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• Inductive Sets and lfp-Fixed Points
• (Inductive) Datatypes
• Induction forms in logics and
  Isabelle/Isar 
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 Command Inductive Set
! Inductively Defined Sets:

          

example:   inductive_set     Even :: "int set" 
                     where   null: "0  Even" ∈
                             | plus:"x  Even  x+2  Even"∈ ⟹ ∈

                              | min :"x  Even  x-2  Even" ∈ ⟹ ∈            

inductive     <c> :: “  τ  bool” for A::⇒ τ  
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>            

inductive_set     <c> :: “ τ set”  [for A::τ] 
             where  <thmname> : “<φ>” 
            | ...

              | <thmname> = <φ>            
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 Command Inductive Set
! These are not buit-in constructs, rather they are based on a series 
of definitions and typedefs.

! The machinery behind is based on a fixed-point combinator on sets :

    lfp :: “('α set  '⇒ α set)  '⇒ α set”

which can be conservatively defined by:

                 "lfp f = ⋂ {u. f u  u}" ⊆

and which enjoys a constrained fixed-point property:

                 mono f  lfp f = f (lfp f)⟹
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 Command Inductive Set
! Example : Even (see before)

– the set Even is conservatively defined by:

Even = lfp (λ X.    {0} 
                               (λ x. x + 2) ` X∪
                         (λ x. x - 2) ` X)∪

– from which the properties:

null: "0  Even" ∈
plus:"x  Even  x+2  Even"∈ ⟹ ∈
min :"x  Even  x-2  Even"∈ ⟹ ∈

can be derived automatically (Note that Isabelle/HOL Version 
2016 proceeds differently for technical reasons)
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 Command Inductive Set
! Example : Even (see before)

– More important: it derives an 

Induction scheme 

for the Even set.
– That is: if we know that 

• some x is in Even
• and some property P over some arbitrary a
is maintained (invariant) for a+2 and a-2 

• P x holds.
09/25/19 B. Wolff - M2 - PIA 6

 Command Inductive Set
! Example : Even (see before)

– More important: it derives an 

Induction scheme 

for the Even set.
– That is: if we know that 

• some x is in Even
• and some property P over some arbitrary a
is maintained (invariant) for a+2 and a-2 

• P x holds.



09/25/19 B. Wolff - M2 - PIA 7

 Command Inductive Set
! Example : Even (see before)

– In Textbooks on Natural Deduction
(like van Dalens Book) we might find 
this formalized in:

– Note that a is free and does only occur in 
these sub-proof-trees 
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 Command Inductive Set
! Example : Even (see before)

– Isabelle derives this as theorem from the lfp definition and 
displays it as follows:

x  Even; P 0; ⟦ ∈ ⋀x. x  Even; P x   P (x + 2);  ⟦ ∈ ⟧ ⟹ ⋀x. x  Even; P x   P (x - 2)  ⟦ ∈ ⟧ ⟹ ⟧
  

 P x⟹

– or equivalently: 
 x  Even∈

⟹ P 0

⟹⋀x. x  Even; P x   P (x + 2)⟦ ∈ ⟧ ⟹

   ⟹⋀x. x  Even; P x   P (x - 2)⟦ ∈ ⟧ ⟹

  ⟹ P x
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 Command Inductive Set
! Example : Even (see before)

– or equivalently:
 

  assumes “x  Even”∈

  and base: “P 0”

  and step1:  “⋀x. x  Even; P x   P (x + 2)“⟦ ∈ ⟧ ⟹

  and step2: “⋀x. x  Even; P x   P (x - 2)“⟦ ∈ ⟧ ⟹

shows “P x”
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 Command Inductive Set
! Remarks

– Induction schemes (closely related to fixpoints, recursion, and 
while-loops) are the major  weapon in HOL proofs that can NOT 
be done by automated provers

– they can refer to (inductive) datatypes, 
sets and therefore relations and are always the
 means of choice if we want to express that something is
  „closed under a set of rules“

– Usually there are several choices of induction schemes,
their instantiation, and the target they are applied on.

– Like invariants of while-loops, it may be that some
generalization of a property can be proven inductively,
the concrete property, however, not directly. 
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 Command Inductive Set

! Inductively Defined Sets:

          

example: inductive path for rel ::"'a  'a  bool"⇒ ⇒
              where  base : “path rel x x”

            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ]
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>       
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 Command Inductive Set

! Inductively Defined Sets: Example path.
Isabelle/HOL:

   path rel x y 
  ⟹⋀x. P x x;

     ⟹⋀x y z. rel x y; path rel y z; P y z   P x z⟦ ⟧ ⟹
 P x y⟹

! Text-
book:
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 Command Inductive Set

! Note: an equivalent (appending) induction 
scheme with the same power:

   path rel x y 
  (⟹ ⋀x. P x x)

           ⟹(⋀x y z.  path rel x y; P x y; rel y z   P x z)⟦ ⟧ ⟹
      P x y⟹

! The choice of the induction scheme matters
for the task ahead ...
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 Command Inductive Datatype
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

          
! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and 
typedefs and automated proofs!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             
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 Command Inductive Datatype

! Example: Induction Scheme from Datatype 
Definitions

–        (⋀a. P (leaf a))

 (⟹ ⋀a t t’. P t  P t’  P (node a t t’))⟹ ⟹
 P tree⟹

– Textbook:
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 Command Inductive Datatype

! Example: Recursive Function Definition
fun reflect :: "'a tree  'a tree" ⇒
     where  a : "reflect (leaf x) = leaf x"
               | b : "reflect (node x t t') = node x t' t"

• Example Proof:   lemma “reflect(reflect t) = t”:
– Proof by induction  (apply style; since tree.induct is just 

an ordinary (introduction) rule, this works by rule) 

apply(rule_tac tree=t in tree.induct) 
 apply(simp add: a)

   apply(simp add: b)        
done       
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Induction vs. Case-Split

! The commands inductive, inductive_set and
datatype generate another important schema 
of rules which is an important weapon:

Case-Splits

! Most basic form: 
disjE 
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Induction vs. Case-Split

! For the datatype tree, this rule present
itself like this:

     (⋀a. y = leaf a  Q)⟹

 ⟹ (⋀x t t’. y = node x t t’  Q) ⟹
 ⟹ Q
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Induction vs. Case-Split

! For the inductive sets, the case split rule 
path.cases presents itself like this:

     ⟦path rel a1 a2; 
        x.       a1 = x; a2 = x   P;⋀ ⟦ ⟧ ⟹
        x y z. a1 = x; a2 = z; ⋀ ⟦
                     rel x y; path rel y z   P⟧ ⟹
           P⟧ ⟹
      09/25/19 B. Wolff - M2 - PIA 21
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Induction and Case-
Splitting Support

 

• induction and case-splitting were  supported by
  specific methods attempting to figure out auto- 
  matically which  rule to use
• There are apply-style proof methods: 
  

which work with arbitrary open parameters 
of a subgoal ... 

apply(induct_tac „<term>“)

apply(case_tac „<term>“)
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Induction and Case-
Splitting Support

 

• induction and case-splitting were  supported by
  specific methods attempting to figure out auto- 
  matically which rule to use
• There are “blue-style” proof methods giving support
  for an own structured proof-language Isar 
  

which require that parameters are “fixed”. 

apply(induct „<term>“ <options ... >)

apply(case „<term>“)                       
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Introduction to Isar
Advanced Proof Techniques
  
!  A language for structured proofs:

      Isar - Intelligible semi-automated reasoning
 

!  http://isabelle.in.tum.de/Isar/
!  supporting a declarative proof-style
 (rather than a procedural one)

!  presenting intermediate steps in a 
 machine-checked, human readable format
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Introduction to Isar
Advanced Proof Techniques
 
 

!  Core: the proof environment:

!  ... a switch from procedural to declarative
 style can be done by rephrasing the goals

proof (<method>)
[case - fix - assumes - defs- have-]
show “<goal>” <proof>

next
   ...
next
   [case - fix - assumes - defs- have-]

show “<goal>” <proof>
qed
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Introduction to Isar
Advanced Proof Techniques
 
 

!  Instead of the goal format:

the “ISAR”-format: 

is preferable (better labelling, control of goal parameters, 
intermediate steps “have”, abbreviations,  pattern-matching, support for cases, ...) 

⋀a1 ... an. A1  ... A⟹ m  P⟹
  

  fix a1::<typ> ... fix an::<typ>
    assume A1 and  ... and Am 

show P  
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Introduction to Isar
Advanced Proof Techniques
 
 

!  The methods induct and cases produce
 a list of local contexts (shown by the
 diagnostic command print_cases)
 with the appropriate fix’es and assume’s

! Example:
lemma "reflect(refect t) = t”

        proof(induct t) print_cases
     case (leaf x) then show ?case sorry
        next
    case (node x1a t1 t2) then show ?case sorry
        qed 09/25/19 B. Wolff - M2 - PIA 27
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Conclusion
! Induction is at the heart of interactive
proving; this requires the most human ingenuity

! Isabelle offers support for inductive 
and case-distinction based proofs

! the ISAR-language paves the way for 
adequate presentation of common proof-
structures (by induction, by case distinction,...)

! ... and by the way, ISAR paved the way for
better portability and parallel proof-checking
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