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Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a 
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

09/25/19 B. Wolff - M2 - PIA 2

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a 
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.



09/25/19 B. Wolff - M2 - PIA 3

What is Isabelle as a System ? 
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D
09/25/19 B. Wolff - M2 - PIA 3

What is Isabelle as a System ? 
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D



09/25/19 B. Wolff - M2 - PIA 4

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
(containing a signature S and a set of axioms 
A)

– to a “local context” Θ, Γ

! There are specific „Inspection Commands“
that give access to information in the contexts

– thm, term, typ, value, prop  : global context
– print_cases, facts, ... , thm  : local context09/25/19 B. Wolff - M2 - PIA 4
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What is Isabelle as a System ? 
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML 
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D
09/25/19 B. Wolff - M2 - PIA 5

What is Isabelle as a System ? 
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML 
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D



09/25/19 B. Wolff - M2 - PIA 6

Recall:Basic Declaration Commands
! Type Declaration 

          
                example: typedecl “L" 

! (Unspecified) Constant Declaration:
                

           example:  consts True :: “bool”     (NOT Isabelle/HOL)       

  consts  c :: „τ“

typedecl “(α1,...,αn)<typconstructor-id>”    
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Recall:Basic Declaration Commands

! Constant Declaration “Semantics”:
                
        (S, A) ”∈” T 

(S ⊕ (c  ↦ τ) , A) ”∈ ” T'

• where the constant  c is “fresh” in S

  consts  c :: „τ“
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How to built theories 
in a logically safe manner ?

• Beyond,  there are a number of questions:
– Is the logic HOL consistent ?
– Is HOL correctly implemented in Isabelle ?
– How to extend HOL in a logically safe way ?

To the HOL library „Main“, for example ?
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How to built theories 
in a logically safe manner ?

• HOL consistency
– ... can only be answered relatively, 

i.e. relative to a logical system which gives
a formal „interpretation“ of HOL terms.

– the gold-standard for mathematicians and 
logicians is „Zermelo-Fraenkel Set Theory“
plus „axiom of choice“, called ZFC.

– it is possible to give several interpretations of HOL
in ZFC and prove the validity of HOL-s core 
axioms relative to these interpretations.
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How to built theories 
in a logically safe manner ?

• HOL consistency
– ZFC gives a kind of „universe of sets“ V with the 

properties:
• an infinite set I is part of V
• any product V‘× V‘‘ is part of V, if  V‘ and  V‘‘ are
• any potence set (V‘) is part of V provided that V‘ is.𝒫

(this is not possible in a typed set-theory)

– Since relations  (V‘× V‘‘) are part of V, it is 𝒫
possible to express in V function spaces.
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How to built theories 
in a logically safe manner ?

• HOL consistency
– Since relations  (V‘× V‘‘) are part of V, it is possible to 𝒫

express in V function spaces:
• A  ⇒standard B = {f: (V‘× V‘‘) | f ≠  and f is function}𝒫 ∅
•  ≠ ∅ (A  ⇒henkin B)   {f: (V‘× V‘‘) | f ≠  and f is function}⊆ ∅𝒫
• A  ⇒construct B  = {f: (V‘× V‘‘) | f ≠  and 𝒫 ∅

                                          f is a computable function}

– On this basis, we can give a standard (Henkin-style,
constructivist) interpretation of HOL types into V

  Istandard  : τ => V, Ihenkin  : τ => V, Iconstruct  : τ => V  
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How to built theories 
in a logically safe manner ?

• HOL consistency
– On this basis, we can give a standard interpretation 

of HOL core types into V
• Istandard  bool  = {a,b}     (where a,b are some⟦ ⟧

                                 distinct elements from the 
                                 infinite set I)

• Istandard  ind  = I‘⟦ ⟧

• Istandard  ⟦τ ⇒ τ‘  =  I⟧ standard  ⟦τ  ⟧ ⇒standard   Istandard  ⟦τ‘   ⟧

– It is easy to show that our typing rules are 
consistent  with Istandard, Ihenkin , Iconstruct.
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How to built theories 
in a logically safe manner ?

• HOL consistency
– Core HOL needs a small number of axioms.
– Traditional papers [Andrews86] reduce it 

to 6 axioms plus the axiom of infinity:

  ∃ f::ind  ind. injective f  ¬surjective f⇒ ∧

– The presentation in Isabelle/HOL looks as
follows:
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How to built theories 
in a logically safe manner ?

• The presentation in Isabelle/HOL looks as
follows:

– refl: "t = (t::'a)" 
– subst: "s = t  P s  P t"⟹ ⟹

– ext: "(⋀x::'a. (f x ::'b) = g x)  (λx. f x) = (λx. g x)"⟹
– the_eq_trivial: "(THE x. x = a) = (a::'a)"
– impI:"(P  Q)  P  Q"⟹ ⟹ ⟶
– mp: "P  Q   P  Q" ⟶ ⟹ ⟹
– iff: "(P  Q)  (Q  P)  (P = Q)⟶ ⟶ ⟶ ⟶
– True_or_False: "(P = True)  (P = False)"∨
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How to built theories 
in a logically safe manner ?

• where:
– True is an abbreviation for ((λx::bool. x) = (λx. x))
– All(P) for  (P = (λx. True))

– False for (∀P. P)
– Not P for P  False⟶
– and for ∀R. (P  Q  R)  R⟶ ⟶ ⟶
– or for ∀R. (P  R)  (Q  R)  R⟶ ⟶ ⟶ ⟶
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How to built theories 
in a logically safe manner ?

• It is straight-forward to give Interpretation functions
Istandard, Ihenkin , Iconstruct  for HOL terms and formulas in
ZFC

• (Meta) Theorem: Consistency relative to ZFC
    Istandard  : τ => V and Istandard  : T => V build a Model for

Core-HOL, i.e. they satisfy all axioms for all interpretation of the free 
variables they contain.

• (Meta) Theorem: Incompleteness
This model is incomplete for Core-HOL, i.e. there are always true

terms for which this fact can not be derived.
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How to built theories 
in a logically safe manner ?

• Is HOL correctly implemented in Isabelle ?
– Isabelle as a system clearly contains bugs; but 

that does not mean that logical inferences produce false results 
– Isabelle has a kernel architecture

 it is a member of the LCF-style systems that 
 protects „theorems“, i.e. triples of the form:

       Γ ⊢Θ φ
by a fairly small abstract data-type.

– Isabelle can generate proof-objects which can be checked outside 
Isabelle, in principle by  any other HOL prover.

– It is heavily tested and used for a long time.
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How to built theories 
in a logically safe manner ?

• Are Extensions of HOL, so for example, 
the library „Main“, logically safe ?

– not necessarily, adding arbitrary axioms by the
axiomatization command ruins consistency easily.

– some proof-methods are not based on the kernel
(sorry, self-built oracles, eval (code-generator))

– However, Isabelle encourages to use 
specification constructs which are (in some
cases even formally) shown to be conservative.
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Isabelle Specification Constructs

! Constant Definitions:

          example: definition C::"bool  bool"⇒
                                where "C x = x"

! Type Definitions:

             example: typedef even = "{x::int. x mod 2 = 0}“

definition f::“<τ>”
where <name> : “f x1 … xn = <t>”    

typedef ('α1..'αn) κ = 

 “<set-expr>” <proof>     
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Specification Commands

! Simple Definitions (Non-Rec. core variant):
     (S, A) ”∈” T 

(S ⊕ f::τ ,  A  “⊕ f x1 … xn = expr”) ”∈” T'

          
– Side-Conditions

• constant symbol f must be fresh
• f must not be contained in “expr” 

• (all type-variables orrurring in expr must occur in τ)

definition f::“<τ>”
where <name> : “f x1 … xn = expr”    
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Isabelle Specification Constructs
! Type definition:

          (S, A) ”∈ ” T 

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ  ⇒ ('α1..'αn)κ 
                           ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ     

 A ⊕ {Rep_κ_inverse  ↦ Abs_κ (Rep_κ x) = x }

     ⊕ {Rep_κ_inject     ↦ (Rep_κ x = Rep_κ y) = (x = y) }

     ⊕ {Rep_κ               ↦ Rep_κ x  {x. ∈ expr x}) ”∈ ” T'

• where the type-constructor κ is “fresh” in T   
• expr is closed
• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a 

witness)

typedef ('α1..'αn) κ = 

 “<expr:: (('α1..'αn)τ) set>” <proof>    
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Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.          

! For Type Definitions, we define the new
type to be isomorphic to a (non-empty) 
subset of an old one.

! The Isomorphism is stated by three 
(conservative) axioms.
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Semantics of a „Type Definition“

! Major example: Typed sets can be built 
following
this scheme. The trick is to identify  α set with
characteristic functions α  bool.⇒

! In Isabelle/HOL, α set is introduced  via an
equivalen axiom scheme; the type-definition 
uses already implicitely the α set isomorphism 
to α  bool.⇒
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Isabelle Specification Constructs
! Major example: 

The introduction of the cartesian product:
subsubsection {* Type definition *}

definition Pair_Rep :: "'a  'b  'a  'b  bool" ⇒ ⇒ ⇒ ⇒
where    "Pair_Rep a b = (λx y. x = a  y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a  'a) (b  'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a  'b  bool) set"⇒ ⇒
                                                         unfolding prod_def by auto

type_notation (xsymbols)  "prod"  ("(_ ×/ _)" [21, 20] 20)
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Isabelle Specification Constructs
! Major example: 

Typed sets.
          

typedef ('a) set  = "prod :: ('a  'b  bool) set"⇒ ⇒
                                                         unfolding prod_def by auto

type_notation (xsymbols)  "prod"  ("(_ ×/ _)" [21, 20] 20)
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Specification Mechanism Commands
! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

          
! ... introduces also semantics and syntax for

– selectors :  tag1 x

– constructors :       ⦇ tag1 = x1, ... , tagn = xn   ⦈
– update-functions : x  ⦇ tag1 := xn  ⦈

            

record     <c> = [<record> + ]
tag1 :: “<τ1>”

  ...
  tagn :: “<τn>”          
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Specification Mechanism Commands

! Inductively Defined Sets:

          

example:   inductive_set     Even :: "int set" 
                     where   null: "0  Even" ∈
                             | plus:"x  Even  x+2  Even"∈ ⟹ ∈

                              | min :"x  Even  x-2  Even" ∈ ⟹ ∈            

inductive_set     <c> :: “  τ  ⇒ τ’ set” for A::τ  
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>            

inductive_set     <c> :: “ τ set”  
             where  <thmname> : “<φ>” 
            | ...

              | <thmname> = <φ>            
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Specification Mechanism Commands
! These are not buit-in constructs, rather they are based on a series 
of definitions and typedefs.

! The machinery behind is based on a fixed-point combinator on sets :

    lfp :: “('α set  '⇒ α set)  '⇒ α set”

which can be conservatively defined by:

                 "lfp f = ⋂ {u. f u  u}" ⊆

and which enjoys a constrained fixed-point property:

                 mono f  lfp f = f (lfp f)⟹
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Specification Mechanism Commands
! Example : Even (see before)

– the set Even is conservatively defined by:

Even = lfp (λ X.    {0} 
                               (λ x. x + 2) ` X∪
                         (λ x. x - 2) ` X)∪

– from which the properties:

null: "0  Even" ∈
plus:"x  Even  x+2  Even"∈ ⟹ ∈
min :"x  Even  x-2  Even"∈ ⟹ ∈

can be derived automatically (Note that Isabelle/HOL Version 
2016 proceeds differently for technical reasons)
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Specification Mechanism Commands

! Inductively Defined Sets:

          

example: inductive path for rel ::"'a  'a  bool"⇒ ⇒
              where  base : “path rel x x”

            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ]
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>       
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Specification Mechanism Commands

! Inductively Defined Sets:

          

example: inductive path for rel ::"'a  'a  bool"⇒ ⇒
              where  base : “path rel x x”

            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ]
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>       
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Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

          
! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and 
typedefs and automated proofs!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             
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Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

          
! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             

  

NO
TE:

 Is
abe

lle 
HO

L c
om

pile
s t

his
 

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,
 

i.e.
 a 

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 37

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

          
! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             

  

NO
TE:

 Is
abe

lle 
HO

L c
om

pile
s t

his
 

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,
 

i.e.
 a 

“m
ode

l” i
n H

OL
!!!



09/25/19 B. Wolff - M2 - PIA 38

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption 

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ...  <equation>
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto 
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and 

– auto intro: <rule> ... <rule>
     elim: <erule> ... <erule>
     simp: <equation> ... <equation>
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases: 
  <formula> is true or  <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for induction rule and do induction over this variable.

                    
09/25/19 B. Wolff - M2 - PIA 42

More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases: 
  <formula> is true or  <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for induction rule and do induction over this variable.

                    



09/25/19 B. Wolff - M2 - PIA 43

Screenshot with Examples
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