii input   
“_ \<in> _”  “_ ∈  _”   “_ : _”
“{_ .  _}”       {x. True  x = x}   for example∧

“_ \<union> _” “_∪_”        “_ Un _” 
“_ \<inter> _” “_ ∩_”   “_ Int _”
“_\<subseteq>_” “_  _”⊆   “_ <= _”  
 . . .09/25/19 B. Wolff - M2 - PIA 70
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Conclusion
! Typed λ-calculus is a rich term language for the 

representation of logics, logical rules, and logical 
derivations (proofs)

! On the basis of typed λ-calculus, Higher-order 
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL) 
are actually tiny.
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