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Revisions: Typed λ-calculus 
• Examples: Are there variable environments ρ
   such that the following terms are typable in Σ:
   (note that we use infix notation: we write
    “0 + x” instead of “_+_ 0 x“)

– (_+_ 0) = (Suc x)
– ((x + y) = (y + x)) = False
– f(_+_ 0) = (λc   g c) x
– _+_ z (_+_ (Suc 0)) =  (0 + f False)
– a + b = (True = c) 
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Revisions: β-reduction
• Assume that we want to find typed solutions for 

?X, ?Y, ?Z such that the following terms become 
equivalent modulo α-conversion and β-reduction:

– ?X a                     =?=    a + ?Y
– (λc   g c)            =?=    (λx   ?Y x)
– (λc   ?X c) a       =?=   ?Y
– λa   (λc   X c) a    =?=    (λx   ?Y)

• Note: Variables like ?X, ?Y, ?Z are called schematic
variables; they play a major role in Isabelles rule-
instantiation mechanism

• Are the solutions for schematic variables always 
unique ?09/25/19 B. Wolff - M2 - PIA 5
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• “Logic Whirl-Pool of the 20ies” (Girard)
as response to foundational problems 
in Mathematics

– growing uneasiness over the question:

What is a proof ? 

Are there limits of provability ?
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Deduction
• Historical context in the 20ies:

– 1500 false proofs of 
 „all parallels do not intersect in infinity“

– lots of proofs and refutations of 
 „all polyhedrons are eularian“ (Lakatosz)

– Frege‘s axiomatic set theory proven 
inconsistent by Russel

– Science vs. Marxism debate (Popper)

E = F + K - 2    ???
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Deduction
• Historical context in the 20ies:

– this seemed  quite far away from 
Leipnitz vision of

„Calculemus !“  (We don‘t agree ?
                         Let‘s calculate ...)

of what constitutes, well,

Science ...
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Deduction
• Historical context in the 20ies:

– attempts to formalize the intuition of
„deduction“ by Frege, Hilbert, Russel, 
Lukasiewics, ...

– 2 Calculi presented by Gerhard Gentzen
in 1934.

• „natürliches Schliessen“ (natural 
deduction):

• „Sequenzkalkül“  (sequent calculus)           
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Deduction
" An Inference System (or Logical Calculus) allows to 

infer formulas from a set of elementary judgements 
(axioms) and inferred judgements by rules:

“from the assumptions A1 to An, you can infer the 
conclusion An+1.” A rule with n=0 is an elementary fact. 
Variables occurring in the formulas  An can be 
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Deduction
" judgements discussed in this course (or elsewhere):

t : τ  “term t has type τ”
Γ  φ    ⊢ “formula φ is valid under assumptions Γ”

 ⊢ {P} x:= x+1 {Q} “Hoare Triple”

φ prop “φ is a property”
φ valid “φ is a valid (true) property”
x mortal  sokrates mortal      --- judgements with free variable⟹

etc ...
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Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).
09/25/19 B. Wolff - M2 - PIA 12

Natural Deduction
" An Inference System for the equality operator

(or “HO Equational Logic”) looks like this:

(where the first rule is an elementary fact).



09/25/19 B. Wolff - M2 - PIA 13

Natural Deduction
" the same thing presented a bit more neatly (without 

prop):

(equality on functions as above (“extensional equality”) is 
an HO principle, and it is a classical principle).
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Representing logical systems
in the typed λ   calculus

• It is straight-forward to use the typed λ-terms as a 
syntactic means to represent logics; including 
binding issues related to quantifiers like     ... 

• Example: The Isabelle language „Pure“:
It consists of typed λterms with constants:

– foundational types “prop” and “_ => _” (“_  ⇒ _”)

– the Pure (universal) quantifier
          all :: “(α ⇒ Prop) ⇒ Prop”

      (“⋀x. P x”,“\<And> x. P x”   “!!x. P x”)

– the Pure implication “A ==> B” (“_  ⟹ _”) 
– the Pure equality     “A == B”     “A  B”≡  09/25/19 B. Wolff - M2 - PIA 14
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„Pure“: A (Meta)-Language 
for Deductive Systems

! Pure is a language to write logical rules.
! Wrt. Isabelle, it is the meta-language, i.e. the built-in 
formula language.

! Equivalent notations for natural deduction rules:

  A1  (…   (A⟹ ⟹ n  A⟹ n+1)...), 

   A⟦ 1; …; An     A⟧ ⟹ n+1, 

theorem
    assumes A1

   and … 

   and An

  shows An+1 
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„Pure“: A (Meta)-Language 
for Deductive Systems

! Some more complex rules involving the concept
of “Discharge” of (formerly hypothetical)
assumptions:

   (P  Q)  R :  ⟹ ⟹

   theorem
assumes "P  Q"⟹
      shows "R" 
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Propositional Logic as ND calculus

! Some (almost) basic rules in HOL

impI mp

disjI1

notnotE

disjI2
disjE
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Key Concepts: Rule-Instances 
! A Rule-Instance is a rule where the free 
variables in its judgements were substituted
by a common substitution :σ

where  is σ {A  3<x, B  x≤y}.↦ ↦

conjI
σ
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Key Concepts: Formal Proofs 
" A series of inference rule instances is usually 

displayed as a Proof Tree (or : Derivation or: Formal Proof)

" The hypothetical facts at the leaves are called the 
assumptions of the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst
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Key Concepts: Discharge 
" A key requisite of ND is the concept of discharge of 

assumptions allowed by some rules (like impI)

" The set of assumptions is diminished by the discharged 
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

sym subst

trans refl

subst

[
subst

][ ]
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Key Concepts: 
Global Assumptions

" The set of (proof-global) assumptions gives rise to the 
notation:

             written:

  A ⊢ φ

             or when emphasising the global theory
             (also called: global context):        
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" Gentzen introduced and alternative “style” to 
natural deduction: Sequent style rules.

– Idea: using the tuples A ⊢ φ as basic judgments 
of the rules.
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" in contrast to:
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Sequent-style vs. ND calculus
" Both styles are linked by two transformations called 
“lifting over assumptions” Lifting over assumptions 
transforms:

where we consider
for the moment

 ⊢ just equivalent to
meta implication ⟹ 
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Quantifiers
" When reasoning over logics with quantifiers (such as FOL,

set-theory, TLA, ..., and of course: HOL), the additional 
concept of “parameters” of a rule is necessary. We assume 
that there is an infinite set of variables and that it is 
always possible to find a “fresh” unused one ...

– Consider:
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Quantifiers
" For allI, Isabelle allows certain free variables ?X, 

?Y, ?Z that represent „wholes“ in a term that can 
be filled in later by substitution; Coq requires the 
instantiation when applying the rule.

" Isabelle uses a built-in (“meta”)-quantifier ⋀x. P 

x already seen on page  13; Coq uses internally a 
similar concept not explicitly revealed to the user.
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Basic HOL Syntax
! HOL (= Higher-Order Logic) goes back to
Alonzo Church who invented this in the 30ies …

! “Classical” Logic over the λ-calculus with
Curry-style typing (in contrast to Coq) 

! Logical type: “bool” injects to “prop”. i.e

      Trueprop :: “bool ⇒ prop“

is wrapped around any HOL-Term without being printed:

     Trueprop A   ⟹ Trueprop B  is printed: A   ⟹ B but A::bool!
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Basic HOL Syntax
! Logical connective syntax (Unicode + ASCII):

input:              print:        alt-ascii input   
– “_ \<and> _”   “_∧_”      “_ & _”
– “_ \<or> _”   “_ ∨_” “_ | _
– “_\<longrightarrow>_”  “_ → _” “_ --> _”
– “_ \<not> _”        “!_"  “~ _”  
– “\<forall> x. P“   “Ax. P” “! x. P x”
– “\<exists> x. P“   “Ex. P” “? x. P x”  
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Basic HOL Rules

! HOL is an equational logic, i.e. a system with 
the constant “_=_::'a 'a bool” and the rules:

refl sym

subst

trans

ext
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Basic HOL Rules

! Some (almost) basic rules in HOL

conjIconjE
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HOL Rules

! The quantifier rules of HOL:

allI allE
(safe, but
 incomplete)

again
: w

hat m
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s H
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HOL Rules

! The quantifier rules of HOL:

alldupE
(unsafe, but
 complete)
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HOL Rules

! The quantifier rules of HOL:

exEexI
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HOL Rules

! From these rules (which were defined actually 
slightly differently), a large body of other
rules can be DERIVED (formally proven, and 
introduced as new rule in the proof 
environment).

Examples: see exercises.
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Typed Set-theory in HOL
! The HOL Logic comes immediately with
a typed set - theory: The type

      α set   ≅  α  bool,    that's it !⇒

can be defined isomorphically to its type
of characteristic functions !

! THIS GIVES RISE TO A RICH SET THEORY
DEVELOPPED IN THE LIBRARY 
(Set.thy).
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Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input:               print:        alt-ascii input   
“_ \<in> _”  “_ ∈  _”   “_ : _”
“{_ .  _}”       {x. True  x = x}   for example∧

“_ \<union> _” “_∪_”        “_ Un _” 
“_ \<inter> _” “_ ∩_”   “_ Int _”
“_\<subseteq>_” “_  _”⊆   “_ <= _”  
 . . .09/25/19 B. Wolff - M2 - PIA 40

Typed Set Theory: Syntax
! Logical connective syntax (Unicode + ASCII):

input:               print:        alt-ascii input   
“_ \<in> _”  “_ ∈  _”   “_ : _”
“{_ .  _}”       {x. True  x = x}   for example∧

“_ \<union> _” “_∪_”        “_ Un _” 
“_ \<inter> _” “_ ∩_”   “_ Int _”
“_\<subseteq>_” “_  _”⊆   “_ <= _”  
 . . .



09/25/19 B. Wolff - M2 - PIA 41

Conclusion
! Typed λ-calculus is a rich term language for the 

representation of logics, logical rules, and logical 
derivations (proofs)

! On the basis of typed λ-calculus, Higher-order 
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL) 
are actually tiny.
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! On the basis of typed λ-calculus, Higher-order 
logic (HOL) is fairly easy to represent

! ... the differences to first-order logic (FOL) 
are actually tiny.
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