Preuves Interactives et Applications

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2017-18/M2-CSMR/U3-Theory-Extensions.pdf

Université Paris-Saclay

HOL Foundations and Specification Constructs

Revision: Documents and Commands

 Isabelle has (similar to Eclipse) a "document-centric" view of development: there is a notion on an entire "project" which is processed globally.

 Documents (~ projects in Eclipse) consists of files (with potentially different file-type);
 .thy files consists of headers commands.

What is Isabelle as a System ?

Global View of a "session"

Revision: Documents and Commands

• Each position in document corresponds

-to a "local context"
$$\Theta$$
, Γ

 There are specific "Inspection Commands" that give access to information in the contexts

 thm, term, typ, value, prop : global context
 print_cases, facts, ... B thm M2 Jacal context

What is Isabelle as a System ?

Nolff - M2 - PIA

 Document "positions" were evaluated to an implicit state, the theory context Θ Document / cmd "Theony" cmd cmd B cmd cmd cmd Θ_0 cmd cmd -Θ_{3 - 1} cmd cmd _Θ_{3 - 2} 4 cmd cmd Θ_3

cmd

09/25/19

"semantic" evaluation as SML function

Recall:Basic Declaration Commands

Type Declaration

typedecl "(
$$\alpha_1, ..., \alpha_n$$
) < typconstructor-id >"

example: typedecl "L"

• (Unspecified) Constant Declaration:

consts c :: "
$$\tau$$
"

example: consts True :: "bool" (NOT Isabelle/HOL) B. Wolff - M2 - PIA

Recall:Basic Declaration Commands

Constant Declaration "Semantics":

$$(\Sigma, A) \in \mathcal{C} \Theta$$

consts $c :: , \tau^{*}$

$$\left(\Sigma \ \oplus \ (\textbf{C} \ \mapsto \ \tau) \ \textbf{,} \ \textbf{A}\right) \ \textbf{"} \in \ \textbf{"} \ \Theta'$$

• where the constant c is "fresh" in Σ

- Beyond, there are a number of questions:
 - Is the logic HOL consistent?
 - Is HOL correctly implemented in Isabelle ?
 - How to extend HOL in a logically safe way ?

To the HOL library "Main", for example ?

- Beyond, there are a number of questions:
 - Is the logic HOL consistent?
 - Is HOL correctly implemented in Isabelle ?
 - How to extend HOL in a logically safe way ?

To the HOL library "Main", for example ?

We will address these questions one by one ...

• HOL consistency

 - ... can only be answered relatively,
 i.e. relative to a logical system which gives a formal "interpretation" of HOL terms.

- the gold-standard for mathematicians and logicians is "Zermelo-Fraenkel Set Theory" plus "axiom of choice", called ZFC.
- it is possible to give several interpretations of HOL in ZFC and prove the validity of HOL-s core axioms relative to these interpretations.

- HOL consistency
 - ZFC gives a kind of "universe of sets" V with the properties:
 - an infinite set I is part of V
 - any product V'× V" is part of V, if V' and V" are
 - any potence set P(V') is part of V provided that V' is. (this is not possible in a typed set-theory)

– Since relations $\mathcal{P}(V' \times V'')$ are part of V, it is possible to express in V function spaces.

- HOL consistency
 - ZFC gives a kind of "universe of sets" V with the properties:
 - an infinite set I is part of V
 - any product V'× V" is part of V, if V' and V" are
 - any potence set P(V') is part of V provided that V' is. (this is not possible in a typed set-theory)

– Since relations $\mathcal{P}(V' \times V'')$ are part of V, it is possible to express in V function spaces.

- HOL consistency
 - Since relations $\mathcal{P}(V' \times V'')$ are part of V, it is possible to express in V function spaces:
 - A $\Rightarrow_{standard}$ B = {f: $\mathcal{P}(V' \times V'') \mid f \neq \emptyset$ and f is function}
 - $\emptyset \neq (A \Rightarrow_{henkin} B) \subseteq \{f: \mathcal{P}(V' \times V'') \mid f \neq \emptyset \text{ and } f \text{ is function} \}$

• A
$$\Rightarrow_{\text{construct}} B = \{f: \mathcal{P}(V' \times V'') \mid f \neq \emptyset \text{ and} f \text{ is a computable function} \}$$

 On this basis, we can give a standard (Henkin-style, constructivist) interpretation of HOL types into V

$$I_{\text{standard}} : \tau \Longrightarrow V, I_{\text{henkin}} : \tau \Longrightarrow V, I_{\text{construct}} : \tau \Longrightarrow V_{13}$$

- HOL consistency
 - On this basis, we can give a standard interpretation of HOL core types into V
 - I_{standard} [[bool]] = {a,b} (where a,b are some distinct elements from the infinite set I)
 - $I_{standard}$ [[ind]] = I'
 - $\mathbf{I}_{standard}$ $\llbracket \tau \Rightarrow \tau' \rrbracket = \mathbf{I}_{standard}$ $\llbracket \tau \rrbracket \Rightarrow_{standard}$ $\mathbf{I}_{standard}$ $\llbracket \tau' \rrbracket$
 - It is easy to show that our typing rules are

consistent with I_{standard}, I_{henkin}, I_{construct}.

B. Wolff - M2 - PIA

- HOL consistency
 - Core HOL needs a small number of axioms.
 - Traditional papers [Andrews86] reduce it to 6 axioms plus the axiom of infinity:

\exists f::ind \Rightarrow ind. injective f $\land \neg$ surjective f

The presentation in Isabelle/HOL looks as follows:

B Wolff - M2 - PIA

The presentation in Isabelle/HOL looks as follows:

- subst: "s = t
$$\implies$$
 P s \implies P t"

$$^-$$
 ext: "(∧x::'a. (f x ::'b) = g x) ⇒(λx. f x) = (λx. g x)"

- the_eq_trivial: "(THE x.
$$x = a$$
) = (a::'a)"

$$-\operatorname{impI:}"(\mathsf{P}\Longrightarrow\mathsf{Q})\Longrightarrow\mathsf{P}\longrightarrow\mathsf{Q}"$$

$$- mp: "P \longrightarrow Q \Longrightarrow P \Longrightarrow Q"$$

- True_or_False: "(P = True)
$$\lor$$
 (P = False)"
 $B. Wolff - M2 - PIA$

- where:
 - True is an abbreviation for $((\lambda x::bool. x) = (\lambda x. x))$
 - All(P) for (P = (λx . True))
 - ⁻ False for (\forall P. P)
 - Not P for P \longrightarrow False
 - [−] and for $\forall R. (P \rightarrow Q \rightarrow R) \rightarrow R$
 - $^{-}$ or for ∀R. (P \rightarrow R) \rightarrow (Q \rightarrow R) \rightarrow R

- It is straight-forward to give Interpretation functions $I_{standard}, I_{henkin}, I_{construct}$ for HOL terms and formulas in ZFC
- (Meta) Theorem: Consistency relative to ZFC

 $I_{standard}$: $\tau => V$ and $I_{standard}$: T => V build a Model for Core-HOL, i.e. they satisfy all axioms for all interpretation of the free variables they contain.

• (Meta) Theorem: Incompleteness

This model is incomplete for Core-HOL, i.e. there are always true terms for which this fact can not be derived.

- Is HOL correctly implemented in Isabelle ?
 - Isabelle as a system clearly contains bugs; but that does not mean that logical inferences produce false results

- Isabelle has a kernel architecture it is a member of the LCF-style systems that protects "theorems", i.e. triples of the form:

$\Gamma \vdash_{\Theta} \varphi$

by a fairly small abstract data-type.

 Isabelle can generate proof-objects which can be checked outside Isabelle, in principle by any other HOL prover.

- It is heavily tested and used for a long time. B Wolff - M2 - PIA

- Are Extensions of HOL, so for example, the library "Main", logically safe ?
 - not necessarily, adding arbitrary axioms by the axiomatization command ruins consistency easily.
 - some proof-methods are not based on the kernel (sorry, self-built oracles, eval (code-generator))
 - However, Isabelle encourages to use specification constructs which are (in some cases even formally) shown to be conservative.

Isabelle Specification Constructs

Constant Definitions:

definition f::"< τ >"

where <name> : "f $x_1 \dots x_n = \langle t \rangle$ "

example: definition C::"bool \Rightarrow bool" where "C x = x"

 Type Definitions: typedef ('a₁..'a_n) κ = "<set-expr>" <proof>

example: typedef even = "{x::int. x mod
$$2 = 0$$
}"

Specification Commands

• Simple Definitions (Non-Rec. core variant):

(Σ, A) "∈" Θ

$$(\Sigma \oplus f::\tau, A \oplus "f x_1 ... x_n = expr") " \in " \Theta'$$

- Side-Conditions
 - constant symbol f must be fresh
 - f must not be contained in "expr"
 - (all type-variables or rurring in expr must occur in τ)

Isabelle Specification Constructs

• Type definition:

(Σ, A) "∈ " Θ

typedef (' a_1 ..' a_n) $\kappa =$ "<expr:: ((' a_1 ..' a_n) τ) set>" <proof>

$$\begin{aligned} &(\Sigma \oplus ('a_1..'a_n) \kappa \oplus Abs_{\kappa}::('a_1..'a_n)\tau \Rightarrow ('a_1..'a_n)\kappa \\ &\oplus Rep_{\kappa}::('a_1..'a_n)\kappa \Rightarrow ('a_1..'a_n)\tau \end{aligned}$$

 $A \oplus \{\operatorname{Rep}_{\kappa} inverse \mapsto \operatorname{Abs}_{\kappa} (\operatorname{Rep}_{\kappa} x) = x\}$

 $\oplus \{ \operatorname{Rep}_{\kappa_{i}} \mapsto (\operatorname{Rep}_{\kappa_{i}} x = \operatorname{Rep}_{\kappa_{i}} y) = (x = y) \}$

 $\oplus \{\operatorname{Rep}_{\kappa} \longmapsto \operatorname{Rep}_{\kappa} x \in \{x. \operatorname{expr} x\}\} \ "\in " \Theta'$

- where the type-constructor κ is "fresh" in Θ
- expris closed

09/25/19 • <expr:: ('a1...'an)τ setwarfishnon-empty (to be proven by a 23 witness)</p>

Semantics of a "Type Definition"

- Idea: Similar to constant definitions; we define the new entity ("a type") by an old one.
- For Type Definitions, we define the new type to be isomorphic to a (non-empty) subset of an old one.
- The Isomorphism is stated by three (conservative) axioms.

Semantics of a "Type Definition"

 Idea: Similar to constant definitions; we define the new entity ("a type") by an old one.

Isabelle Specification Constructs

• Type definition:

(Σ, A) "∈ " Θ

typedef (' a_1 ..' a_n) $\kappa =$ "<expr:: ((' a_1 ..' a_n) τ) set>" <proof>

$$\begin{aligned} &(\Sigma \oplus ('a_1..'a_n) \kappa \oplus Abs_{\kappa}::('a_1..'a_n)\tau \Rightarrow ('a_1..'a_n)\kappa \\ &\oplus Rep_{\kappa}::('a_1..'a_n)\kappa \Rightarrow ('a_1..'a_n)\tau \end{aligned}$$

 $A \oplus \{\operatorname{Rep}_{\kappa} inverse \mapsto \operatorname{Abs}_{\kappa} (\operatorname{Rep}_{\kappa} x) = x\}$

 $\oplus \{ \operatorname{Rep}_{\kappa_{i}} \mapsto (\operatorname{Rep}_{\kappa_{i}} x = \operatorname{Rep}_{\kappa_{i}} y) = (x = y) \}$

 $\oplus \{\operatorname{Rep}_{\kappa} \longmapsto \operatorname{Rep}_{\kappa} x \in \{x. \operatorname{expr} x\}\} \ "\in " \Theta'$

- where the type-constructor κ is "fresh" in Θ
- expris closed

09/25/19 • <expr:: ('a1...'an)τ setwarfisunon-empty (to be proven by a 26 witness)</p>

Semantics of a "Type Definition"

 Major example: Typed sets can be built following this scheme. The trick is to identify α set with characteristic functions α ⇒ bool.

• In Isabelle/HOL, α set is introduced via an equivalen axiom scheme; the type-definition uses already implicitly the α set isomorphism to $\alpha \Rightarrow$ bool.

Isabelle Specification Constructs

• Major example:

The introduction of the cartesian product: subsubsection {* Type definition *}

definition Pair_Rep :: "'a \Rightarrow 'b \Rightarrow 'a \Rightarrow 'b \Rightarrow bool" where "Pair_Rep a b = ($\lambda x y \cdot x = a \land y = b$)"

definition "prod = {f. \exists a b. f = Pair_Rep (a :: 'a) (b ::'b)}"

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \Rightarrow 'b \Rightarrow bool) set"

unfolding prod_def by auto

^{09/25/19} type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

Isabelle Specification Constructs

 Major example: Typed sets.

typedef ('a) set = "prod :: ('a \Rightarrow 'b \Rightarrow bool) set"

unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

• Extended Notation for Cartesian Products: records (as in SML or OCaml; gives a slightly OO-flavor)

record <c> = [<record> +]tag₁ :: " $<\tau_1>$ " ... tag_n :: " $<\tau_n>$ "

- ... introduces also semantics and syntax for
 - selectors : $tag_1 x$
 - constructors : ($tag_1 = x_1, ..., tag_n = x_n$)
 - update-functions : $x (tag_1 := x_n)$

example: inductive_set Even :: "int set"
where null: "
$$0 \in Even$$
"
| plus:" $x \in Even \implies x+2 \in Even$ "
 $B. Wolffi M^2:"WA \in Even \implies x-2 \in Even$ " 31

- These are not buit-in constructs, rather they are based on a series of definitions and typedefs.
- The machinery behind is based on a fixed-point combinator on sets :

If $p :: "('\alpha \text{ set} \Rightarrow '\alpha \text{ set}) \Rightarrow '\alpha \text{ set}"$

which can be conservatively defined by:

"Ifp f =
$$\bigcap \{u. f u \subseteq u\}$$
"

and which enjoys a constrained fixed-point property:

mono f
$$\implies$$
 lfp f = f (lfp f)

• Example : Even (see before)

- the set Even is conservatively defined by:

```
Even = Ifp (\lambda X. {0}

\cup (\lambda x. x + 2) ` X

\cup (\lambda x. x - 2) ` X)
```

- from which the properties:

null: " $0 \in Even$ " plus: " $x \in Even \implies x+2 \in Even$ " min : " $x \in Even \implies x-2 \in Even$ "

can be derived automatically (Note that Isabelle/HOL Version 2016 proceeds differently for technical reasons) B. Wolff - M2 - PIA 33

• Inductively Defined Sets:

inductive
$$\langle c \rangle [\text{ for } \langle v \rangle :: `` \langle \tau \rangle'']$$

where $\langle thmname \rangle : `` \langle \phi \rangle''$
 $| \dots$
 $| \langle thmname \rangle = \langle \phi \rangle$

example: inductive path for rel ::"'a
$$\Rightarrow$$
 'a \Rightarrow bool"
where base : "path rel x x"
| step : "rel x y \Rightarrow path rel y z \Rightarrow path rel x z"

Inductively Defined Sets:

 Datatype Definitions (similar SML): (Machinery behind : complex series of const and typedefs !)

> datatype (' a_1 ..' a_n) Θ = <c> :: "< τ >" | ... | <c> :: "< τ >"

 Recursive Function Definitions: (Machinery behind: Veeery complex series of const and typedefs and automated proofs!)

> fun <c> ::"<τ>" where "<c> <pattern> = <t>" | ... | "<c> <pattern> = <t>"

 Datatype Definitions (similar SML): Examples:

datatype mynat = ZERO I SUC mynat

datatype 'a list = MT I CONS "'a" "'a list"

- Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
 - subst <equation>

(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]

(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>

(one step left-to-right rewrite, choose n-th redex)

- Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
 - simp

(arbitrary number of left-to-right rewrites, assumption or rule refl attepted at the end; a global simpset in the background is used.)

- simp add: <equation> ... <equation>

 Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)

- auto

(apply in exaustive, non-deterministic manner: all introduction rules, elimination rules and

– auto intro: <rule> ... <rule> elim: <erule> ... <erule> simp: <equation> ... <equation>

- Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
 - cases "<formula>"
 (split top goal into 2 cases:
 <formula> is true or <formula> is false)
 - cases "<variable>"

(- precondition : <variable> has type t which is a data-type) search for splitting rule and do case-split over this variable.

- induct_tac ,<variable>"

(- precondition : <variable> has type t which is a data-type) search for induction rule and do induction over this variable.

Screenshot with Examples

09/25/19