
09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

HOL Foundations and
 Specification Constructs

Université Paris-Saclay

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/U3-Theory-Extensions.pdf

09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

HOL Foundations and
 Specification Constructs

Université Paris-Saclay

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/U3-Theory-Extensions.pdf

09/25/19 B. Wolff - M2 - PIA 2

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

09/25/19 B. Wolff - M2 - PIA 2

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

09/25/19 B. Wolff - M2 - PIA 3

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D
09/25/19 B. Wolff - M2 - PIA 3

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

09/25/19 B. Wolff - M2 - PIA 4

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
(containing a signature S and a set of axioms
A)

– to a “local context” Θ, Γ

! There are specific „Inspection Commands“
that give access to information in the contexts

– thm, term, typ, value, prop : global context
– print_cases, facts, ... , thm : local context09/25/19 B. Wolff - M2 - PIA 4

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
(containing a signature S and a set of axioms
A)

– to a “local context” Θ, Γ

! There are specific „Inspection Commands“
that give access to information in the contexts

– thm, term, typ, value, prop : global context
– print_cases, facts, ... , thm : local context

09/25/19 B. Wolff - M2 - PIA 5

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D
09/25/19 B. Wolff - M2 - PIA 5

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

09/25/19 B. Wolff - M2 - PIA 6

Recall:Basic Declaration Commands
! Type Declaration

 example: typedecl “L"

! (Unspecified) Constant Declaration:

 example: consts True :: “bool” (NOT Isabelle/HOL)

 consts c :: „τ“

typedecl “(α1,...,αn)<typconstructor-id>”

09/25/19 B. Wolff - M2 - PIA 6

Recall:Basic Declaration Commands
! Type Declaration

 example: typedecl “L"

! (Unspecified) Constant Declaration:

 example: consts True :: “bool” (NOT Isabelle/HOL)

 consts c :: „τ“

typedecl “(α1,...,αn)<typconstructor-id>”

09/25/19 B. Wolff - M2 - PIA 7

Recall:Basic Declaration Commands

! Constant Declaration “Semantics”:

 (S, A) ”∈” T

(S ⊕ (c ↦ τ) , A) ”∈ ” T'

• where the constant c is “fresh” in S

 consts c :: „τ“

09/25/19 B. Wolff - M2 - PIA 7

Recall:Basic Declaration Commands

! Constant Declaration “Semantics”:

 (S, A) ”∈” T

(S ⊕ (c ↦ τ) , A) ”∈ ” T'

• where the constant c is “fresh” in S

 consts c :: „τ“

09/25/19 B. Wolff - M2 - PIA 8

How to built theories
in a logically safe manner ?

• Beyond, there are a number of questions:
– Is the logic HOL consistent ?
– Is HOL correctly implemented in Isabelle ?
– How to extend HOL in a logically safe way ?

To the HOL library „Main“, for example ?

09/25/19 B. Wolff - M2 - PIA 8

How to built theories
in a logically safe manner ?

• Beyond, there are a number of questions:
– Is the logic HOL consistent ?
– Is HOL correctly implemented in Isabelle ?
– How to extend HOL in a logically safe way ?

To the HOL library „Main“, for example ?

09/25/19 B. Wolff - M2 - PIA 9

How to built theories
in a logically safe manner ?

• Beyond, there are a number of questions:
– Is the logic HOL consistent ?
– Is HOL correctly implemented in Isabelle ?
– How to extend HOL in a logically safe way ?

To the HOL library „Main“, for example ?

We will address these questions one by one ...

09/25/19 B. Wolff - M2 - PIA 9

How to built theories
in a logically safe manner ?

• Beyond, there are a number of questions:
– Is the logic HOL consistent ?
– Is HOL correctly implemented in Isabelle ?
– How to extend HOL in a logically safe way ?

To the HOL library „Main“, for example ?

We will address these questions one by one ...

09/25/19 B. Wolff - M2 - PIA 10

How to built theories
in a logically safe manner ?

• HOL consistency
– ... can only be answered relatively,

i.e. relative to a logical system which gives
a formal „interpretation“ of HOL terms.

– the gold-standard for mathematicians and
logicians is „Zermelo-Fraenkel Set Theory“
plus „axiom of choice“, called ZFC.

– it is possible to give several interpretations of HOL
in ZFC and prove the validity of HOL-s core
axioms relative to these interpretations.

09/25/19 B. Wolff - M2 - PIA 10

How to built theories
in a logically safe manner ?

• HOL consistency
– ... can only be answered relatively,

i.e. relative to a logical system which gives
a formal „interpretation“ of HOL terms.

– the gold-standard for mathematicians and
logicians is „Zermelo-Fraenkel Set Theory“
plus „axiom of choice“, called ZFC.

– it is possible to give several interpretations of HOL
in ZFC and prove the validity of HOL-s core
axioms relative to these interpretations.

09/25/19 B. Wolff - M2 - PIA 11

How to built theories
in a logically safe manner ?

• HOL consistency
– ZFC gives a kind of „universe of sets“ V with the

properties:
• an infinite set I is part of V
• any product V‘× V‘‘ is part of V, if V‘ and V‘‘ are
• any potence set (V‘) is part of V provided that V‘ is.𝒫

(this is not possible in a typed set-theory)

– Since relations (V‘× V‘‘) are part of V, it is 𝒫
possible to express in V function spaces.

09/25/19 B. Wolff - M2 - PIA 11

How to built theories
in a logically safe manner ?

• HOL consistency
– ZFC gives a kind of „universe of sets“ V with the

properties:
• an infinite set I is part of V
• any product V‘× V‘‘ is part of V, if V‘ and V‘‘ are
• any potence set (V‘) is part of V provided that V‘ is.𝒫

(this is not possible in a typed set-theory)

– Since relations (V‘× V‘‘) are part of V, it is 𝒫
possible to express in V function spaces.

09/25/19 B. Wolff - M2 - PIA 12

How to built theories
in a logically safe manner ?

• HOL consistency
– ZFC gives a kind of „universe of sets“ V with the

properties:
• an infinite set I is part of V
• any product V‘× V‘‘ is part of V, if V‘ and V‘‘ are
• any potence set (V‘) is part of V provided that V‘ is.𝒫

(this is not possible in a typed set-theory)

– Since relations (V‘× V‘‘) are part of V, it is 𝒫
possible to express in V function spaces.

09/25/19 B. Wolff - M2 - PIA 12

How to built theories
in a logically safe manner ?

• HOL consistency
– ZFC gives a kind of „universe of sets“ V with the

properties:
• an infinite set I is part of V
• any product V‘× V‘‘ is part of V, if V‘ and V‘‘ are
• any potence set (V‘) is part of V provided that V‘ is.𝒫

(this is not possible in a typed set-theory)

– Since relations (V‘× V‘‘) are part of V, it is 𝒫
possible to express in V function spaces.

09/25/19 B. Wolff - M2 - PIA 13

How to built theories
in a logically safe manner ?

• HOL consistency
– Since relations (V‘× V‘‘) are part of V, it is possible to 𝒫

express in V function spaces:
• A ⇒standard B = {f: (V‘× V‘‘) | f ≠ and f is function}𝒫 ∅
• ≠ ∅ (A ⇒henkin B) {f: (V‘× V‘‘) | f ≠ and f is function}⊆ ∅𝒫
• A ⇒construct B = {f: (V‘× V‘‘) | f ≠ and 𝒫 ∅

 f is a computable function}

– On this basis, we can give a standard (Henkin-style,
constructivist) interpretation of HOL types into V

 Istandard : τ => V, Ihenkin : τ => V, Iconstruct : τ => V
09/25/19 B. Wolff - M2 - PIA 13

How to built theories
in a logically safe manner ?

• HOL consistency
– Since relations (V‘× V‘‘) are part of V, it is possible to 𝒫

express in V function spaces:
• A ⇒standard B = {f: (V‘× V‘‘) | f ≠ and f is function}𝒫 ∅
• ≠ ∅ (A ⇒henkin B) {f: (V‘× V‘‘) | f ≠ and f is function}⊆ ∅𝒫
• A ⇒construct B = {f: (V‘× V‘‘) | f ≠ and 𝒫 ∅

 f is a computable function}

– On this basis, we can give a standard (Henkin-style,
constructivist) interpretation of HOL types into V

 Istandard : τ => V, Ihenkin : τ => V, Iconstruct : τ => V

09/25/19 B. Wolff - M2 - PIA 14

How to built theories
in a logically safe manner ?

• HOL consistency
– On this basis, we can give a standard interpretation

of HOL core types into V
• Istandard bool = {a,b} (where a,b are some⟦ ⟧

 distinct elements from the
 infinite set I)

• Istandard ind = I‘⟦ ⟧

• Istandard ⟦τ ⇒ τ‘ = I⟧ standard ⟦τ ⟧ ⇒standard Istandard ⟦τ‘ ⟧

– It is easy to show that our typing rules are
consistent with Istandard, Ihenkin , Iconstruct.

09/25/19 B. Wolff - M2 - PIA 14

How to built theories
in a logically safe manner ?

• HOL consistency
– On this basis, we can give a standard interpretation

of HOL core types into V
• Istandard bool = {a,b} (where a,b are some⟦ ⟧

 distinct elements from the
 infinite set I)

• Istandard ind = I‘⟦ ⟧

• Istandard ⟦τ ⇒ τ‘ = I⟧ standard ⟦τ ⟧ ⇒standard Istandard ⟦τ‘ ⟧

– It is easy to show that our typing rules are
consistent with Istandard, Ihenkin , Iconstruct.

09/25/19 B. Wolff - M2 - PIA 15

How to built theories
in a logically safe manner ?

• HOL consistency
– Core HOL needs a small number of axioms.
– Traditional papers [Andrews86] reduce it

to 6 axioms plus the axiom of infinity:

 ∃ f::ind ind. injective f ¬surjective f⇒ ∧

– The presentation in Isabelle/HOL looks as
follows:

09/25/19 B. Wolff - M2 - PIA 15

How to built theories
in a logically safe manner ?

• HOL consistency
– Core HOL needs a small number of axioms.
– Traditional papers [Andrews86] reduce it

to 6 axioms plus the axiom of infinity:

 ∃ f::ind ind. injective f ¬surjective f⇒ ∧

– The presentation in Isabelle/HOL looks as
follows:

09/25/19 B. Wolff - M2 - PIA 16

How to built theories
in a logically safe manner ?

• The presentation in Isabelle/HOL looks as
follows:

– refl: "t = (t::'a)"
– subst: "s = t P s P t"⟹ ⟹

– ext: "(⋀x::'a. (f x ::'b) = g x) (λx. f x) = (λx. g x)"⟹
– the_eq_trivial: "(THE x. x = a) = (a::'a)"
– impI:"(P Q) P Q"⟹ ⟹ ⟶
– mp: "P Q P Q" ⟶ ⟹ ⟹
– iff: "(P Q) (Q P) (P = Q)⟶ ⟶ ⟶ ⟶
– True_or_False: "(P = True) (P = False)"∨

09/25/19 B. Wolff - M2 - PIA 16

How to built theories
in a logically safe manner ?

• The presentation in Isabelle/HOL looks as
follows:

– refl: "t = (t::'a)"
– subst: "s = t P s P t"⟹ ⟹

– ext: "(⋀x::'a. (f x ::'b) = g x) (λx. f x) = (λx. g x)"⟹
– the_eq_trivial: "(THE x. x = a) = (a::'a)"
– impI:"(P Q) P Q"⟹ ⟹ ⟶
– mp: "P Q P Q" ⟶ ⟹ ⟹
– iff: "(P Q) (Q P) (P = Q)⟶ ⟶ ⟶ ⟶
– True_or_False: "(P = True) (P = False)"∨

09/25/19 B. Wolff - M2 - PIA 17

How to built theories
in a logically safe manner ?

• where:
– True is an abbreviation for ((λx::bool. x) = (λx. x))
– All(P) for (P = (λx. True))

– False for (∀P. P)
– Not P for P False⟶
– and for ∀R. (P Q R) R⟶ ⟶ ⟶
– or for ∀R. (P R) (Q R) R⟶ ⟶ ⟶ ⟶

09/25/19 B. Wolff - M2 - PIA 17

How to built theories
in a logically safe manner ?

• where:
– True is an abbreviation for ((λx::bool. x) = (λx. x))
– All(P) for (P = (λx. True))

– False for (∀P. P)
– Not P for P False⟶
– and for ∀R. (P Q R) R⟶ ⟶ ⟶
– or for ∀R. (P R) (Q R) R⟶ ⟶ ⟶ ⟶

09/25/19 B. Wolff - M2 - PIA 18

How to built theories
in a logically safe manner ?

• It is straight-forward to give Interpretation functions
Istandard, Ihenkin , Iconstruct for HOL terms and formulas in
ZFC

• (Meta) Theorem: Consistency relative to ZFC
 Istandard : τ => V and Istandard : T => V build a Model for

Core-HOL, i.e. they satisfy all axioms for all interpretation of the free
variables they contain.

• (Meta) Theorem: Incompleteness
This model is incomplete for Core-HOL, i.e. there are always true

terms for which this fact can not be derived.
09/25/19 B. Wolff - M2 - PIA 18

How to built theories
in a logically safe manner ?

• It is straight-forward to give Interpretation functions
Istandard, Ihenkin , Iconstruct for HOL terms and formulas in
ZFC

• (Meta) Theorem: Consistency relative to ZFC
 Istandard : τ => V and Istandard : T => V build a Model for

Core-HOL, i.e. they satisfy all axioms for all interpretation of the free
variables they contain.

• (Meta) Theorem: Incompleteness
This model is incomplete for Core-HOL, i.e. there are always true

terms for which this fact can not be derived.

09/25/19 B. Wolff - M2 - PIA 19

How to built theories
in a logically safe manner ?

• Is HOL correctly implemented in Isabelle ?
– Isabelle as a system clearly contains bugs; but

that does not mean that logical inferences produce false results
– Isabelle has a kernel architecture

 it is a member of the LCF-style systems that
 protects „theorems“, i.e. triples of the form:

 Γ ⊢Θ φ
by a fairly small abstract data-type.

– Isabelle can generate proof-objects which can be checked outside
Isabelle, in principle by any other HOL prover.

– It is heavily tested and used for a long time.
09/25/19 B. Wolff - M2 - PIA 19

How to built theories
in a logically safe manner ?

• Is HOL correctly implemented in Isabelle ?
– Isabelle as a system clearly contains bugs; but

that does not mean that logical inferences produce false results
– Isabelle has a kernel architecture

 it is a member of the LCF-style systems that
 protects „theorems“, i.e. triples of the form:

 Γ ⊢Θ φ
by a fairly small abstract data-type.

– Isabelle can generate proof-objects which can be checked outside
Isabelle, in principle by any other HOL prover.

– It is heavily tested and used for a long time.

09/25/19 B. Wolff - M2 - PIA 20

How to built theories
in a logically safe manner ?

• Are Extensions of HOL, so for example,
the library „Main“, logically safe ?

– not necessarily, adding arbitrary axioms by the
axiomatization command ruins consistency easily.

– some proof-methods are not based on the kernel
(sorry, self-built oracles, eval (code-generator))

– However, Isabelle encourages to use
specification constructs which are (in some
cases even formally) shown to be conservative.

09/25/19 B. Wolff - M2 - PIA 20

How to built theories
in a logically safe manner ?

• Are Extensions of HOL, so for example,
the library „Main“, logically safe ?

– not necessarily, adding arbitrary axioms by the
axiomatization command ruins consistency easily.

– some proof-methods are not based on the kernel
(sorry, self-built oracles, eval (code-generator))

– However, Isabelle encourages to use
specification constructs which are (in some
cases even formally) shown to be conservative.

09/25/19 B. Wolff - M2 - PIA 21

Isabelle Specification Constructs

! Constant Definitions:

 example: definition C::"bool bool"⇒
 where "C x = x"

! Type Definitions:

 example: typedef even = "{x::int. x mod 2 = 0}“

definition f::“<τ>”
where <name> : “f x1 … xn = <t>”

typedef ('α1..'αn) κ =

 “<set-expr>” <proof>

09/25/19 B. Wolff - M2 - PIA 21

Isabelle Specification Constructs

! Constant Definitions:

 example: definition C::"bool bool"⇒
 where "C x = x"

! Type Definitions:

 example: typedef even = "{x::int. x mod 2 = 0}“

definition f::“<τ>”
where <name> : “f x1 … xn = <t>”

typedef ('α1..'αn) κ =

 “<set-expr>” <proof>

09/25/19 B. Wolff - M2 - PIA 22

Specification Commands

! Simple Definitions (Non-Rec. core variant):
 (S, A) ”∈” T

(S ⊕ f::τ , A “⊕ f x1 … xn = expr”) ”∈” T'

– Side-Conditions

• constant symbol f must be fresh
• f must not be contained in “expr”

• (all type-variables orrurring in expr must occur in τ)

definition f::“<τ>”
where <name> : “f x1 … xn = expr”

09/25/19 B. Wolff - M2 - PIA 22

Specification Commands

! Simple Definitions (Non-Rec. core variant):
 (S, A) ”∈” T

(S ⊕ f::τ , A “⊕ f x1 … xn = expr”) ”∈” T'

– Side-Conditions

• constant symbol f must be fresh
• f must not be contained in “expr”

• (all type-variables orrurring in expr must occur in τ)

definition f::“<τ>”
where <name> : “f x1 … xn = expr”

09/25/19 B. Wolff - M2 - PIA 23

Isabelle Specification Constructs
! Type definition:

 (S, A) ”∈ ” T

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ ⇒ ('α1..'αn)κ
 ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ

 A ⊕ {Rep_κ_inverse ↦ Abs_κ (Rep_κ x) = x }

 ⊕ {Rep_κ_inject ↦ (Rep_κ x = Rep_κ y) = (x = y) }

 ⊕ {Rep_κ ↦ Rep_κ x {x. ∈ expr x}) ”∈ ” T'

• where the type-constructor κ is “fresh” in T
• expr is closed
• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a

witness)

typedef ('α1..'αn) κ =

 “<expr:: (('α1..'αn)τ) set>” <proof>

09/25/19 B. Wolff - M2 - PIA 23

Isabelle Specification Constructs
! Type definition:

 (S, A) ”∈ ” T

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ ⇒ ('α1..'αn)κ
 ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ

 A ⊕ {Rep_κ_inverse ↦ Abs_κ (Rep_κ x) = x }

 ⊕ {Rep_κ_inject ↦ (Rep_κ x = Rep_κ y) = (x = y) }

 ⊕ {Rep_κ ↦ Rep_κ x {x. ∈ expr x}) ”∈ ” T'

• where the type-constructor κ is “fresh” in T
• expr is closed
• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a

witness)

typedef ('α1..'αn) κ =

 “<expr:: (('α1..'αn)τ) set>” <proof>

09/25/19 B. Wolff - M2 - PIA 24

Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

! For Type Definitions, we define the new
type to be isomorphic to a (non-empty)
subset of an old one.

! The Isomorphism is stated by three
(conservative) axioms.

09/25/19 B. Wolff - M2 - PIA 24

Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

! For Type Definitions, we define the new
type to be isomorphic to a (non-empty)
subset of an old one.

! The Isomorphism is stated by three
(conservative) axioms.

09/25/19 B. Wolff - M2 - PIA 25

Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

('α1..'αn)τ

(('α1..'αn)τ) set('α1..'αn

) κ

Abs_κ

Rep_κ

09/25/19 B. Wolff - M2 - PIA 25

Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

('α1..'αn)τ

(('α1..'αn)τ) set('α1..'αn

) κ

Abs_κ

Rep_κ

09/25/19 B. Wolff - M2 - PIA 26

Isabelle Specification Constructs
! Type definition:

 (S, A) ”∈ ” T

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ ⇒ ('α1..'αn)κ
 ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ

 A ⊕ {Rep_κ_inverse ↦ Abs_κ (Rep_κ x) = x }

 ⊕ {Rep_κ_inject ↦ (Rep_κ x = Rep_κ y) = (x = y) }

 ⊕ {Rep_κ ↦ Rep_κ x {x. ∈ expr x}) ”∈ ” T'

• where the type-constructor κ is “fresh” in T
• expr is closed
• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a

witness)

typedef ('α1..'αn) κ =

 “<expr:: (('α1..'αn)τ) set>” <proof>

09/25/19 B. Wolff - M2 - PIA 26

Isabelle Specification Constructs
! Type definition:

 (S, A) ”∈ ” T

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ ⇒ ('α1..'αn)κ
 ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ

 A ⊕ {Rep_κ_inverse ↦ Abs_κ (Rep_κ x) = x }

 ⊕ {Rep_κ_inject ↦ (Rep_κ x = Rep_κ y) = (x = y) }

 ⊕ {Rep_κ ↦ Rep_κ x {x. ∈ expr x}) ”∈ ” T'

• where the type-constructor κ is “fresh” in T
• expr is closed
• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a

witness)

typedef ('α1..'αn) κ =

 “<expr:: (('α1..'αn)τ) set>” <proof>

09/25/19 B. Wolff - M2 - PIA 27

Semantics of a „Type Definition“

! Major example: Typed sets can be built
following
this scheme. The trick is to identify α set with
characteristic functions α bool.⇒

! In Isabelle/HOL, α set is introduced via an
equivalen axiom scheme; the type-definition
uses already implicitely the α set isomorphism
to α bool.⇒

09/25/19 B. Wolff - M2 - PIA 27

Semantics of a „Type Definition“

! Major example: Typed sets can be built
following
this scheme. The trick is to identify α set with
characteristic functions α bool.⇒

! In Isabelle/HOL, α set is introduced via an
equivalen axiom scheme; the type-definition
uses already implicitely the α set isomorphism
to α bool.⇒

09/25/19 B. Wolff - M2 - PIA 28

Isabelle Specification Constructs
! Major example:

The introduction of the cartesian product:
subsubsection {* Type definition *}

definition Pair_Rep :: "'a 'b 'a 'b bool" ⇒ ⇒ ⇒ ⇒
where "Pair_Rep a b = (λx y. x = a y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a 'a) (b 'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)
09/25/19 B. Wolff - M2 - PIA 28

Isabelle Specification Constructs
! Major example:

The introduction of the cartesian product:
subsubsection {* Type definition *}

definition Pair_Rep :: "'a 'b 'a 'b bool" ⇒ ⇒ ⇒ ⇒
where "Pair_Rep a b = (λx y. x = a y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a 'a) (b 'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

09/25/19 B. Wolff - M2 - PIA 29

Isabelle Specification Constructs
! Major example:

Typed sets.

typedef ('a) set = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

09/25/19 B. Wolff - M2 - PIA 29

Isabelle Specification Constructs
! Major example:

Typed sets.

typedef ('a) set = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

09/25/19 B. Wolff - M2 - PIA 30

Specification Mechanism Commands
! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

! ... introduces also semantics and syntax for

– selectors : tag1 x

– constructors : ⦇ tag1 = x1, ... , tagn = xn ⦈
– update-functions : x ⦇ tag1 := xn ⦈

record <c> = [<record> +]
tag1 :: “<τ1>”

 ...
 tagn :: “<τn>”

09/25/19 B. Wolff - M2 - PIA 30

Specification Mechanism Commands
! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

! ... introduces also semantics and syntax for

– selectors : tag1 x

– constructors : ⦇ tag1 = x1, ... , tagn = xn ⦈
– update-functions : x ⦇ tag1 := xn ⦈

record <c> = [<record> +]
tag1 :: “<τ1>”

 ...
 tagn :: “<τn>”

09/25/19 B. Wolff - M2 - PIA 31

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive_set Even :: "int set"
 where null: "0 Even" ∈
 | plus:"x Even x+2 Even"∈ ⟹ ∈

 | min :"x Even x-2 Even" ∈ ⟹ ∈

inductive_set <c> :: “ τ ⇒ τ’ set” for A::τ
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

inductive_set <c> :: “ τ set”
 where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 31

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive_set Even :: "int set"
 where null: "0 Even" ∈
 | plus:"x Even x+2 Even"∈ ⟹ ∈

 | min :"x Even x-2 Even" ∈ ⟹ ∈

inductive_set <c> :: “ τ ⇒ τ’ set” for A::τ
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

inductive_set <c> :: “ τ set”
 where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 32

Specification Mechanism Commands
! These are not buit-in constructs, rather they are based on a series
of definitions and typedefs.

! The machinery behind is based on a fixed-point combinator on sets :

 lfp :: “('α set '⇒ α set) '⇒ α set”

which can be conservatively defined by:

 "lfp f = ⋂ {u. f u u}" ⊆

and which enjoys a constrained fixed-point property:

 mono f lfp f = f (lfp f)⟹

09/25/19 B. Wolff - M2 - PIA 32

Specification Mechanism Commands
! These are not buit-in constructs, rather they are based on a series
of definitions and typedefs.

! The machinery behind is based on a fixed-point combinator on sets :

 lfp :: “('α set '⇒ α set) '⇒ α set”

which can be conservatively defined by:

 "lfp f = ⋂ {u. f u u}" ⊆

and which enjoys a constrained fixed-point property:

 mono f lfp f = f (lfp f)⟹

09/25/19 B. Wolff - M2 - PIA 33

Specification Mechanism Commands
! Example : Even (see before)

– the set Even is conservatively defined by:

Even = lfp (λ X. {0}
 (λ x. x + 2) ` X∪
 (λ x. x - 2) ` X)∪

– from which the properties:

null: "0 Even" ∈
plus:"x Even x+2 Even"∈ ⟹ ∈
min :"x Even x-2 Even"∈ ⟹ ∈

can be derived automatically (Note that Isabelle/HOL Version
2016 proceeds differently for technical reasons)

09/25/19 B. Wolff - M2 - PIA 33

Specification Mechanism Commands
! Example : Even (see before)

– the set Even is conservatively defined by:

Even = lfp (λ X. {0}
 (λ x. x + 2) ` X∪
 (λ x. x - 2) ` X)∪

– from which the properties:

null: "0 Even" ∈
plus:"x Even x+2 Even"∈ ⟹ ∈
min :"x Even x-2 Even"∈ ⟹ ∈

can be derived automatically (Note that Isabelle/HOL Version
2016 proceeds differently for technical reasons)

09/25/19 B. Wolff - M2 - PIA 34

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 34

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 35

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 35

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 36

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/25/19 B. Wolff - M2 - PIA 36

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/25/19 B. Wolff - M2 - PIA 37

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 37

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 38

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"

09/25/19 B. Wolff - M2 - PIA 38

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"

09/25/19 B. Wolff - M2 - PIA 39

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

 09/25/19 B. Wolff - M2 - PIA 39

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

09/25/19 B. Wolff - M2 - PIA 40

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ... <equation>

 09/25/19 B. Wolff - M2 - PIA 40

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ... <equation>

09/25/19 B. Wolff - M2 - PIA 41

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and

– auto intro: <rule> ... <rule>
 elim: <erule> ... <erule>
 simp: <equation> ... <equation>

 09/25/19 B. Wolff - M2 - PIA 41

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and

– auto intro: <rule> ... <rule>
 elim: <erule> ... <erule>
 simp: <equation> ... <equation>

09/25/19 B. Wolff - M2 - PIA 42

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases:
 <formula> is true or <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

09/25/19 B. Wolff - M2 - PIA 42

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases:
 <formula> is true or <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

09/25/19 B. Wolff - M2 - PIA 43

Screenshot with Examples

09/25/19 B. Wolff - M2 - PIA 43

Screenshot with Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

