
09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Deduction (in HOL)
Université Paris-Saclay

Burkhart Wolff

https://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/index.html/

09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Deduction (in HOL)
Université Paris-Saclay

Burkhart Wolff

https://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/index.html/

09/25/19 B. Wolff - M2 - PIA 2

Revisions

! What is „typed λ-calculus“
! What is „β-reduction“

09/25/19 B. Wolff - M2 - PIA 2

Revisions

! What is „typed λ-calculus“
! What is „β-reduction“

09/25/19 B. Wolff - M2 - PIA 3

Themes

! What is deduction
! Using typed λ-calculus to
 represent logical systems

! What is „natural deduction“ ?
! Introduction to HOL

09/25/19 B. Wolff - M2 - PIA 3

Themes

! What is deduction
! Using typed λ-calculus to
 represent logical systems

! What is „natural deduction“ ?
! Introduction to HOL

09/25/19 B. Wolff - M2 - PIA 4

Revisions: Typed λ-calculus
• Examples: Are there variable environments ρ
 such that the following terms are typable in Σ:
 (note that we use infix notation: we write
 “0 + x” instead of “_+_ 0 x“)

– (_+_ 0) = (Suc x)
– ((x + y) = (y + x)) = False
– f(_+_ 0) = (λc  g c) x
– _+_ z (_+_ (Suc 0)) = (0 + f False)
– a + b = (True = c)

09/25/19 B. Wolff - M2 - PIA 4

Revisions: Typed λ-calculus
• Examples: Are there variable environments ρ
 such that the following terms are typable in Σ:
 (note that we use infix notation: we write
 “0 + x” instead of “_+_ 0 x“)

– (_+_ 0) = (Suc x)
– ((x + y) = (y + x)) = False
– f(_+_ 0) = (λc  g c) x
– _+_ z (_+_ (Suc 0)) = (0 + f False)
– a + b = (True = c)

09/25/19 B. Wolff - M2 - PIA 5

Revisions: β-reduction
• Assume that we want to find typed solutions for

?X, ?Y, ?Z such that the following terms become
equivalent modulo α-conversion and β-reduction:

– ?X a =?= a + ?Y
– (λc  g c) =?= (λx  ?Y x)
– (λc  ?X c) a =?= ?Y
– λa  (λc  X c) a =?= (λx  ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles rule-
instantiation mechanism

• Are the solutions for schematic variables always
unique ?09/25/19 B. Wolff - M2 - PIA 5

Revisions: β-reduction
• Assume that we want to find typed solutions for

?X, ?Y, ?Z such that the following terms become
equivalent modulo α-conversion and β-reduction:

– ?X a =?= a + ?Y
– (λc  g c) =?= (λx  ?Y x)
– (λc  ?X c) a =?= ?Y
– λa  (λc  X c) a =?= (λx  ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles rule-
instantiation mechanism

• Are the solutions for schematic variables always
unique ?

09/25/19 B. Wolff - M2 - PIA 6

Deduction
• “Logic Whirl-Pool of the 20ies” (Girard)
as response to foundational problems
in Mathematics

– growing uneasiness over the question:

What is a proof ?

Are there limits of provability ?

09/25/19 B. Wolff - M2 - PIA 6

Deduction
• “Logic Whirl-Pool of the 20ies” (Girard)
as response to foundational problems
in Mathematics

– growing uneasiness over the question:

What is a proof ?

Are there limits of provability ?

09/25/19 B. Wolff - M2 - PIA 7

Deduction
• Historical context in the 20ies:

– 1500 false proofs of
 „all parallels do not intersect in infinity“

– lots of proofs and refutations of
 „all polyhedrons are eularian“ (Lakatosz)

– Frege‘s axiomatic set theory proven
inconsistent by Russel

– Science vs. Marxism debate (Popper)

E = F + K - 2 ???

09/25/19 B. Wolff - M2 - PIA 7

Deduction
• Historical context in the 20ies:

– 1500 false proofs of
 „all parallels do not intersect in infinity“

– lots of proofs and refutations of
 „all polyhedrons are eularian“ (Lakatosz)

– Frege‘s axiomatic set theory proven
inconsistent by Russel

– Science vs. Marxism debate (Popper)

E = F + K - 2 ???

09/25/19 B. Wolff - M2 - PIA 8

Deduction
• Historical context in the 20ies:

– this seemed quite far away from
Leipnitz vision of

„Calculemus !“ (We don‘t agree ?
 Let‘s calculate ...)

of what constitutes, well,

Science ...

09/25/19 B. Wolff - M2 - PIA 8

Deduction
• Historical context in the 20ies:

– this seemed quite far away from
Leipnitz vision of

„Calculemus !“ (We don‘t agree ?
 Let‘s calculate ...)

of what constitutes, well,

Science ...

09/25/19 B. Wolff - M2 - PIA 9

Deduction
• Historical context in the 20ies:

– attempts to formalize the intuition of
„deduction“ by Frege, Hilbert, Russel,
Lukasiewics, ...

– 2 Calculi presented by Gerhard Gentzen
in 1934.

• „natürliches Schliessen“ (natural
deduction):

• „Sequenzkalkül“ (sequent calculus)

09/25/19 B. Wolff - M2 - PIA 9

Deduction
• Historical context in the 20ies:

– attempts to formalize the intuition of
„deduction“ by Frege, Hilbert, Russel,
Lukasiewics, ...

– 2 Calculi presented by Gerhard Gentzen
in 1934.

• „natürliches Schliessen“ (natural
deduction):

• „Sequenzkalkül“ (sequent calculus)

09/25/19 B. Wolff - M2 - PIA 10

Deduction
" An Inference System (or Logical Calculus) allows to

infer formulas from a set of elementary judgements
(axioms) and inferred judgements by rules:

“from the assumptions A1 to An, you can infer the
conclusion An+1.” A rule with n=0 is an elementary fact.
Variables occurring in the formulas An can be
arbitrarily substituted.09/25/19 B. Wolff - M2 - PIA 10

Deduction
" An Inference System (or Logical Calculus) allows to

infer formulas from a set of elementary judgements
(axioms) and inferred judgements by rules:

“from the assumptions A1 to An, you can infer the
conclusion An+1.” A rule with n=0 is an elementary fact.
Variables occurring in the formulas An can be
arbitrarily substituted.

09/25/19 B. Wolff - M2 - PIA 11

Deduction
" judgements discussed in this course (or elsewhere):

t : τ “term t has type τ”
Γ φ ⊢ “formula φ is valid under assumptions Γ”

 ⊢ {P} x:= x+1 {Q} “Hoare Triple”

φ prop “φ is a property”
φ valid “φ is a valid (true) property”
x mortal sokrates mortal --- judgements with free variable⟹

etc ...

09/25/19 B. Wolff - M2 - PIA 11

Deduction
" judgements discussed in this course (or elsewhere):

t : τ “term t has type τ”
Γ φ ⊢ “formula φ is valid under assumptions Γ”

 ⊢ {P} x:= x+1 {Q} “Hoare Triple”

φ prop “φ is a property”
φ valid “φ is a valid (true) property”
x mortal sokrates mortal --- judgements with free variable⟹

etc ...

09/25/19 B. Wolff - M2 - PIA 12

Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).
09/25/19 B. Wolff - M2 - PIA 12

Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).

09/25/19 B. Wolff - M2 - PIA 13

Natural Deduction
" the same thing presented a bit more neatly (without

prop):

(equality on functions as above (“extensional equality”) is
an HO principle, and it is a classical principle).

09/25/19 B. Wolff - M2 - PIA 13

Natural Deduction
" the same thing presented a bit more neatly (without

prop):

(equality on functions as above (“extensional equality”) is
an HO principle, and it is a classical principle).

09/25/19 B. Wolff - M2 - PIA 14

Representing logical systems
in the typed λ  calculus

• It is straight-forward to use the typed λ-terms as a
syntactic means to represent logics; including
binding issues related to quantifiers like   ...

• Example: The Isabelle language „Pure“:
It consists of typed λterms with constants:

– foundational types “prop” and “_ => _” (“_ ⇒ _”)

– the Pure (universal) quantifier
 all :: “(α ⇒ Prop) ⇒ Prop”

 (“⋀x. P x”,“\<And> x. P x” “!!x. P x”)

– the Pure implication “A ==> B” (“_ ⟹ _”)
– the Pure equality “A == B” “A B”≡ 09/25/19 B. Wolff - M2 - PIA 14

Representing logical systems
in the typed λ  calculus

• It is straight-forward to use the typed λ-terms as a
syntactic means to represent logics; including
binding issues related to quantifiers like   ...

• Example: The Isabelle language „Pure“:
It consists of typed λterms with constants:

– foundational types “prop” and “_ => _” (“_ ⇒ _”)

– the Pure (universal) quantifier
 all :: “(α ⇒ Prop) ⇒ Prop”

 (“⋀x. P x”,“\<And> x. P x” “!!x. P x”)

– the Pure implication “A ==> B” (“_ ⟹ _”)
– the Pure equality “A == B” “A B”≡

09/25/19 B. Wolff - M2 - PIA 15

„Pure“: A (Meta)-Language
for Deductive Systems

! Pure is a language to write logical rules.
! Wrt. Isabelle, it is the meta-language, i.e. the built-in
formula language.

! Equivalent notations for natural deduction rules:

 A1 (… (A⟹ ⟹ n A⟹ n+1)...),

 A⟦ 1; …; An A⟧ ⟹ n+1,

theorem
 assumes A1

 and …

 and An

 shows An+1
09/25/19 B. Wolff - M2 - PIA 15

„Pure“: A (Meta)-Language
for Deductive Systems

! Pure is a language to write logical rules.
! Wrt. Isabelle, it is the meta-language, i.e. the built-in
formula language.

! Equivalent notations for natural deduction rules:

 A1 (… (A⟹ ⟹ n A⟹ n+1)...),

 A⟦ 1; …; An A⟧ ⟹ n+1,

theorem
 assumes A1

 and …

 and An

 shows An+1

09/25/19 B. Wolff - M2 - PIA 16

„Pure“: A (Meta)-Language
for Deductive Systems

! Some more complex rules involving the concept
of “Discharge” of (formerly hypothetical)
assumptions:

 (P Q) R : ⟹ ⟹

 theorem
assumes "P Q"⟹
 shows "R"

09/25/19 B. Wolff - M2 - PIA 16

„Pure“: A (Meta)-Language
for Deductive Systems

! Some more complex rules involving the concept
of “Discharge” of (formerly hypothetical)
assumptions:

 (P Q) R : ⟹ ⟹

 theorem
assumes "P Q"⟹
 shows "R"

09/25/19 B. Wolff - M2 - PIA 17

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

impI mp

disjI1

notnotE

disjI2
disjE

09/25/19 B. Wolff - M2 - PIA 17

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

impI mp

disjI1

notnotE

disjI2
disjE

09/25/19 B. Wolff - M2 - PIA 18

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 18

Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 19

Key Concepts: Rule-Instances
! A Rule-Instance is a rule where the free
variables in its judgements were substituted
by a common substitution :σ

where is σ {A 3<x, B x≤y}.↦ ↦

conjI
σ

09/25/19 B. Wolff - M2 - PIA 19

Key Concepts: Rule-Instances
! A Rule-Instance is a rule where the free
variables in its judgements were substituted
by a common substitution :σ

where is σ {A 3<x, B x≤y}.↦ ↦

conjI
σ

09/25/19 B. Wolff - M2 - PIA 20

Key Concepts: Formal Proofs
" A series of inference rule instances is usually

displayed as a Proof Tree (or : Derivation or: Formal Proof)

" The hypothetical facts at the leaves are called the
assumptions of the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst

09/25/19 B. Wolff - M2 - PIA 20

Key Concepts: Formal Proofs
" A series of inference rule instances is usually

displayed as a Proof Tree (or : Derivation or: Formal Proof)

" The hypothetical facts at the leaves are called the
assumptions of the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst

09/25/19 B. Wolff - M2 - PIA 21

Key Concepts: Discharge
" A key requisite of ND is the concept of discharge of

assumptions allowed by some rules (like impI)

" The set of assumptions is diminished by the discharged
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

sym subst

trans refl

subst

[
subst

][]

09/25/19 B. Wolff - M2 - PIA 21

Key Concepts: Discharge
" A key requisite of ND is the concept of discharge of

assumptions allowed by some rules (like impI)

" The set of assumptions is diminished by the discharged
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

sym subst

trans refl

subst

[
subst

][]

09/25/19 B. Wolff - M2 - PIA 22

Key Concepts:
Global Assumptions

" The set of (proof-global) assumptions gives rise to the
notation:

 written:

 A ⊢ φ

 or when emphasising the global theory
 (also called: global context):

 09/25/19 B. Wolff - M2 - PIA 22

Key Concepts:
Global Assumptions

" The set of (proof-global) assumptions gives rise to the
notation:

 written:

 A ⊢ φ

 or when emphasising the global theory
 (also called: global context):

09/25/19 B. Wolff - M2 - PIA 23

Sequent-style calculus
" Gentzen introduced and alternative “style” to
natural deduction: Sequent style rules.

– Idea: using the tuples A ⊢ φ as basic judgments
of the rules.

09/25/19 B. Wolff - M2 - PIA 23

Sequent-style calculus
" Gentzen introduced and alternative “style” to
natural deduction: Sequent style rules.

– Idea: using the tuples A ⊢ φ as basic judgments
of the rules.

09/25/19 B. Wolff - M2 - PIA 24

Sequent-style calculus
" in contrast to:

09/25/19 B. Wolff - M2 - PIA 24

Sequent-style calculus
" in contrast to:

09/25/19 B. Wolff - M2 - PIA 25

Sequent-style vs. ND calculus
" Both styles are linked by two transformations called
“lifting over assumptions” Lifting over assumptions
transforms:

where we consider
for the moment

 ⊢ just equivalent to
meta implication ⟹

09/25/19 B. Wolff - M2 - PIA 25

Sequent-style vs. ND calculus
" Both styles are linked by two transformations called
“lifting over assumptions” Lifting over assumptions
transforms:

where we consider
for the moment

 ⊢ just equivalent to
meta implication ⟹

09/25/19 B. Wolff - M2 - PIA 26

Quantifiers
" When reasoning over logics with quantifiers (such as FOL,

set-theory, TLA, ..., and of course: HOL), the additional
concept of “parameters” of a rule is necessary. We assume
that there is an infinite set of variables and that it is
always possible to find a “fresh” unused one ...

– Consider:

09/25/19 B. Wolff - M2 - PIA 26

Quantifiers
" When reasoning over logics with quantifiers (such as FOL,

set-theory, TLA, ..., and of course: HOL), the additional
concept of “parameters” of a rule is necessary. We assume
that there is an infinite set of variables and that it is
always possible to find a “fresh” unused one ...

– Consider:

09/25/19 B. Wolff - M2 - PIA 27

Quantifiers
" For allI, Isabelle allows certain free variables ?X,

?Y, ?Z that represent „wholes“ in a term that can
be filled in later by substitution; Coq requires the
instantiation when applying the rule.

" Isabelle uses a built-in (“meta”)-quantifier ⋀x. P

x already seen on page 13; Coq uses internally a
similar concept not explicitly revealed to the user.

09/25/19 B. Wolff - M2 - PIA 27

Quantifiers
" For allI, Isabelle allows certain free variables ?X,

?Y, ?Z that represent „wholes“ in a term that can
be filled in later by substitution; Coq requires the
instantiation when applying the rule.

" Isabelle uses a built-in (“meta”)-quantifier ⋀x. P

x already seen on page 13; Coq uses internally a
similar concept not explicitly revealed to the user.

09/25/19 B. Wolff - M2 - PIA 28

Introduction to
Isabelle/HOL

09/25/19 B. Wolff - M2 - PIA 28

Introduction to
Isabelle/HOL

09/25/19 B. Wolff - M2 - PIA 29

Basic HOL Syntax
! HOL (= Higher-Order Logic) goes back to
Alonzo Church who invented this in the 30ies …

! “Classical” Logic over the λ-calculus with
Curry-style typing (in contrast to Coq)

! Logical type: “bool” injects to “prop”. i.e

 Trueprop :: “bool ⇒ prop“

is wrapped around any HOL-Term without being printed:

 Trueprop A ⟹ Trueprop B is printed: A ⟹ B but A::bool!
 09/25/19 B. Wolff - M2 - PIA 29

Basic HOL Syntax
! HOL (= Higher-Order Logic) goes back to
Alonzo Church who invented this in the 30ies …

! “Classical” Logic over the λ-calculus with
Curry-style typing (in contrast to Coq)

! Logical type: “bool” injects to “prop”. i.e

 Trueprop :: “bool ⇒ prop“

is wrapped around any HOL-Term without being printed:

 Trueprop A ⟹ Trueprop B is printed: A ⟹ B but A::bool!

09/25/19 B. Wolff - M2 - PIA 30

Basic HOL Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
– “_ \<and> _” “_∧_” “_ & _”
– “_ \<or> _” “_ ∨_” “_ | _
– “_\<longrightarrow>_” “_ → _” “_ --> _”
– “_ \<not> _” “!_" “~ _”
– “\<forall> x. P“ “Ax. P” “! x. P x”
– “\<exists> x. P“ “Ex. P” “? x. P x”

09/25/19 B. Wolff - M2 - PIA 30

Basic HOL Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
– “_ \<and> _” “_∧_” “_ & _”
– “_ \<or> _” “_ ∨_” “_ | _
– “_\<longrightarrow>_” “_ → _” “_ --> _”
– “_ \<not> _” “!_" “~ _”
– “\<forall> x. P“ “Ax. P” “! x. P x”
– “\<exists> x. P“ “Ex. P” “? x. P x”

09/25/19 B. Wolff - M2 - PIA 31

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

09/25/19 B. Wolff - M2 - PIA 31

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

09/25/19 B. Wolff - M2 - PIA 32

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

which
 ru

le m
akes

HOL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 32

Basic HOL Rules

! HOL is an equational logic, i.e. a system with
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext

which
 ru

le m
akes

HOL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 33

Basic HOL Rules

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 33

Basic HOL Rules

! Some (almost) basic rules in HOL

conjIconjE

09/25/19 B. Wolff - M2 - PIA 34

HOL Rules

! The quantifier rules of HOL:

allI allE
(safe, but
 incomplete)

again
: w

hat m
akes

these
s H

OL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 34

HOL Rules

! The quantifier rules of HOL:

allI allE
(safe, but
 incomplete)

again
: w

hat m
akes

these
s H

OL „h
igher-

order“
 ??

?

09/25/19 B. Wolff - M2 - PIA 35

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 35

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 36

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 36

HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)

09/25/19 B. Wolff - M2 - PIA 37

HOL Rules

! The quantifier rules of HOL:

exEexI

09/25/19 B. Wolff - M2 - PIA 37

HOL Rules

! The quantifier rules of HOL:

exEexI

09/25/19 B. Wolff - M2 - PIA 38

HOL Rules

! From these rules (which were defined actually
slightly differently), a large body of other
rules can be DERIVED (formally proven, and
introduced as new rule in the proof
environment).

Examples: see exercises.
09/25/19 B. Wolff - M2 - PIA 38

HOL Rules

! From these rules (which were defined actually
slightly differently), a large body of other
rules can be DERIVED (formally proven, and
introduced as new rule in the proof
environment).

Examples: see exercises.

09/25/19 B. Wolff - M2 - PIA 39

Typed Set-theory in HOL
! The HOL Logic comes immediately with
a typed set - theory: The type

 α set ≅ α bool, that's it !⇒

can be defined isomorphically to its type
of characteristic functions !

! THIS GIVES RISE TO A RICH SET THEORY
DEVELOPPED IN THE LIBRARY
(Set.thy).
 09/25/19 B. Wolff - M2 - PIA 39

Typed Set-theory in HOL
! The HOL Logic comes immediately with
a typed set - theory: The type

 α set ≅ α bool, that's it !⇒

can be defined isomorphically to its type
of characteristic functions !

! THIS GIVES RISE TO A RICH SET THEORY
DEVELOPPED IN THE LIBRARY
(Set.thy).

09/25/19 B. Wolff - M2 - PIA 40

Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
“_ \<in> _” “_ ∈ _” “_ : _”
“{_ . _}” {x. True x = x} for example∧

“_ \<union> _” “_∪_” “_ Un _”
“_ \<inter> _” “_ ∩_” “_ Int _”
“_\<subseteq>_” “_ _”⊆ “_ <= _”
 . . .09/25/19 B. Wolff - M2 - PIA 40

Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input: print: alt-ascii input
“_ \<in> _” “_ ∈ _” “_ : _”
“{_ . _}” {x. True x = x} for example∧

“_ \<union> _” “_∪_” “_ Un _”
“_ \<inter> _” “_ ∩_” “_ Int _”
“_\<subseteq>_” “_ _”⊆ “_ <= _”
 . . .

09/25/19 B. Wolff - M2 - PIA 41

Conclusion
! Typed λ-calculus is a rich term language for the

representation of logics, logical rules, and logical
derivations (proofs)

! On the basis of typed λ-calculus, Higher-order
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL)
are actually tiny.

09/25/19 B. Wolff - M2 - PIA 41

Conclusion
! Typed λ-calculus is a rich term language for the

representation of logics, logical rules, and logical
derivations (proofs)

! On the basis of typed λ-calculus, Higher-order
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL)
are actually tiny.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

