
09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Induction, Induction and Induction
Université Paris-Saclay

Burkhart Wolff

https://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/index.html

09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Induction, Induction and Induction
Université Paris-Saclay

Burkhart Wolff

https://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/index.html

09/25/19 B. Wolff - M2 - PIA 2

Outline

• Inductive Sets and lfp-Fixed Points
• (Inductive) Datatypes
• Induction forms in logics and
 Isabelle/Isar

09/25/19 B. Wolff - M2 - PIA 2

Outline

• Inductive Sets and lfp-Fixed Points
• (Inductive) Datatypes
• Induction forms in logics and
 Isabelle/Isar

09/25/19 B. Wolff - M2 - PIA 3

 Command Inductive Set
! Inductively Defined Sets:

example: inductive_set Even :: "int set"
 where null: "0 Even" ∈
 | plus:"x Even x+2 Even"∈ ⟹ ∈

 | min :"x Even x-2 Even" ∈ ⟹ ∈

inductive <c> :: “ τ bool” for A::⇒ τ
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

inductive_set <c> :: “ τ set” [for A::τ]
 where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 3

 Command Inductive Set
! Inductively Defined Sets:

example: inductive_set Even :: "int set"
 where null: "0 Even" ∈
 | plus:"x Even x+2 Even"∈ ⟹ ∈

 | min :"x Even x-2 Even" ∈ ⟹ ∈

inductive <c> :: “ τ bool” for A::⇒ τ
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

inductive_set <c> :: “ τ set” [for A::τ]
 where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 4

 Command Inductive Set
! These are not buit-in constructs, rather they are based on a series
of definitions and typedefs.

! The machinery behind is based on a fixed-point combinator on sets :

 lfp :: “('α set '⇒ α set) '⇒ α set”

which can be conservatively defined by:

 "lfp f = ⋂ {u. f u u}" ⊆

and which enjoys a constrained fixed-point property:

 mono f lfp f = f (lfp f)⟹

09/25/19 B. Wolff - M2 - PIA 4

 Command Inductive Set
! These are not buit-in constructs, rather they are based on a series
of definitions and typedefs.

! The machinery behind is based on a fixed-point combinator on sets :

 lfp :: “('α set '⇒ α set) '⇒ α set”

which can be conservatively defined by:

 "lfp f = ⋂ {u. f u u}" ⊆

and which enjoys a constrained fixed-point property:

 mono f lfp f = f (lfp f)⟹

09/25/19 B. Wolff - M2 - PIA 5

 Command Inductive Set
! Example : Even (see before)

– the set Even is conservatively defined by:

Even = lfp (λ X. {0}
 (λ x. x + 2) ` X∪
 (λ x. x - 2) ` X)∪

– from which the properties:

null: "0 Even" ∈
plus:"x Even x+2 Even"∈ ⟹ ∈
min :"x Even x-2 Even"∈ ⟹ ∈

can be derived automatically (Note that Isabelle/HOL Version
2016 proceeds differently for technical reasons)

09/25/19 B. Wolff - M2 - PIA 5

 Command Inductive Set
! Example : Even (see before)

– the set Even is conservatively defined by:

Even = lfp (λ X. {0}
 (λ x. x + 2) ` X∪
 (λ x. x - 2) ` X)∪

– from which the properties:

null: "0 Even" ∈
plus:"x Even x+2 Even"∈ ⟹ ∈
min :"x Even x-2 Even"∈ ⟹ ∈

can be derived automatically (Note that Isabelle/HOL Version
2016 proceeds differently for technical reasons)

09/25/19 B. Wolff - M2 - PIA 6

 Command Inductive Set
! Example : Even (see before)

– More important: it derives an

Induction scheme

for the Even set.
– That is: if we know that

• some x is in Even
• and some property P over some arbitrary a
is maintained (invariant) for a+2 and a-2

• P x holds.
09/25/19 B. Wolff - M2 - PIA 6

 Command Inductive Set
! Example : Even (see before)

– More important: it derives an

Induction scheme

for the Even set.
– That is: if we know that

• some x is in Even
• and some property P over some arbitrary a
is maintained (invariant) for a+2 and a-2

• P x holds.

09/25/19 B. Wolff - M2 - PIA 7

 Command Inductive Set
! Example : Even (see before)

– In Textbooks on Natural Deduction
(like van Dalens Book) we might find
this formalized in:

– Note that a is free and does only occur in
these sub-proof-trees

09/25/19 B. Wolff - M2 - PIA 7

 Command Inductive Set
! Example : Even (see before)

– In Textbooks on Natural Deduction
(like van Dalens Book) we might find
this formalized in:

– Note that a is free and does only occur in
these sub-proof-trees

09/25/19 B. Wolff - M2 - PIA 8

 Command Inductive Set
! Example : Even (see before)

– Isabelle derives this as theorem from the lfp definition and
displays it as follows:

x Even; P 0; ⟦ ∈ ⋀x. x Even; P x P (x + 2); ⟦ ∈ ⟧ ⟹ ⋀x. x Even; P x P (x - 2) ⟦ ∈ ⟧ ⟹ ⟧

 P x⟹

– or equivalently:
 x Even∈

⟹ P 0

⟹⋀x. x Even; P x P (x + 2)⟦ ∈ ⟧ ⟹

 ⟹⋀x. x Even; P x P (x - 2)⟦ ∈ ⟧ ⟹

 ⟹ P x

09/25/19 B. Wolff - M2 - PIA 8

 Command Inductive Set
! Example : Even (see before)

– Isabelle derives this as theorem from the lfp definition and
displays it as follows:

x Even; P 0; ⟦ ∈ ⋀x. x Even; P x P (x + 2); ⟦ ∈ ⟧ ⟹ ⋀x. x Even; P x P (x - 2) ⟦ ∈ ⟧ ⟹ ⟧

 P x⟹

– or equivalently:
 x Even∈

⟹ P 0

⟹⋀x. x Even; P x P (x + 2)⟦ ∈ ⟧ ⟹

 ⟹⋀x. x Even; P x P (x - 2)⟦ ∈ ⟧ ⟹

 ⟹ P x

09/25/19 B. Wolff - M2 - PIA 9

 Command Inductive Set
! Example : Even (see before)

– or equivalently:

 assumes “x Even”∈

 and base: “P 0”

 and step1: “⋀x. x Even; P x P (x + 2)“⟦ ∈ ⟧ ⟹

 and step2: “⋀x. x Even; P x P (x - 2)“⟦ ∈ ⟧ ⟹

shows “P x”

09/25/19 B. Wolff - M2 - PIA 9

 Command Inductive Set
! Example : Even (see before)

– or equivalently:

 assumes “x Even”∈

 and base: “P 0”

 and step1: “⋀x. x Even; P x P (x + 2)“⟦ ∈ ⟧ ⟹

 and step2: “⋀x. x Even; P x P (x - 2)“⟦ ∈ ⟧ ⟹

shows “P x”

09/25/19 B. Wolff - M2 - PIA 10

 Command Inductive Set
! Remarks

– Induction schemes (closely related to fixpoints, recursion, and
while-loops) are the major weapon in HOL proofs that can NOT
be done by automated provers

– they can refer to (inductive) datatypes,
sets and therefore relations and are always the
 means of choice if we want to express that something is
 „closed under a set of rules“

– Usually there are several choices of induction schemes,
their instantiation, and the target they are applied on.

– Like invariants of while-loops, it may be that some
generalization of a property can be proven inductively,
the concrete property, however, not directly.

09/25/19 B. Wolff - M2 - PIA 10

 Command Inductive Set
! Remarks

– Induction schemes (closely related to fixpoints, recursion, and
while-loops) are the major weapon in HOL proofs that can NOT
be done by automated provers

– they can refer to (inductive) datatypes,
sets and therefore relations and are always the
 means of choice if we want to express that something is
 „closed under a set of rules“

– Usually there are several choices of induction schemes,
their instantiation, and the target they are applied on.

– Like invariants of while-loops, it may be that some
generalization of a property can be proven inductively,
the concrete property, however, not directly.

09/25/19 B. Wolff - M2 - PIA 11

 Command Inductive Set

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 11

 Command Inductive Set

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 12

 Command Inductive Set

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 12

 Command Inductive Set

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 13

 Command Inductive Set

! Inductively Defined Sets: Example path.
Isabelle/HOL:

 path rel x y
 ⟹⋀x. P x x;

 ⟹⋀x y z. rel x y; path rel y z; P y z P x z⟦ ⟧ ⟹
 P x y⟹

! Text-
book:

09/25/19 B. Wolff - M2 - PIA 13

 Command Inductive Set

! Inductively Defined Sets: Example path.
Isabelle/HOL:

 path rel x y
 ⟹⋀x. P x x;

 ⟹⋀x y z. rel x y; path rel y z; P y z P x z⟦ ⟧ ⟹
 P x y⟹

! Text-
book:

09/25/19 B. Wolff - M2 - PIA 14

 Command Inductive Set

! Note: an equivalent (appending) induction
scheme with the same power:

 path rel x y
 (⟹ ⋀x. P x x)

 ⟹(⋀x y z. path rel x y; P x y; rel y z P x z)⟦ ⟧ ⟹
 P x y⟹

! The choice of the induction scheme matters
for the task ahead ...

09/25/19 B. Wolff - M2 - PIA 14

 Command Inductive Set

! Note: an equivalent (appending) induction
scheme with the same power:

 path rel x y
 (⟹ ⋀x. P x x)

 ⟹(⋀x y z. path rel x y; P x y; rel y z P x z)⟦ ⟧ ⟹
 P x y⟹

! The choice of the induction scheme matters
for the task ahead ...

09/25/19 B. Wolff - M2 - PIA 15

 Command Inductive Datatype
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/25/19 B. Wolff - M2 - PIA 15

 Command Inductive Datatype
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/25/19 B. Wolff - M2 - PIA 16

 Command Inductive Datatype
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 co
nse

rvq
tiv

e

defi
nit

ion
s, i

.e.
a “

mode
l” i

n H
OL

!!!

09/25/19 B. Wolff - M2 - PIA 16

 Command Inductive Datatype
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 co
nse

rvq
tiv

e

defi
nit

ion
s, i

.e.
a “

mode
l” i

n H
OL

!!!

09/25/19 B. Wolff - M2 - PIA 17

 Command Inductive Datatype

! Example: Induction Scheme from Datatype
Definitions

– (⋀a. P (leaf a))

 (⟹ ⋀a t t’. P t P t’ P (node a t t’))⟹ ⟹
 P tree⟹

– Textbook:

 09/25/19 B. Wolff - M2 - PIA 17

 Command Inductive Datatype

! Example: Induction Scheme from Datatype
Definitions

– (⋀a. P (leaf a))

 (⟹ ⋀a t t’. P t P t’ P (node a t t’))⟹ ⟹
 P tree⟹

– Textbook:

09/25/19 B. Wolff - M2 - PIA 18

 Command Inductive Datatype

! Example: Recursive Function Definition
fun reflect :: "'a tree 'a tree" ⇒
 where a : "reflect (leaf x) = leaf x"
 | b : "reflect (node x t t') = node x t' t"

• Example Proof: lemma “reflect(reflect t) = t”:
– Proof by induction (apply style; since tree.induct is just

an ordinary (introduction) rule, this works by rule)

apply(rule_tac tree=t in tree.induct)
 apply(simp add: a)

 apply(simp add: b)
done

09/25/19 B. Wolff - M2 - PIA 18

 Command Inductive Datatype

! Example: Recursive Function Definition
fun reflect :: "'a tree 'a tree" ⇒
 where a : "reflect (leaf x) = leaf x"
 | b : "reflect (node x t t') = node x t' t"

• Example Proof: lemma “reflect(reflect t) = t”:
– Proof by induction (apply style; since tree.induct is just

an ordinary (introduction) rule, this works by rule)

apply(rule_tac tree=t in tree.induct)
 apply(simp add: a)

 apply(simp add: b)
done

09/25/19 B. Wolff - M2 - PIA 19

Induction vs. Case-Split

! The commands inductive, inductive_set and
datatype generate another important schema
of rules which is an important weapon:

Case-Splits

! Most basic form:
disjE

09/25/19 B. Wolff - M2 - PIA 19

Induction vs. Case-Split

! The commands inductive, inductive_set and
datatype generate another important schema
of rules which is an important weapon:

Case-Splits

! Most basic form:
disjE

09/25/19 B. Wolff - M2 - PIA 20

Induction vs. Case-Split

! For the datatype tree, this rule present
itself like this:

 (⋀a. y = leaf a Q)⟹

 ⟹ (⋀x t t’. y = node x t t’ Q) ⟹
 ⟹ Q

09/25/19 B. Wolff - M2 - PIA 20

Induction vs. Case-Split

! For the datatype tree, this rule present
itself like this:

 (⋀a. y = leaf a Q)⟹

 ⟹ (⋀x t t’. y = node x t t’ Q) ⟹
 ⟹ Q

09/25/19 B. Wolff - M2 - PIA 21

Induction vs. Case-Split

! For the inductive sets, the case split rule
path.cases presents itself like this:

 ⟦path rel a1 a2;
 x. a1 = x; a2 = x P;⋀ ⟦ ⟧ ⟹
 x y z. a1 = x; a2 = z; ⋀ ⟦
 rel x y; path rel y z P⟧ ⟹
 P⟧ ⟹
 09/25/19 B. Wolff - M2 - PIA 21

Induction vs. Case-Split

! For the inductive sets, the case split rule
path.cases presents itself like this:

 ⟦path rel a1 a2;
 x. a1 = x; a2 = x P;⋀ ⟦ ⟧ ⟹
 x y z. a1 = x; a2 = z; ⋀ ⟦
 rel x y; path rel y z P⟧ ⟹
 P⟧ ⟹

09/25/19 B. Wolff - M2 - PIA 22

Induction and Case-
Splitting Support

• induction and case-splitting were supported by
 specific methods attempting to figure out auto-
 matically which rule to use
• There are apply-style proof methods:

which work with arbitrary open parameters
of a subgoal ...

apply(induct_tac „<term>“)

apply(case_tac „<term>“)

09/25/19 B. Wolff - M2 - PIA 22

Induction and Case-
Splitting Support

• induction and case-splitting were supported by
 specific methods attempting to figure out auto-
 matically which rule to use
• There are apply-style proof methods:

which work with arbitrary open parameters
of a subgoal ...

apply(induct_tac „<term>“)

apply(case_tac „<term>“)

09/25/19 B. Wolff - M2 - PIA 23

Induction and Case-
Splitting Support

• induction and case-splitting were supported by
 specific methods attempting to figure out auto-
 matically which rule to use
• There are “blue-style” proof methods giving support
 for an own structured proof-language Isar

which require that parameters are “fixed”.

apply(induct „<term>“ <options ... >)

apply(case „<term>“)

09/25/19 B. Wolff - M2 - PIA 23

Induction and Case-
Splitting Support

• induction and case-splitting were supported by
 specific methods attempting to figure out auto-
 matically which rule to use
• There are “blue-style” proof methods giving support
 for an own structured proof-language Isar

which require that parameters are “fixed”.

apply(induct „<term>“ <options ... >)

apply(case „<term>“)

09/25/19 B. Wolff - M2 - PIA 24

Introduction to Isar
Advanced Proof Techniques

! A language for structured proofs:

 Isar - Intelligible semi-automated reasoning

! http://isabelle.in.tum.de/Isar/
! supporting a declarative proof-style
 (rather than a procedural one)

! presenting intermediate steps in a
 machine-checked, human readable format

09/25/19 B. Wolff - M2 - PIA 24

Introduction to Isar
Advanced Proof Techniques

! A language for structured proofs:

 Isar - Intelligible semi-automated reasoning

! http://isabelle.in.tum.de/Isar/
! supporting a declarative proof-style
 (rather than a procedural one)

! presenting intermediate steps in a
 machine-checked, human readable format

09/25/19 B. Wolff - M2 - PIA 25

Introduction to Isar
Advanced Proof Techniques

! Core: the proof environment:

! ... a switch from procedural to declarative
 style can be done by rephrasing the goals

proof (<method>)
[case - fix - assumes - defs- have-]
show “<goal>” <proof>

next
 ...
next
 [case - fix - assumes - defs- have-]

show “<goal>” <proof>
qed

09/25/19 B. Wolff - M2 - PIA 25

Introduction to Isar
Advanced Proof Techniques

! Core: the proof environment:

! ... a switch from procedural to declarative
 style can be done by rephrasing the goals

proof (<method>)
[case - fix - assumes - defs- have-]
show “<goal>” <proof>

next
 ...
next
 [case - fix - assumes - defs- have-]

show “<goal>” <proof>
qed

09/25/19 B. Wolff - M2 - PIA 26

Introduction to Isar
Advanced Proof Techniques

! Instead of the goal format:

the “ISAR”-format:

is preferable (better labelling, control of goal parameters,
intermediate steps “have”, abbreviations, pattern-matching, support for cases, ...)

⋀a1 ... an. A1 ... A⟹ m P⟹

 fix a1::<typ> ... fix an::<typ>
 assume A1 and ... and Am

show P

09/25/19 B. Wolff - M2 - PIA 26

Introduction to Isar
Advanced Proof Techniques

! Instead of the goal format:

the “ISAR”-format:

is preferable (better labelling, control of goal parameters,
intermediate steps “have”, abbreviations, pattern-matching, support for cases, ...)

⋀a1 ... an. A1 ... A⟹ m P⟹

 fix a1::<typ> ... fix an::<typ>
 assume A1 and ... and Am

show P

09/25/19 B. Wolff - M2 - PIA 27

Introduction to Isar
Advanced Proof Techniques

! The methods induct and cases produce
 a list of local contexts (shown by the
 diagnostic command print_cases)
 with the appropriate fix’es and assume’s

! Example:
lemma "reflect(refect t) = t”

 proof(induct t) print_cases
 case (leaf x) then show ?case sorry
 next
 case (node x1a t1 t2) then show ?case sorry
 qed 09/25/19 B. Wolff - M2 - PIA 27

Introduction to Isar
Advanced Proof Techniques

! The methods induct and cases produce
 a list of local contexts (shown by the
 diagnostic command print_cases)
 with the appropriate fix’es and assume’s

! Example:
lemma "reflect(refect t) = t”

 proof(induct t) print_cases
 case (leaf x) then show ?case sorry
 next
 case (node x1a t1 t2) then show ?case sorry
 qed

09/25/19 B. Wolff - M2 - PIA 28

Conclusion
! Induction is at the heart of interactive
proving; this requires the most human ingenuity

! Isabelle offers support for inductive
and case-distinction based proofs

! the ISAR-language paves the way for
adequate presentation of common proof-
structures (by induction, by case distinction,...)

! ... and by the way, ISAR paved the way for
better portability and parallel proof-checking

09/25/19 B. Wolff - M2 - PIA 28

Conclusion
! Induction is at the heart of interactive
proving; this requires the most human ingenuity

! Isabelle offers support for inductive
and case-distinction based proofs

! the ISAR-language paves the way for
adequate presentation of common proof-
structures (by induction, by case distinction,...)

! ... and by the way, ISAR paved the way for
better portability and parallel proof-checking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

