
09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Introduction to λ-calculus
Université Paris-Saclay

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2018-19/M2-CSMR

09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Introduction to λ-calculus
Université Paris-Saclay

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2018-19/M2-CSMR

09/25/19 B. Wolff - M2 - PIA 2

Motivation: Why ITP ?

! Program verification:

• SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS
• Compcert (Coq, Inria), optimizing C compiler
• Security : moderlling of JavaCard plateforms
• Mathematics : 4 color theorem, Kepler conjecture,

 Feit-Thompson conjecture. . .
• Formal proofs in informatics
• machine arithmetics (nombres flottants)
• crypt algorithms, combinatory algorithms
• program language semantics
• Back-end for other provers (reverifying proof traces),
• proof obligations in program verification
• test-case generations
• ... much stuff in Phd-thesis and the scientific literature ...

09/25/19 B. Wolff - M2 - PIA 2

Motivation: Why ITP ?

! Program verification:

• SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS
• Compcert (Coq, Inria), optimizing C compiler
• Security : moderlling of JavaCard plateforms
• Mathematics : 4 color theorem, Kepler conjecture,

 Feit-Thompson conjecture. . .
• Formal proofs in informatics
• machine arithmetics (nombres flottants)
• crypt algorithms, combinatory algorithms
• program language semantics
• Back-end for other provers (reverifying proof traces),
• proof obligations in program verification
• test-case generations
• ... much stuff in Phd-thesis and the scientific literature ...

09/25/19 B. Wolff - M2 - PIA 3

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 3

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 4

Foundation: The λ-calculus
• Developed in the 30ies by
 Alonzo Church (and his
 students Kleene and Rosser)
• ... to develop a representation
 of Whitehead‘s and Russel‘s
 „Principia Mathematica“
• ... was early on detected as
 Turing-complete and actually
 a “functional computation model“ (Turing)

09/25/19 B. Wolff - M2 - PIA 4

Foundation: The λ-calculus
• Developed in the 30ies by
 Alonzo Church (and his
 students Kleene and Rosser)
• ... to develop a representation
 of Whitehead‘s and Russel‘s
 „Principia Mathematica“
• ... was early on detected as
 Turing-complete and actually
 a “functional computation model“ (Turing)

09/25/19 B. Wolff - M2 - PIA 5

The λ-calculus
! The „Pure λcalculus“ : a term language.
 λ-terms T are built (inductively) over:

• V, a set of “variable symbols”
• λV. T, a term construction called
“λabstraction” ,

• T T , a term construction called
“λabstraction“

• A version adding a set of constant
symbols is called „the applied λcalculus“

09/25/19 B. Wolff - M2 - PIA 5

The λ-calculus
! The „Pure λcalculus“ : a term language.
 λ-terms T are built (inductively) over:

• V, a set of “variable symbols”
• λV. T, a term construction called
“λabstraction” ,

• T T , a term construction called
“λabstraction“

• A version adding a set of constant
symbols is called „the applied λcalculus“

09/25/19 B. Wolff - M2 - PIA 6

The λ-calculus
 This produces expressions like:

 (λx.λy.(λz.(λx.z x) (λy.z y)) (x y))

parenthesis can be dropped:

 ((f x) y) is written just f x y

 f(x) is written just f x.

09/25/19 B. Wolff - M2 - PIA 6

The λ-calculus
 This produces expressions like:

 (λx.λy.(λz.(λx.z x) (λy.z y)) (x y))

parenthesis can be dropped:

 ((f x) y) is written just f x y

 f(x) is written just f x.

09/25/19 B. Wolff - M2 - PIA 7

The λ-calculus
 The most important aspect of „variables“ are
 that they „stand for something“, i.e. they can
 be „substituted“ by something.

 A key-motivation for the λcalculus is that key-
 ideas of binding and scoping of variables
 (as occurring mathematics and programming
 languages) should be treated correctly.

 λabstractions build a scope: in λx. x x  x appears
“bound”. If a variable occurrence in not bound, is is
called ”free”.
 09/25/19 B. Wolff - M2 - PIA 7

The λ-calculus
 The most important aspect of „variables“ are
 that they „stand for something“, i.e. they can
 be „substituted“ by something.

 A key-motivation for the λcalculus is that key-
 ideas of binding and scoping of variables
 (as occurring mathematics and programming
 languages) should be treated correctly.

 λabstractions build a scope: in λx. x x  x appears
“bound”. If a variable occurrence in not bound, is is
called ”free”.

09/25/19 B. Wolff - M2 - PIA 8

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 8

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 9

The λ-calculus
 Example:

(λx.λy.(λz.(λx.z a) (λy.z y)) (x y))

 The free variables can be computed recursively:

free(x) = {x} for any x ∈ V
 free(T T’) = free(T) ∪ free(T’)
 free(λx. T) = free(T) \ {x}
09/25/19 B. Wolff - M2 - PIA 9

The λ-calculus
 Example:

(λx.λy.(λz.(λx.z a) (λy.z y)) (x y))

 The free variables can be computed recursively:

free(x) = {x} for any x ∈ V
 free(T T’) = free(T) ∪ free(T’)
 free(λx. T) = free(T) \ {x}

09/25/19 B. Wolff - M2 - PIA 10

Substitution and Conversions
 Bound variables can be arbitrarily
 renamed, provided that this does not
“capture” a free variable (make it bound).
 This is reflected by the notion of

 α-conversion (written ↔α).
 Example:

(λx.λy.(λz.(λx.z a) (λy.z y)) (x y)) ↔α
 (λx.λy.(λz.(λy.z a) (λy.z y)) (x y)) but not:
 (λx.λy.(λz.(λa.z a) (λy.z y)) (x y))
09/25/19 B. Wolff - M2 - PIA 10

Substitution and Conversions
 Bound variables can be arbitrarily
 renamed, provided that this does not
“capture” a free variable (make it bound).
 This is reflected by the notion of

 α-conversion (written ↔α).
 Example:

(λx.λy.(λz.(λx.z a) (λy.z y)) (x y)) ↔α
 (λx.λy.(λz.(λy.z a) (λy.z y)) (x y)) but not:
 (λx.λy.(λz.(λa.z a) (λy.z y)) (x y))

09/25/19 B. Wolff - M2 - PIA 11

Substitution and Conversions
 Free-ness of variables and ↔α together
give a notion of capture-free substitution.

• x[x:=r] = r
• y[x:=r] = y
• (ts)[x:=r] = (t[x:=r])(s[x:=r])
• (λx.t)[x:=r] = λx.t
• (λy.t)[x:=r] = λy.(t[x:=r]) if x≠y and y is not in

the free variables of r.
The variable y is said to be
"fresh" for r.

09/25/19 B. Wolff - M2 - PIA 11

Substitution and Conversions
 Free-ness of variables and ↔α together
give a notion of capture-free substitution.

• x[x:=r] = r
• y[x:=r] = y
• (ts)[x:=r] = (t[x:=r])(s[x:=r])
• (λx.t)[x:=r] = λx.t
• (λy.t)[x:=r] = λy.(t[x:=r]) if x≠y and y is not in

the free variables of r.
The variable y is said to be
"fresh" for r.

09/25/19 B. Wolff - M2 - PIA 12

Substitution and Conversions
 Example:

• (λx.x)[y:=y] = λx.(x[y:=y]) = λx.x
• ((λx.y)x)[x:=y] = ((λx.y)[x:=y])(x[x:=y]) = (λx.y) y

• Counterexample (ignoring freshness condition) :

(λx.y)[y:=x]=λx.(y[y:=x])=λx.x

 so we would convert a constant function into
 an identity ...

09/25/19 B. Wolff - M2 - PIA 12

Substitution and Conversions
 Example:

• (λx.x)[y:=y] = λx.(x[y:=y]) = λx.x
• ((λx.y)x)[x:=y] = ((λx.y)[x:=y])(x[x:=y]) = (λx.y) y

• Counterexample (ignoring freshness condition) :

(λx.y)[y:=x]=λx.(y[y:=x])=λx.x

 so we would convert a constant function into
 an identity ...

09/25/19 B. Wolff - M2 - PIA 13

Substitution and Conversions
 The “Motor” of the λ-calculus: the
 -conversionβ (written ↔β) or its one-
 directional version, the -reductionβ
 (written →β). It captures the notion of
 applying functions to their arguments:

• (λx.t) E ↔ β t[x:=E]

• (λx.t) E → β t[x:=E]

09/25/19 B. Wolff - M2 - PIA 13

Substitution and Conversions
 The “Motor” of the λ-calculus: the
 -conversionβ (written ↔β) or its one-
 directional version, the -reductionβ
 (written →β). It captures the notion of
 applying functions to their arguments:

• (λx.t) E ↔ β t[x:=E]

• (λx.t) E → β t[x:=E]

09/25/19 B. Wolff - M2 - PIA 14

Substitution and Conversions
The -conversionη (written ↔η) or its one-
directional version, the -reductionη (written
→η) captures the notion of extensionality on
functions:

• (λx.f x) ↔ η f where x does not occur free in f

• (λx.f x) → η f where x does not occur free in f

All conversions/reductions are congruences, i.e. can be
applied to any subterm.

09/25/19 B. Wolff - M2 - PIA 14

Substitution and Conversions
The -conversionη (written ↔η) or its one-
directional version, the -reductionη (written
→η) captures the notion of extensionality on
functions:

• (λx.f x) ↔ η f where x does not occur free in f

• (λx.f x) → η f where x does not occur free in f

All conversions/reductions are congruences, i.e. can be
applied to any subterm.

09/25/19 B. Wolff - M2 - PIA 15

Substitution and Conversions
Example:
λg.(λx.g (x x)) (λx.g (x x)) (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f)

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.

09/25/19 B. Wolff - M2 - PIA 15

Substitution and Conversions
Example:
λg.(λx.g (x x)) (λx.g (x x)) (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f)

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.

09/25/19 B. Wolff - M2 - PIA 16

Substitution and Conversions
Example:
λg.(λx.g (x x)) (λx.g (x x)) (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f)

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.

09/25/19 B. Wolff - M2 - PIA 16

Substitution and Conversions
Example:
λg.(λx.g (x x)) (λx.g (x x)) (which we will abbreviate Y)

Now consider:
Y f

≡ (λh.(λx.h (x x)) (λx.h (x x))) f

→β (λx.f (x x)) (λx.f (x x))

→β f ((λx.f (x x)) (λx.f (x x)))
≡ f (Y f)

A combinator with this property Y f = f (Y f)
is called fixpoint combinator.

09/25/19 B. Wolff - M2 - PIA 17

Substitution and Conversions
Example:
0 ≡ λf.λx. x
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)

PLUS ≡ λm.λn.λf.λx.m f (n f x)

Consider:
PLUS 2 3 →β

* 5

09/25/19 B. Wolff - M2 - PIA 17

Substitution and Conversions
Example:
0 ≡ λf.λx. x
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)

PLUS ≡ λm.λn.λf.λx.m f (n f x)

Consider:
PLUS 2 3 →β

* 5

09/25/19 B. Wolff - M2 - PIA 18

Substitution and Conversions
Example (Church Numerals):
0 ≡ λf.λx. x
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)
PLUS ≡ λm.λn.λf.λx.m f (n f x)
MULT ≡ λm.λn.λf.m (n f)

Consider:
PLUS 2 3 →β

* 5

09/25/19 B. Wolff - M2 - PIA 18

Substitution and Conversions
Example (Church Numerals):
0 ≡ λf.λx. x
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...

SUCC ≡ λn.λf.λx.f (n f x)
PLUS ≡ λm.λn.λf.λx.m f (n f x)
MULT ≡ λm.λn.λf.m (n f)

Consider:
PLUS 2 3 →β

* 5

09/25/19 B. Wolff - M2 - PIA 19

Substitution and Conversions
Example (Boolean Logics):
TRUE ≡ λx.λy.x
FALSE ≡ λx.λy.y (Note that FALSE is equivalent to the Church numeral zero defined above)
AND ≡ λp.λq.p q p
OR ≡ λp.λq.p p q
NOT ≡ λp.p FALSE TRUE
IFTHENELSE ≡ λp.λa.λb.p a b

Consider:
AND TRUE FALSE →β

* FALSE

09/25/19 B. Wolff - M2 - PIA 19

Substitution and Conversions
Example (Boolean Logics):
TRUE ≡ λx.λy.x
FALSE ≡ λx.λy.y (Note that FALSE is equivalent to the Church numeral zero defined above)
AND ≡ λp.λq.p q p
OR ≡ λp.λq.p p q
NOT ≡ λp.p FALSE TRUE
IFTHENELSE ≡ λp.λa.λb.p a b

Consider:
AND TRUE FALSE →β

* FALSE

09/25/19 B. Wolff - M2 - PIA 20

Substitution and Conversions
Example (Recursive Function):
FAC ≡ λfac. λn. IFTHENELSE (ISZERO n)(1) (MULT n (fac(PRED n)))
Y ≡ λf. (xλ . f(x x)) (xλ . f(x x))

Consider:

(Y FAC) 4 →β
* 24

09/25/19 B. Wolff - M2 - PIA 20

Substitution and Conversions
Example (Recursive Function):
FAC ≡ λfac. λn. IFTHENELSE (ISZERO n)(1) (MULT n (fac(PRED n)))
Y ≡ λf. (xλ . f(x x)) (xλ . f(x x))

Consider:

(Y FAC) 4 →β
* 24

09/25/19 B. Wolff - M2 - PIA 21

The untyped λ-calculus
Theoretical Properties (Pure/Applied)

• it is “a universal language“ (i.e. it has the same
 computational power than, say, Turing Machines
• there may be calculations that „diverge“ (loop)
• it is Church-Rosser:

 (for * be reductions, β
 α -conversions)η

• the equality on -λ terms is undecidable.
• the difference between “Pure” and “Applied” irrelevant
09/25/19 B. Wolff - M2 - PIA 21

The untyped λ-calculus
Theoretical Properties (Pure/Applied)

• it is “a universal language“ (i.e. it has the same
 computational power than, say, Turing Machines
• there may be calculations that „diverge“ (loop)
• it is Church-Rosser:

 (for * be reductions, β
 α -conversions)η

• the equality on -λ terms is undecidable.
• the difference between “Pure” and “Applied” irrelevant

09/25/19 B. Wolff - M2 - PIA 22

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 22

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 23

The typed λ-calculus
Motivation:

• a term - language for representing
 maths (with integrals, limits and stuff -
 thus: variables and binding.) in a logic
 [seminal paper by Church in 1940]
• no divergence admissible
 [what would a „divergent term“ mean
 in a logic ?]
• equality on terms decidable
• turned out to be easy to implement.

09/25/19 B. Wolff - M2 - PIA 23

The typed λ-calculus
Motivation:

• a term - language for representing
 maths (with integrals, limits and stuff -
 thus: variables and binding.) in a logic
 [seminal paper by Church in 1940]
• no divergence admissible
 [what would a „divergent term“ mean
 in a logic ?]
• equality on terms decidable
• turned out to be easy to implement.

09/25/19 B. Wolff - M2 - PIA 24

The typed λ-calculus
Idea:

• we use an applied λ-calculus
 (and constant symbols will be subtly
 different from variables in the typed λ)
• we introduce the syntactic category of
 types
• we require all „legal“ terms to be typed,
 i.e. an association of a term to a type
 according to typing rules must be possible.

09/25/19 B. Wolff - M2 - PIA 24

The typed λ-calculus
Idea:

• we use an applied λ-calculus
 (and constant symbols will be subtly
 different from variables in the typed λ)
• we introduce the syntactic category of
 types
• we require all „legal“ terms to be typed,
 i.e. an association of a term to a type
 according to typing rules must be possible.

09/25/19 B. Wolff - M2 - PIA 25

The typed λ-calculus
Types (1):

• We assume a set of type constructors withχ
 symbols like bool, nat, int, _list, _set, _ _, ...⇒
• For type constructors (and constant symbols),
 we will allow infix/circumfix notation:

 we will write:

 nat list for (list_)(nat)
 bool nat ⇒ for (_ _)(bool, nat)⇒

 . . .

09/25/19 B. Wolff - M2 - PIA 25

The typed λ-calculus
Types (1):

• We assume a set of type constructors withχ
 symbols like bool, nat, int, _list, _set, _ _, ...⇒
• For type constructors (and constant symbols),
 we will allow infix/circumfix notation:

 we will write:

 nat list for (list_)(nat)
 bool nat ⇒ for (_ _)(bool, nat)⇒

 . . .

09/25/19 B. Wolff - M2 - PIA 26

The typed λ-calculus
Types (1):

• The set of types is inductively τ
 defined:

 τ ::= TV | χ(τ1,...,τn)

 where TV is a set of type variables α,β,γ.
 Note: For nat() we just write nat.

 09/25/19 B. Wolff - M2 - PIA 26

The typed λ-calculus
Types (1):

• The set of types is inductively τ
 defined:

 τ ::= TV | χ(τ1,...,τn)

 where TV is a set of type variables α,β,γ.
 Note: For nat() we just write nat.

09/25/19 B. Wolff - M2 - PIA 27

The typed λ-calculus
Types (2):

• A C-environment which assigns
 each constant symbol a type:

 Σ :: C ↦ τ
• A V-environment which assigns to
 each variable symbol a type:
 Γ :: V ↦ τ
 (we write a↦τ1, b↦τ2, c↦τ3 ...)

09/25/19 B. Wolff - M2 - PIA 27

The typed λ-calculus
Types (2):

• A C-environment which assigns
 each constant symbol a type:

 Σ :: C ↦ τ
• A V-environment which assigns to
 each variable symbol a type:
 Γ :: V ↦ τ
 (we write a↦τ1, b↦τ2, c↦τ3 ...)

09/25/19 B. Wolff - M2 - PIA 28

The typed λ-calculus
Types (3):

• A Type Judgement stating
 that a term t has type τ in
 environments Σ and Γ 

 Σ Γ  ⊢ t :: τ
• ... and a set of type inference
 rules establishing type judgements.

09/25/19 B. Wolff - M2 - PIA 28

The typed λ-calculus
Types (3):

• A Type Judgement stating
 that a term t has type τ in
 environments Σ and Γ 

 Σ Γ  ⊢ t :: τ
• ... and a set of type inference
 rules establishing type judgements.

09/25/19 B. Wolff - M2 - PIA 29

The typed λ-calculus
• Type Inferences:

09/25/19 B. Wolff - M2 - PIA 29

The typed λ-calculus
• Type Inferences:

09/25/19 B. Wolff - M2 - PIA 30

The typed λ-calculus
• Note that constant symbols where
 treated slightly different than variable
 symbols:

 constant symbols may be instantiated
 (the type variables may be substituted
 via)

 a constant symbol may therefore have
 different types in a term.

09/25/19 B. Wolff - M2 - PIA 30

The typed λ-calculus
• Note that constant symbols where
 treated slightly different than variable
 symbols:

 constant symbols may be instantiated
 (the type variables may be substituted
 via)

 a constant symbol may therefore have
 different types in a term.

09/25/19 B. Wolff - M2 - PIA 31

Typed λ-calculus
• We assume Σ =
 {“_+_”↦ nat→nat→nat, “0”↦ nat,“1”↦ nat,“2”↦nat,“3”↦nat,

 “Suc _” ↦ nat→nat,

 “_=_”↦ α→α bool, → “True”↦bool),“False” ↦ bool}

09/25/19 B. Wolff - M2 - PIA 31

Typed λ-calculus
• We assume Σ =
 {“_+_”↦ nat→nat→nat, “0”↦ nat,“1”↦ nat,“2”↦nat,“3”↦nat,

 “Suc _” ↦ nat→nat,

 “_=_”↦ α→α bool, → “True”↦bool),“False” ↦ bool}

09/25/19 B. Wolff - M2 - PIA 32

Typed λ-calculus
• Example: does λx. x + 3 have a type,
 and which one ?

09/25/19 B. Wolff - M2 - PIA 32

Typed λ-calculus
• Example: does λx. x + 3 have a type,
 and which one ?

09/25/19 B. Wolff - M2 - PIA 33

Revisions: Typed λ-calculus
• Examples: Are there variable environments ρ
 such that the following terms are typable in Σ:
 (note that we use infix notation: we write
 “0 + x” instead of “_+_ 0 x“)

– (_+_ 0) = (Suc x)
– ((x + y) = (y + x)) = False
– f(_+_ 0) = (λc  g c) x
– _+_ z (_+_ (Suc 0)) = (0 + f False)
– a + b = (True = c)

09/25/19 B. Wolff - M2 - PIA 33

Revisions: Typed λ-calculus
• Examples: Are there variable environments ρ
 such that the following terms are typable in Σ:
 (note that we use infix notation: we write
 “0 + x” instead of “_+_ 0 x“)

– (_+_ 0) = (Suc x)
– ((x + y) = (y + x)) = False
– f(_+_ 0) = (λc  g c) x
– _+_ z (_+_ (Suc 0)) = (0 + f False)
– a + b = (True = c)

09/25/19 B. Wolff - M2 - PIA 34

Revisions: β-reduction
• Assume that we want to find typed solutions for

?X, ?Y, ?Z such that the following terms become
equivalent modulo α-conversion and β-reduction:

– ?X a =?= a + ?Y
– (λc  g c) =?= (λx  ?Y x)
– (λc  ?X c) a =?= ?Y
– λa  (λc  X c) a =?= (λx  ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles Rule-
Instantiation Mechanism

• Are the solutions for schematic variables always
unique ?09/25/19 B. Wolff - M2 - PIA 34

Revisions: β-reduction
• Assume that we want to find typed solutions for

?X, ?Y, ?Z such that the following terms become
equivalent modulo α-conversion and β-reduction:

– ?X a =?= a + ?Y
– (λc  g c) =?= (λx  ?Y x)
– (λc  ?X c) a =?= ?Y
– λa  (λc  X c) a =?= (λx  ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles Rule-
Instantiation Mechanism

• Are the solutions for schematic variables always
unique ?

09/25/19 B. Wolff - M2 - PIA 35

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 35

Plan of this Course

• The „λ-calculus“
• α-conversion,β-reduction,ε-reduction
• What is „typed λ-calculus“
• Using typed λ-calculus to
 represent logical systems
• What is „natural deduction“ ?
 (from another perspective)

09/25/19 B. Wolff - M2 - PIA 36

Deduction
• Logic Whirl-Pool of the 20ies (Girard)
as response to foundational problems
in Mathematics

– growing uneasiness over the question:

What is a proof ?

Are there limits of provability ?

09/25/19 B. Wolff - M2 - PIA 36

Deduction
• Logic Whirl-Pool of the 20ies (Girard)
as response to foundational problems
in Mathematics

– growing uneasiness over the question:

What is a proof ?

Are there limits of provability ?

09/25/19 B. Wolff - M2 - PIA 37

Deduction
• Historical context in the 20ies:

– 1500 false proofs of
 „all parallels do not intersect in infinity“

– lots of proofs and refutations of
 „all polyhedrons are eularian“ (Lakatosz)

– Frege‘s axiomatic set theory proven
inconsistent by Russel

– Science vs. Marxism debate (Popper)

E = F + K - 2 ???

09/25/19 B. Wolff - M2 - PIA 37

Deduction
• Historical context in the 20ies:

– 1500 false proofs of
 „all parallels do not intersect in infinity“

– lots of proofs and refutations of
 „all polyhedrons are eularian“ (Lakatosz)

– Frege‘s axiomatic set theory proven
inconsistent by Russel

– Science vs. Marxism debate (Popper)

E = F + K - 2 ???

09/25/19 B. Wolff - M2 - PIA 38

Deduction
• Historical context in the 20ies:

– this seemed quite far away from
Leipnitz vision of

„Calculemus !“ (We don‘t agree ?
 Let‘s calculate ...)

of what constitutes, well,

Science ...

09/25/19 B. Wolff - M2 - PIA 38

Deduction
• Historical context in the 20ies:

– this seemed quite far away from
Leipnitz vision of

„Calculemus !“ (We don‘t agree ?
 Let‘s calculate ...)

of what constitutes, well,

Science ...

09/25/19 B. Wolff - M2 - PIA 39

Deduction
• Historical context in the 20ies:

– attempts to formalize the intuition of
„deduction“ by Frege, Hilbert, Russel,
Lukasiewics, ...

– 2 Calculi presented by Gerhard Gentzen
in 1934.

• „natürliches Schliessen“ (natural
deduction):

• „Sequenzkalkül“ (sequent calculus)

09/25/19 B. Wolff - M2 - PIA 39

Deduction
• Historical context in the 20ies:

– attempts to formalize the intuition of
„deduction“ by Frege, Hilbert, Russel,
Lukasiewics, ...

– 2 Calculi presented by Gerhard Gentzen
in 1934.

• „natürliches Schliessen“ (natural
deduction):

• „Sequenzkalkül“ (sequent calculus)

09/25/19 B. Wolff - M2 - PIA 40

Deduction
" An Inference System (or Logical Calculus) allows to

infer formulas from a set of elementary judgements
(axioms) and inferred judgements by rules:

“from the assumptions A1 to An, you can infer the
conclusion An+1.” A rule with n=0 is an elementary fact.
Variables occurring in the formulas An can be
arbitrarily substituted.09/25/19 B. Wolff - M2 - PIA 40

Deduction
" An Inference System (or Logical Calculus) allows to

infer formulas from a set of elementary judgements
(axioms) and inferred judgements by rules:

“from the assumptions A1 to An, you can infer the
conclusion An+1.” A rule with n=0 is an elementary fact.
Variables occurring in the formulas An can be
arbitrarily substituted.

09/25/19 B. Wolff - M2 - PIA 41

Deduction
" judgements discussed in this course (or elsewhere):

t : τ “term t has type τ”
Γ φ ⊢ “formula φ is valid under assumptions Γ”

 ⊢ {P} x:= x+1 {Q} “Hoare Triple”

φ prop “φ is a property”
φ valid “φ is a valid (true) property”
x mortal sokrates mortal --- judgements with free variable⟹

etc ...

09/25/19 B. Wolff - M2 - PIA 41

Deduction
" judgements discussed in this course (or elsewhere):

t : τ “term t has type τ”
Γ φ ⊢ “formula φ is valid under assumptions Γ”

 ⊢ {P} x:= x+1 {Q} “Hoare Triple”

φ prop “φ is a property”
φ valid “φ is a valid (true) property”
x mortal sokrates mortal --- judgements with free variable⟹

etc ...

09/25/19 B. Wolff - M2 - PIA 42

Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).
09/25/19 B. Wolff - M2 - PIA 42

Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).

09/25/19 B. Wolff - M2 - PIA 43

Natural Deduction
" the same thing presented a bit more neatly (without

prop):

(equality on functions as above (“extensional equality”) is
an HO principle, and it is a classical principle).

09/25/19 B. Wolff - M2 - PIA 43

Natural Deduction
" the same thing presented a bit more neatly (without

prop):

(equality on functions as above (“extensional equality”) is
an HO principle, and it is a classical principle).

09/25/19 B. Wolff - M2 - PIA 44

Representing logical systems
in the typed λ  calculus

• It is straight-forward to use the typed λ-terms as a
syntactic means to represent logics; including
binding issues related to quantifiers like   ...

• Example: The Isabelle language „Pure“:
It consists of typed λterms with constants:

– foundational types “prop” and “_ => _” (“_ ⇒ _”)

– the Pure (universal) quantifier
 all :: “(α → Prop) → Prop”

 (“⋀x. P x”,“\<And> x. P x” “!!x. P x”)

– the Pure implication “A ==> B” (“_ ⟹ _”)
– the Pure equality “A == B” “A B”≡ 09/25/19 B. Wolff - M2 - PIA 44

Representing logical systems
in the typed λ  calculus

• It is straight-forward to use the typed λ-terms as a
syntactic means to represent logics; including
binding issues related to quantifiers like   ...

• Example: The Isabelle language „Pure“:
It consists of typed λterms with constants:

– foundational types “prop” and “_ => _” (“_ ⇒ _”)

– the Pure (universal) quantifier
 all :: “(α → Prop) → Prop”

 (“⋀x. P x”,“\<And> x. P x” “!!x. P x”)

– the Pure implication “A ==> B” (“_ ⟹ _”)
– the Pure equality “A == B” “A B”≡

09/25/19 B. Wolff - M2 - PIA 45

„Pure“: A (Meta)-Language
for Deductive Systems

! Pure is a language to write logical rules.
! Wrt. Isabelle, it is the meta-language, i.e. the built-in
formula language.

! Equivalent notations for natural deduction rules:

 A1 (… (A⟹ ⟹ n A⟹ n+1)...),

 A⟦ 1; …; An A⟧ ⟹ n+1,

theorem
 assumes A1

 and …

 and An

 shows An+1
09/25/19 B. Wolff - M2 - PIA 45

„Pure“: A (Meta)-Language
for Deductive Systems

! Pure is a language to write logical rules.
! Wrt. Isabelle, it is the meta-language, i.e. the built-in
formula language.

! Equivalent notations for natural deduction rules:

 A1 (… (A⟹ ⟹ n A⟹ n+1)...),

 A⟦ 1; …; An A⟧ ⟹ n+1,

theorem
 assumes A1

 and …

 and An

 shows An+1

09/25/19 B. Wolff - M2 - PIA 46

„Pure“: A (Meta)-Language
for Deductive Systems

! Some more complex rules involving the concept
of “Discharge” of (formerly hypothetical)
assumptions:

 (P Q) R : ⟹ ⟹

 theorem
 assumes "P Q"⟹
 shows "R"

09/25/19 B. Wolff - M2 - PIA 46

„Pure“: A (Meta)-Language
for Deductive Systems

! Some more complex rules involving the concept
of “Discharge” of (formerly hypothetical)
assumptions:

 (P Q) R : ⟹ ⟹

 theorem
 assumes "P Q"⟹
 shows "R"

09/25/19 B. Wolff - M2 - PIA 47

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

impI mp

disjI1

notnotE

disjI2
disjE

09/25/19 B. Wolff - M2 - PIA 47

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

impI mp

disjI1

notnotE

disjI2
disjE

09/25/19 B. Wolff - M2 - PIA 48

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 48

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 49

Key Concepts: Rule-Instances
! A Rule-Instance is a rule where the free
variables in its judgements were substituted
by a common substitution :σ

where is σ {A 3<x, B x≤y}.↦ ↦

conjI
σ

09/25/19 B. Wolff - M2 - PIA 49

Key Concepts: Rule-Instances
! A Rule-Instance is a rule where the free
variables in its judgements were substituted
by a common substitution :σ

where is σ {A 3<x, B x≤y}.↦ ↦

conjI
σ

09/25/19 B. Wolff - M2 - PIA 50

Key Concepts: Formal Proofs
" A series of inference rule instances is usually

displayed as a Proof Tree (or : Derivation or: Formal Proof)

" The hypothetical facts at the leaves are called the
assumptions of the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst

09/25/19 B. Wolff - M2 - PIA 50

Key Concepts: Formal Proofs
" A series of inference rule instances is usually

displayed as a Proof Tree (or : Derivation or: Formal Proof)

" The hypothetical facts at the leaves are called the
assumptions of the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst

09/25/19 B. Wolff - M2 - PIA 51

Key Concepts: Discharge
" A key requisite of ND is the concept of discharge of

assumptions allowed by some rules (like impI)

" The set of assumptions is diminished by the discharged
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

sym subst

trans refl

subst

[
subst

][]

09/25/19 B. Wolff - M2 - PIA 51

Key Concepts: Discharge
" A key requisite of ND is the concept of discharge of

assumptions allowed by some rules (like impI)

" The set of assumptions is diminished by the discharged
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

sym subst

trans refl

subst

[
subst

][]

09/25/19 B. Wolff - M2 - PIA 52

Key Concepts:
Global Assumptions

" The set of (proof-global) assumptions gives rise to the
notation:

 written:

 A ⊢ φ

 or when emphasising the global theory
 (also called: global context):

 09/25/19 B. Wolff - M2 - PIA 52

Key Concepts:
Global Assumptions

" The set of (proof-global) assumptions gives rise to the
notation:

 written:

 A ⊢ φ

 or when emphasising the global theory
 (also called: global context):

09/25/19 B. Wolff - M2 - PIA 53

Sequent-style calculus
" Gentzen introduced and alternative “style” to
natural deduction: Sequent style rules.

– Idea: using the tuples A ⊢ φ as basic judgments
of the rules.

09/25/19 B. Wolff - M2 - PIA 53

Sequent-style calculus
" Gentzen introduced and alternative “style” to
natural deduction: Sequent style rules.

– Idea: using the tuples A ⊢ φ as basic judgments
of the rules.

09/25/19 B. Wolff - M2 - PIA 54

Sequent-style calculus
" in contrast to:

09/25/19 B. Wolff - M2 - PIA 54

Sequent-style calculus
" in contrast to:

09/25/19 B. Wolff - M2 - PIA 55

Sequent-style vs. ND calculus
" Both styles are linked by two transformations called
“lifting over assumptions” Lifting over assumptions
transforms:

where we consider
for the moment

 ⊢ just equivalent to
meta implication ⟹

09/25/19 B. Wolff - M2 - PIA 55

Sequent-style vs. ND calculus
" Both styles are linked by two transformations called
“lifting over assumptions” Lifting over assumptions
transforms:

where we consider
for the moment

 ⊢ just equivalent to
meta implication ⟹

09/25/19 B. Wolff - M2 - PIA 56

Quantifiers
" When reasoning over logics with quantifiers (such as FOL,

set-theory, TLA, ..., and of course: HOL), the additional
concept of “parameters” of a rule is necessary. We assume
that there is an infinite set of variables and that it is
always possible to find a “fresh” unused one ...

– Consider:

09/25/19 B. Wolff - M2 - PIA 56

Quantifiers
" When reasoning over logics with quantifiers (such as FOL,

set-theory, TLA, ..., and of course: HOL), the additional
concept of “parameters” of a rule is necessary. We assume
that there is an infinite set of variables and that it is
always possible to find a “fresh” unused one ...

– Consider:

09/25/19 B. Wolff - M2 - PIA 57

Quantifiers
" For allI, Isabelle allows certain free variables ?X,

?Y, ?Z that represent „wholes“ in a term that can
be filled in later by substitution; Coq requires the
instantiation when applying the rule.

" Isabelle uses a built-in (“meta”)-quantifier ⋀x. P

x already seen on page 13; Coq uses internally a
similar concept not explicitly revealed to the user.

09/25/19 B. Wolff - M2 - PIA 57

Quantifiers
" For allI, Isabelle allows certain free variables ?X,

?Y, ?Z that represent „wholes“ in a term that can
be filled in later by substitution; Coq requires the
instantiation when applying the rule.

" Isabelle uses a built-in (“meta”)-quantifier ⋀x. P

x already seen on page 13; Coq uses internally a
similar concept not explicitly revealed to the user.

09/25/19 B. Wolff - M2 - PIA 58

Introduction to
Isabelle/HOL

09/25/19 B. Wolff - M2 - PIA 58

Introduction to
Isabelle/HOL

09/25/19 B. Wolff - M2 - PIA 59

Basic HOL Syntax
! HOL (= Higher-Order Logic) goes back to
Alonzo Church who invented this in the 30ies …

! “Classical” Logic over the λ-calculus with
Curry-style typing (in contrast to Coq)

! Logical type: “bool” injects to “prop”. i.e

 Trueprop :: “bool ⇒ prop“

is wrapped around any HOL-Term without being printed:

 Trueprop A ⟹ Trueprop B is printed: A ⟹ B but A::bool!
 09/25/19 B. Wolff - M2 - PIA 59

Basic HOL Syntax
! HOL (= Higher-Order Logic) goes back to
Alonzo Church who invented this in the 30ies …

! “Classical” Logic over the λ-calculus with
Curry-style typing (in contrast to Coq)

! Logical type: “bool” injects to “prop”. i.e

 Trueprop :: “bool ⇒ prop“

is wrapped around any HOL-Term without being printed:

 Trueprop A ⟹ Trueprop B is printed: A ⟹ B but A::bool!

09/25/19 B. Wolff - M2 - PIA 60

Basic HOL Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
– “_ \<and> _” “_∧_” “_ & _”
– “_ \<or> _” “_ ∨_” “_ | _
– “_\<longrightarrow>_” “_ → _” “_ --> _”
– “_ \<not> _” “!_" “~ _”
– “\<forall> x. P“ “Ax. P” “! x. P x”
– “\<exists> x. P“ “Ex. P” “? x. P x”

09/25/19 B. Wolff - M2 - PIA 60

Basic HOL Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
– “_ \<and> _” “_∧_” “_ & _”
– “_ \<or> _” “_ ∨_” “_ | _
– “_\<longrightarrow>_” “_ → _” “_ --> _”
– “_ \<not> _” “!_" “~ _”
– “\<forall> x. P“ “Ax. P” “! x. P x”
– “\<exists> x. P“ “Ex. P” “? x. P x”

09/25/19 B. Wolff - M2 - PIA 61

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

09/25/19 B. Wolff - M2 - PIA 61

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

09/25/19 B. Wolff - M2 - PIA 62

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

which
 ru

le m
akes

HOL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 62

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

which
 ru

le m
akes

HOL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 63

Basic HOL Rules

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 63

Basic HOL Rules

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 64

HOL Rules

! The quantifier rules of HOL:

allI allE
(safe, but
 incomplete)

again
: w

hat m
akes

these
s H

OL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 64

HOL Rules

! The quantifier rules of HOL:

allI allE
(safe, but
 incomplete)

again
: w

hat m
akes

these
s H

OL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 65

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 65

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 66

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 66

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 67

HOL Rules

! The quantifier rules of HOL:

exEexI

09/25/19 B. Wolff - M2 - PIA 67

HOL Rules

! The quantifier rules of HOL:

exEexI

09/25/19 B. Wolff - M2 - PIA 68

HOL Rules

! From these rules (which were defined actually
slightly differently), a large body of other
rules can be DERIVED (formally proven, and
introduced as new rule in the proof
environment).

Examples: see exercises.
09/25/19 B. Wolff - M2 - PIA 68

HOL Rules

! From these rules (which were defined actually
slightly differently), a large body of other
rules can be DERIVED (formally proven, and
introduced as new rule in the proof
environment).

Examples: see exercises.

09/25/19 B. Wolff - M2 - PIA 69

Typed Set-theory in HOL
! The HOL Logic comes immediately with
a typed set - theory: The type

 α set ≅ α bool, that's it !⇒

can be defined isomorphically to its type
of characteristic functions !

! THIS GIVES RISE TO A RICH SET THEORY
DEVELOPPED IN THE LIBRARY
(Set.thy).
 09/25/19 B. Wolff - M2 - PIA 69

Typed Set-theory in HOL
! The HOL Logic comes immediately with
a typed set - theory: The type

 α set ≅ α bool, that's it !⇒

can be defined isomorphically to its type
of characteristic functions !

! THIS GIVES RISE TO A RICH SET THEORY
DEVELOPPED IN THE LIBRARY
(Set.thy).

09/25/19 B. Wolff - M2 - PIA 70

Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
“_ \<in> _” “_ ∈ _” “_ : _”
“{_ . _}” {x. True x = x} for example∧

“_ \<union> _” “_∪_” “_ Un _”
“_ \<inter> _” “_ ∩_” “_ Int _”
“_\<subseteq>_” “_ _”⊆ “_ <= _”
 . . .09/25/19 B. Wolff - M2 - PIA 70

Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
“_ \<in> _” “_ ∈ _” “_ : _”
“{_ . _}” {x. True x = x} for example∧

“_ \<union> _” “_∪_” “_ Un _”
“_ \<inter> _” “_ ∩_” “_ Int _”
“_\<subseteq>_” “_ _”⊆ “_ <= _”
 . . .

09/25/19 B. Wolff - M2 - PIA 71

Conclusion
! Typed λ-calculus is a rich term language for the

representation of logics, logical rules, and logical
derivations (proofs)

! On the basis of typed λ-calculus, Higher-order
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL)
are actually tiny.

09/25/19 B. Wolff - M2 - PIA 71

Conclusion
! Typed λ-calculus is a rich term language for the

representation of logics, logical rules, and logical
derivations (proofs)

! On the basis of typed λ-calculus, Higher-order
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL)
are actually tiny.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

