Preuves Interactives

et Applications

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2018-19/M2-CSMR

Université Paris-Saclay

Introduction to λ-calculus

Motivation: Why ITP ?

- Program verification:
- SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS
- Compcert (Coq, Inria), optimizing C compiler
- Security : moderlling of JavaCard plateforms
- Mathematics : 4 color theorem, Kepler conjecture, Feit-Thompson conjecture. . .
- Formal proofs in informatics
- machine arithmetics (nombres flottants)
- crypt algorithms, combinatory algorithms
- program language semantics
- Back-end for other provers (reverifying proof traces),
- proof obligations in program verification
- test-case generations
- ... much stuff in Phd-thesis and the scientific literature ...

Plan of this Course

- The " λ-calculus"
- α-conversion, β-reduction, ε-reduction
- What is "typed λ-calculus"
- Using typed λ-calculus to
represent logical systems
- What is "natural deduction"?
(from another perspective)

Foundation: The λ-calculus

- Developed in the 30ies by Alonzo Church (and his students Kleene and Rosser)
- ... to develop a representation of Whitehead's and Russel's "Principia Mathematica"
- ... was early on detected as

Turing-complete and actually
a "functional computation model" (Turing)

The λ-calculus

- The "Pure λ-calculus" : a term language. λ-terms T are built (inductively) over:
- V, a set of "variable symbols"
- $\lambda \mathrm{V}$. T, a term construction called " λ-abstraction",
- T T, a term construction called " λ-abstraction"
- A version adding a set of constant symbols is called "the applied λ-calculus"

The λ-calculus

This produces expressions like:

$$
(\lambda x . \lambda y .(\lambda z .(\lambda x . z x)(\lambda y . z y))(x y))
$$

parenthesis can be dropped:
$((f x) y) \quad$ is written just $f x y$
$f(x) \quad$ is written just $f x$.

The λ-calculus

The most important aspect of "variables" are that they "stand for something", i.e. they can be "substituted" by something.

A key-motivation for the λ-calculus is that keyideas of binding and scoping of variables (as occurring mathematics and programming languages) should be treated correctly.
λ-abstractions build a scope: in $\lambda x . x x, x$ appears "bound". If a variable occurrence in not bound, is is called "free".

Plan of this Course

- The " λ-calculus"
- α-conversion, β-reduction, ε-reduction
- What is "typed λ-calculus"
- Using typed λ-calculus to
represent logical systems
- What is "natural deduction"?
(from another perspective)

The λ-calculus

Example:

$$
(\lambda \hat{x} \cdot \lambda \hat{y} \cdot(\lambda \hat{z} \cdot(\lambda x . z a)(\lambda \hat{y} \cdot z y))(x y))
$$

The free variables can be computed recursively:

$$
\begin{array}{ll}
\text { free }(x) & =\{x\} \\
\text { free }\left(T T^{\prime}\right) & =\text { free }(T) \cup \text { free }\left(T^{\prime}\right) \\
\text { free }(\lambda x . T) & =\text { free }(T) \backslash\{x\}
\end{array}
$$

Substitution and Conversions

Bound variables can be arbitrarily renamed, provided that this does not "capture" a free variable (make it bound). This is reflected by the notion of

$$
\alpha \text {-conversion (written } \leftrightarrow_{\alpha} \text {). }
$$

Example:

$$
\begin{aligned}
& (\lambda x . \lambda y \cdot(\lambda z .(\lambda x . z a)(\lambda y . z y))(x y)) \leftrightarrow_{a} \\
& \text { (} \lambda x . \lambda y .(\lambda z .(\lambda y . z a)(\lambda y . z y))(x y)) b u t n o t: \\
& (\lambda x . \lambda y \cdot(\lambda z .(\lambda a . z \underset{\text { B. wolf-M2-PlA }}{a}(\lambda y . z y))(x y))
\end{aligned}
$$

Substitution and Conversions

Free-ness of variables and \leftrightarrow_{α} together give a notion of capture-free substitution.

- $\mathrm{x}[\mathrm{x}:=\mathrm{r}]=\mathrm{r}$
- $y[x:=r]=y$
- $(\mathrm{ts})[\mathrm{x}:=\mathrm{r}]=(\mathrm{t}[\mathrm{x}:=\mathrm{r}])(\mathrm{s}[\mathrm{x}:=\mathrm{r}])$
- $(\lambda x . t)[\mathrm{x}:=\mathrm{r}]=\lambda \mathrm{x} . \mathrm{t}$
- $(\lambda y . t)[x:=r]=\lambda y .(t[x:=r])$ if $x \neq y$ and y is not in the free variables of r.
The variable y is said to be "fresh" for r.

Substitution and Conversions

Example:

- $(\lambda x \cdot x)[y:=y]=\lambda x \cdot(x[y:=y])=\lambda x \cdot x$
- $((\lambda x \cdot y) x)[x:=y]=((\lambda x \cdot y)[x:=y])(x[x:=y])=(\lambda x \cdot y) y$
- Counterexample (ignoring freshness condition) :

$$
(\lambda x \cdot y)[y:=x]=\lambda x \cdot(y[y:=x])=\lambda x \cdot x
$$

so we would convert a constant function into an identity ...

Substitution and Conversions

The "Motor" of the λ-calculus: the β-conversion (written \leftrightarrow_{β}) or its onedirectional version, the β-reduction (written \rightarrow_{β}). It captures the notion of applying functions to their arguments:

- $(\lambda x . t) E \leftrightarrow_{\beta} t[x:=E]$
- $(\lambda x . t) E \rightarrow{ }_{\beta} t[x:=E]$

Substitution and Conversions

The η-conversion (written \leftrightarrow_{η}) or its onedirectional version, the η-reduction (written \rightarrow_{η}) captures the notion of extensionality on functions:

- $(\lambda x . f x) \leftrightarrow_{\eta} f \quad$ where x does not occur free in f
- $(\lambda x . f x) \rightarrow_{\eta} f \quad$ where x does not occur free in f

All conversions/reductions are congruences, i.e. can be applied to any subterm.

Substitution and Conversions

Example:

$\lambda g .(\lambda x . g(x x))(\lambda x . g(x x))$
(which we will abbreviate Y)
Now consider:

```
    y \(f\)
\(\equiv \quad\left(\lambda h .\left(\lambda x . h\left(x x^{\prime}\right)\right)\left(\lambda x . h\left(x x^{\prime}\right)\right) f\right.\)
\(\rightarrow_{\beta}(\lambda x . f(x \quad x))(\lambda x . f(x \quad x))\)
\(\rightarrow_{\beta} f((\lambda x . f(x x))(\lambda x . f(x \quad x)))\)
\(\equiv \quad f(\mathbf{y} f)\)
```

A combinator with this property $\mathbf{Y} f=f(\mathbf{Y} f)$ is called fixpoint combinator.

Substitution and Conversions

Example:

$\lambda g .(\lambda x . g(x x))(\lambda x . g(x x))$
(which we will abbreviate Y)
Now consider:

```
    y \(f\)
\(\equiv \quad\left(\lambda h .\left(\lambda x . h\left(x x^{\prime}\right)\right)\left(\lambda x . h\left(x x^{\prime}\right)\right) f\right.\)
\(\rightarrow_{\beta}(\lambda x . f(x \quad x))(\lambda x . f(x \quad x))\)
\(\rightarrow_{\beta} f((\lambda x . f(x x))(\lambda x . f(x \quad x)))\)
\(\equiv \quad f(\mathbf{y} f)\)
```

A combinator with this property $\mathbf{Y} f=f(\mathbf{Y} f)$ is called fixpoint combinator.

Substitution and Conversions

Example:

```
\(0 \equiv \lambda f . \lambda x . x\)
\(1 \equiv \lambda f . \lambda x . f\) x
\(2 \equiv \lambda f . \lambda x . f(f x)\)
\(3 \equiv \lambda f . \lambda x . f(f(f x))\)
\(\operatorname{SUCC} \equiv \lambda n . \lambda f . \lambda x . f(n f x)\)
PLUS \(\equiv \lambda m . \lambda n . \lambda f . \lambda x . m f(n f x)\)
```

Consider:

$$
\text { PLUS } 23 \rightarrow_{\beta}^{*} \quad 5
$$

Substitution and Conversions

Example (Church Numerals):

```
0 \equiv\lambdaf.\lambdax. x
1 \equiv\lambdaf.\lambdax.f x
2 \equiv\lambdaf.\lambdax.f (f x)
3 \equiv\lambdaf.\lambdax.f(f (f x))
SUCC \equiv\lambdan.\lambdaf.\lambdax.f (n f x)
PLUS \equiv \lambdam.\lambdan.\lambdaf.\lambdax.m f (n f x)
MULT \equiv \m.\lambdan.\lambdaf.m (n f)
```

Consider:

$$
\text { PLUS } 23 \rightarrow_{\beta}^{*} \quad 5
$$

Substitution and Conversions

Example (Boolean Logics):

```
TRUE \equiv \x. 立.x
FALSE \equiv \x. \lambday.y
```

```
AND \equiv \lambdap.\lambdaq.p q p
```

AND \equiv \lambdap.\lambdaq.p q p
OR \equiv\lambdap.\lambdaq.p p q
OR \equiv\lambdap.\lambdaq.p p q
NOT \equiv \lambdap.p FALSE TRUE
NOT \equiv \lambdap.p FALSE TRUE
IFTHENELSE \equiv \lambdap.\lambdaa.\lambdab.p a b

```
IFTHENELSE \equiv \lambdap.\lambdaa.\lambdab.p a b
```

(Note that FALSE is equivalent to the Church numeral zero defined above)

Consider:

Substitution and Conversions

Example (Recursive Function):

FAC $\equiv \lambda$ fac. $\lambda n . \operatorname{IFTHENELSE}(\operatorname{ISZERO} n)(1) \quad(M U L T i n(f a c(P R E D n)))$ $Y \equiv \lambda \mathrm{f} .(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathrm{x}))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathrm{x}))$

Consider:

$$
(\mathrm{Y} \text { FAC }) 4 \vec{\rightarrow}_{\beta}^{*} 24
$$

The untyped λ-calculus

Theoretical Properties (Pure/Applied)

- it is "a universal language" (i.e. it has the same computational power than, say, Turing Machines
- there may be calculations that "diverge" (loop)
- it is Church-Rosser:

$$
\begin{aligned}
& \text { (for * be } \beta \text { reductions, } \\
& \text { an-conversions) }
\end{aligned}
$$

- the equality on λ-terms is undecidable.
- the difference between "Pure" and "Applied" irrelevant

Plan of this Course

- The "ג-calculus"
- α-conversion, β-reduction, ε-reduction
- What is "typed λ-calculus"
- Using typed λ-calculus to
represent logical systems
- What is "natural deduction"?
(from another perspective)

The typed λ-calculus

Motivation:

- a term - language for representing maths (with integrals, limits and stuff thus: variables and binding.) in a logic [seminal paper by Church in 1940]
- no divergence admissible
[what would a "divergent term" mean in a logic ?]
- equality on terms decidable
- turned out to be easy to implement.

The typed λ-calculus

Idea:

- we use an applied λ-calculus
(and constant symbols will be subtly different from variables in the typed λ)
- we introduce the syntactic category of types
- we require all "legal" terms to be typed, i.e. an association of a term to a type according to typing rules must be possible.

The typed λ-calculus

Types (1):

- We assume a set of type constructors X with symbols like bool, nat, int, _list, _set, _ \Rightarrow_{-}, \ldots
- For type constructors (and constant symbols), we will allow infix/circumfix notation:
we will write:

nat list	for	$($ list_)(nat)
bool \Rightarrow nat	for	$\left(_A_{-}\right)($bool, nat $)$

The typed λ-calculus

Types (1):

- The set of types τ is inductively defined:

$$
\tau::=\operatorname{TVI} x\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

where TV is a set of type variables a, β, γ. Note: For nat() we just write nat.

The typed λ-calculus

Types (2):

- A C-environment which assigns each constant symbol a type:

$$
\Sigma:: \mathrm{C} \mapsto \mathrm{\tau}
$$

- A V-environment which assigns to each variable symbol a type:

$$
\Gamma:: \text { V } \mapsto ~ \tau
$$

(we write $\underset{\text { B. Wolf }-\mathrm{m} 2 \mathrm{P} \text { PA }}{\mathrm{a} \mapsto \mathrm{T}_{1}}, \mathrm{~b} \mapsto \mathrm{~T}_{2}, \mathrm{C} \mapsto \mathrm{T}_{3} \ldots$)

The typed λ-calculus

Types (3):

- A Type Judgement stating that a term t has type τ in environments Σ and Γ :

$$
\Sigma, \Gamma \vdash \mathrm{t}:: \tau
$$

... and a set of type inference rules establishing type judgements.

The typed λ-calculus

- Type Inferences:

$$
\begin{gathered}
\overline{\Sigma, \Gamma \vdash c_{i}:: \theta\left(\Sigma c_{i}\right) \quad \overline{\Sigma, \Gamma \vdash x_{i}:: \Gamma x_{i}}} \\
\frac{\Sigma, \Gamma \vdash E:: \tau \Rightarrow \tau^{\prime} \quad \Sigma, \Gamma \vdash E^{\prime}:: \tau}{\Sigma, \Gamma \vdash E E^{\prime}:: \tau^{\prime}} \\
\frac{\Sigma,\left\{x_{i} \mapsto \tau\right\} \uplus \Gamma \vdash E:: \tau^{\prime}}{\Sigma, \Gamma \vdash \lambda x_{i} \cdot E:: \tau \Rightarrow \tau^{\prime}}
\end{gathered}
$$

The typed λ-calculus

- Note that constant symbols where treated slightly different than variable symbols:
constant symbols may be instantiated (the type variables may be substituted via θ)
a constant symbol may therefore have different types in a term.

Typed λ-calculus

- We assume $\Sigma=$
$\{"++$ " \mapsto nat \rightarrow nat \rightarrow nat, "0" \mapsto nat,"1" \mapsto nat, " 2 " \mapsto nat, " 3 " \mapsto nat,
"Suc _" \mapsto nat \rightarrow nat,

$$
\text { "_=_" } \mapsto a \rightarrow a \rightarrow \text { bool, "True" } \mapsto \text { bool),"False" } \mapsto \text { bool\} }
$$

Typed λ-calculus

- Example: does $\lambda x . x+3$ have a type, and which one ?

$\overline{\Sigma, ~\{x \mapsto n a t\} \vdash(-+\ldots):: ~ n a t \Rightarrow n a t \Rightarrow n a t}$	$\overline{\Sigma,\{x \mapsto n a t\} \vdash x:: n a t}$	
$\Sigma,\{x \mapsto n a t\} \vdash\left(-+_\right)(x)::$ nat \Rightarrow nat		$\Sigma,\{x \mapsto n a t\} \vdash 3:: n a t$
$\Sigma,\{x \mapsto$ nat $\} \uplus\{ \} \vdash x+3::$ nat		
$\Sigma,\{ \} \vdash \lambda x . x+3:: n a t \Rightarrow$ nat		

Revisions: Typed λ-calculus

- Examples: Are there variable environments ρ such that the following terms are typable in Σ : (note that we use infix notation: we write " $0+x$ " instead of "_+_ 0 x")
$-\left({ }^{+}+0\right)=($ Suc $x)$
$-((x+y)=(y+x))=$ False
$-f\left(_+_0\right)=(\lambda c . g c) x$
____ $^{+}\left({ }^{+}+(\right.$Suc 0$\left.)\right)=(0+f$ False $)$
$-a+b=($ True $=c)$

Revisions: β-reduction

- Assume that we want to find typed solutions for ? X, ?Y, ? Z such that the following terms become equivalent modulo α-conversion and β-reduction:

$$
\begin{array}{ll}
-? \mathrm{Xa} & =?=\quad \mathrm{a}+? \mathrm{Y} \\
-(\lambda \mathrm{c} . \mathrm{gc}) & =?=\quad(\lambda \mathrm{x} . ? \mathrm{Y} \mathrm{x}) \\
-(\lambda \mathrm{c} . ? \mathrm{Xc}) \mathrm{a} & =?=\text { ?Y } \\
-\lambda \mathrm{a} \cdot(\lambda \mathrm{c} . \mathrm{Xc}) \mathrm{a} & =?=(\lambda \mathrm{x} . ? \mathrm{Y})
\end{array}
$$

- Note: Variables like ?X, ?Y, ?Z are called schematic variables; they play a major role in Isabelles RuleInstantiation Mechanism
- Are the solutions for schematic variables always ${ }_{092519}$ unique ?

Plan of this Course

- The "ג-calculus"
- α-conversion, β-reduction, ε-reduction
- What is "typed λ-calculus"
- Using typed λ-calculus to represent logical systems
- What is "natural deduction"? (from another perspective)

Deduction

- Logic Whirl-Pool of the 20ies (Girard) as response to foundational problems in Mathematics
- growing uneasiness over the question:

What is a proof?
Are there limits of provability?

Deduction

- Historical context in the 20ies:
- 1500 false proofs of "all parallels do not intersect in infinity"
- lots of proofs and refutations of "all polyhedrons are eularian" (Lakatosz)

$$
\mathrm{E}=\mathrm{F}+\mathrm{K}-2 \quad ? ? ?
$$

- Frege's axiomatic set theory proven inconsistent by Russel
- Science vs. Marxism debate (Popper)

Deduction

- Historical context in the 20ies:
- this seemed quite far away from Leipnitz vision of
"Calculemus!" (We don't agree ? Let's calculate ...)
of what constitutes, well,
Science ...

Deduction

- Historical context in the 20ies:
- attempts to formalize the intuition of "deduction" by Frege, Hilbert, Russel, Lukasiewics, ...
- 2 Calculi presented by Gerhard Gentzen in 1934.
- „natürliches Schliessen" (natural deduction):

Deduction

- An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary judgements (axioms) and inferred judgements by rules:

$$
\frac{A_{1} \quad \cdots}{}
$$

"from the assumptions A_{1} to A_{n}, you can infer the conclusion A_{n+1}." A rule with $\mathrm{n}=0$ is an elementary fact. Variables occurring in the formulas A_{n} can be arbbitrarily substituted.

Deduction

- judgements discussed in this course (or elsewhere):
$\mathrm{t}: \mathrm{T} \quad$ "term t has type $\mathrm{T} "$
$\Gamma \vdash \varphi \quad$ "formula φ is valid under assumptions Γ "
$\vdash\{P\} x:=x+1\{Q\} \quad$ "Hoare Triple"
φ prop " φ is a property"
φ valid " φ is a valid (true) property"
x mortal \Longrightarrow sokrates mortal $\quad--$ judgements with free variable
etc ...

Natural Deduction

- An Inference System for the equality operator (or "HO Equational Logic") looks like this:

$$
\begin{gathered}
\frac{(s=t) p r o p}{(s=s) p r o p} \frac{(r=s) p r o p \quad(s=t) p r o p}{(t=s) p r o p} \\
\frac{(s(x)=t(x)) p r o p}{(s=t) p r o p} \text { where } x \text { is fresh } \frac{(s=t) p r o p}{(P(s)) p r o p} \\
\frac{(P(t)) p r o p}{}
\end{gathered}
$$

(where the first rule is an elementary fact).

Natural Deduction

- the same thing presented a bit more neatly (without prop):

$$
\frac{s=t}{t=s} \quad \frac{r=s \quad s=t}{r=t}
$$

$\frac{\bigwedge x . s x=t x}{s=t}$

$$
\frac{s=t \quad P s}{P t}
$$

(equality on functions as above ("extensional equality") is an HO principle, and it is a classical principle).

Representing logical systems in the typed λ-calculus

- It is straight-forward to use the typed λ-terms as a syntactic means to represent logics; including binding issues related to quantifiers like \forall, \exists, \ldots
- Example: The Isabelle language "Pure":

It consists of typed λ-terms with constants:

- foundational types "prop" and "_ => _" ("_ \Rightarrow _")
-the Pure (universal) quantifier

$$
\begin{aligned}
& \text { all :: " }(\alpha \rightarrow \text { Prop }) \rightarrow \text { Prop" } \\
& \text { ("^x. P x","\<And> x. P x" "!!x. P x") }
\end{aligned}
$$

- the Pure implication " $A==>B$ " ("_ \Longrightarrow _")
$0925 / 19$ - the Pure equality
B. woli $A=$ м $A B " \quad " A \equiv B "$

"Pure": A (Meta)-Language for Deductive Systems

- Pure is a language to write logical rules.
- Wrt. Isabelle, it is the meta-language, i.e. the built-in formula language.
- Equivalent notations for natural deduction rules:

$$
\begin{aligned}
& A_{1} \Longrightarrow\left(\ldots \Longrightarrow\left(A_{n} \Longrightarrow A_{n+1}\right) \ldots\right), \\
& \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A_{n+1}
\end{aligned}
$$

theorem assumes A_{1} and ... and A_{n}

$$
\begin{array}{ccc}
A_{1} & \cdots & A_{n} \\
A_{n+1} & \text { в. Wolff - M2 - PIA }
\end{array}
$$ shows A_{n+1}

"Pure": A (Meta)-Language for Deductive Systems

- Some more complex rules involving the concept of "Discharge" of (formerly hypothetical) assumptions:

theorem assumes " $\mathrm{P} \Longrightarrow \mathrm{Q}$ " shows "R"

Propositional Logic as ND calculus

- Some (almost) basic rules in HOL
[A]

Propositional Logic as ND calculus

- Some (almost) basic rules in HOL
$[A, B]$

$\frac{A \wedge B \quad}{} \quad$| |
| :---: |
| Q |
| conje |$\frac{A \quad B}{A \wedge B}$ conjI

Key Concepts: Rule-Instances

- A Rule-Instance is a rule where the free variables in its judgements were substituted by a common substitution σ :

$$
\frac{A \quad B}{A \wedge B} \text { conji }>\sigma \quad \frac{3<x \quad x \leq y}{3<x \wedge x \leq y}
$$

where σ is $\{A \mapsto 3<x, B \mapsto x \leq y\}$.

Key Concepts: Formal Proofs

- A series of inference rule instances is usually displayed as a Proof Tree (or : Derivation or: Formal Proof)

$$
\operatorname{sym} \frac{f(a, b)=a}{a=f(a, b)} \quad \frac{f(a, b)=a \quad f(f(a, b), b)=c}{f(a, b)=c} \text { subst }
$$

trans

$$
a=c
$$

$$
g(a)=g(c)
$$

- The hypothetical facts at the leaves are called the assumptions of the proof (here $f(a, b)=a$ and $f(f(a, b), b)=c$).

Key Concepts: Discharge

- A key requisite of ND is the concept of discharge of assumptions allowed by some rules (like impI)

$$
\overline{A \rightarrow B}
$$

$$
\frac{[f(a, b)=a]}{a=f(a, b)} \frac{[f(a, b)=a] f(f(a, b), b)=c}{f(a, b)=c}
$$

sym
trans

$$
a=c
$$

$$
g(a)=g(c)
$$

$$
f(a, b)=a \rightarrow g(a)=g(c)
$$

- The set of assumptions is diminished by the discharged hypothetical facts of the proof (remaining: $f(f(a, b), b)=c$).
B. Wolff - M2 - PIA

Key Concepts: Global Assumptions

- The set of (proof-global) assumptions gives rise to the notation:

$$
\{f(a, b)=a, f(f(a, b), b)=c\} \vdash g(a)=g(c)
$$

written:

$$
\mathrm{A} \vdash \phi
$$

or when emphasising the global theory (also called: global context):

$$
A \vdash_{E} \phi
$$

Sequent-style calculus

- Gentzen introduced and alternative "style" to natural deduction: Sequent style rules.
- Idea: using the tuples $\mathrm{A} \vdash \phi$ as basic judgments of the rules.

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}
$$

$\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A$
$\Gamma \vdash B$

Sequent-style calculus

- in contrast to:

Sequent-style vs. ND calculus

- Both styles are linked by two transformations called "lifting over assumptions" Lifting over assumptions transforms:
where we consider for the moment
\vdash just equivalent to meta implication \Longrightarrow

$$
\begin{gathered}
\frac{A_{1} \quad \ldots \quad A_{n}}{A_{n+1}} \\
\frac{\Gamma \vdash A_{1} \quad \cdots \quad \Gamma \vdash A_{n}}{\Gamma \vdash A_{n+1}}
\end{gathered}
$$

Quantifiers

- When reasoning over logics with quantifiers (such as FOL, set-theory, TLA, ..., and of course: HOL), the additional concept of "parameters" of a rule is necessary. We assume that there is an infinite set of variables and that it is always possible to find a "fresh" unused one ...
- Consider:
$\forall x . P(x)$
for any term t
$P(u)$
$\frac{P(u)}{\forall x . P(x)}$ for any fresh variable u
B. Wolff - M2 - PIA

Quantifiers

- For allI, Isabelle allows certain free variables ?X, ?Y, ?Z that represent "wholes" in a term that can be filled in later by substitution; Coq requires the instantiation when applying the rule.
"Isabelle uses a built-in ("meta")-quantifier $\wedge x . P$ x already seen on page 13; Coq uses internally a similar concept not explicitly revealed to the user.

Introduction to Isabelle/HOL

Basic HOL Syntax

- HOL (= Higher-Order Logic) goes back to Alonzo Church who invented this in the 30ies ...
- "Classical" Logic over the λ-calculus with Curry-style typing (in contrast to Coq)
- Logical type: "bool" injects to "prop". i.e
Trueprop :: "bool = prop"
is wrapped around any HOL-Term without being printed:

Trueprop $A \Longrightarrow$ Trueprop B is printed: $A \Longrightarrow B$ but $A:$:bool!

Basic HOL Syntax

- Logical connective syntax (Unicode + ASCII): input:
-"_ < $<$ and> _"
-"_ |<or> _"
- "_|<longrightarrow>_""_ \rightarrow _""_ --> "
-"_ < not> _"
- " $<$ forall> x. P"
$" \forall x$. P"
"! x. P x"
- " $<$ exists> x. P"
" $\exists \mathrm{x} . \mathrm{P}$ "
"? x. P x"

Basic HOL Rules

- HOL is an equational logic, i.e. a system with the constant "_=_::'a 'a bool" and the rules:
$\overline{x=x}$ refl $\quad \frac{s=t}{t=s}$ sym $\quad \frac{r=s \quad s=t}{r=t}$ trans
$\frac{\wedge x . s x=t x}{s=t}$ ext

$$
\frac{s=t \quad P s}{P t} \text { subst }
$$

Basic HOL Rules

- HOL is an equational logic, i.e. a system with the constant "_=_::'a 'a bool" and the rules:

Basic HOL Rules

- Some (almost) basic rules in HOL

HOL Rules

- The quantifier rules of HOL:

allE
(safe, but incomplete)

HOL Rules

- The quantifier rules of HOL:

$$
[P ? t ; \forall x . P x]
$$

alldupE (unsafe, but complete)

HOL Rules

- The quantifier rules of HOL:

$$
[P ? t ; \forall x . P x]
$$

alldupE (unsafe, but complete)

HOL Rules

- The quantifier rules of HOL:

HOL Rules

- From these rules (which were defined actually slightly differently), a large body of other rules can be DERIVED (formally proven, and introduced as new rule in the proof environment).

Examples: see exercises.

Typed Set-theory in HOL

- The HOL Logic comes immediately with a typed set - theory: The type

$$
\alpha \text { set } \cong \alpha \Rightarrow \text { bool, that's it ! }
$$

can be defined isomorphically to its type of characteristic functions !

- THIS GIVES RISE TO A RICH SET THEORY DEVELOPPED IN THE LIBRARY (Set.thy).

Typed Set Theory: Syntax

- Logical connective syntax (Unicode + ASCII):
input:
" K Kin>"
"_ |<union> "
"_ |<inter> "
"_l<subseteq>"
print: alt-ascii input
"_ ${ }_{-}$"_ :_"
$\{x$. True $\wedge x=x\}$ for example

Conclusion

- Typed λ-calculus is a rich term language for the representation of logics, logical rules, and logical derivations (proofs)
- On the basis of typed λ-calculus, Higher-order logic (HOL) is fairly easy to represent
- ... the differences to first-order logic (FOL) are actually tiny.

