Preuves Interactives
 et Applications
 Burkhart Wolff

https://www.lri.fr/~wolff/teach-material/2017-18/M2CSMR/index.html

Université Paris-Saclay

Advanced Proof Techniques inb Isabelle/HOL

Revisions

- Elementary apply-style (backward) proofs
- Elementary attributed (forward) proofs
- Advanced apply-style proof techniques

Introduction to more

Advanced Proof Techniques

- induction and case-splitting
- Rewriting
- Tableaux-provers (fast, blast, auto ...)
- A magic device: sledgehammer

Simple Proof Commands

- Simple (Backward) Proofs:

$$
\begin{aligned}
& \text { lemma <thmname> : } \\
& {[\text { <contextelem>+ shows }]^{\prime \prime}<\phi>"} \\
& \text { <proof> }
\end{aligned}
$$

- where <contextelem> declare elements of a proof context Γ (to be discussed further)
- where <proof> is just a call of a high-level proof method by(simp), by(auto), by(metis), by(arith) or the discharger sorry (for the moment).

The Syntactic Category <proof>

- Notations for proofs so far:
- ellipses:
sorry, oops
- "one-liners" simp and auto:
by(<method>) (abbrev: apply(...) done)
- "apply-style proofs", backward-proofs:
apply(<method>) ... apply(<method>)
done <method>
- structured proofs:
proof (<method>) ... qed

A Summary of Proof Methods

- low-level procedures and versions with explicit substitution:

- assumption

- rule_tac <subst> in <thmname>
- erule_tac <subst> in <thmname>
- drule_tac <subst> in <thmname>
- ... where <subst> is of the form:

$$
x_{1}=" \phi_{1} \text { " and } x_{n}=" \phi_{n}
$$

A Summary of Proof Methods

- low-level procedures:
- assumption
(unifies conclusion vs. a premise)
- subst [(asm)] <thmname>
does one rewrite-step
(by instantiating the HOL subst-rule)
- rule <thmname>

PROLOG - like resolution step using HO-Unification

- erule <thmname>
elimination resolution (for ND elimination rules)
- drule <thmname>
destruction resolution (for ND destriction rules)

A Summary of Proof Methods

- forward proof constructions by attributes

> | $-<$ thm $>$ [THEN <thm>] | (unifies conclusion vs. premise) |
| :--- | :--- |
| $-<$ thm $>$ [OF <thm>] | (unifies premise vs. conclusion) |
| $-<$ thm>[symmetric] | (flips an equation) |
| $-<$ thm>[of (<term> | _)*] |
| (instantiates variables) | |
| $-<$ thm>[simp] | (simplifies a thm) |

- <thm>[simp only: <thm>] (simplifies a thm)

Introduction to more

Advanced Proof Techniques

- induction and case-splitting
- rewriting (= simplification)
- tableaux-provers (fast, blast, auto ...)
- a magic device: sledgehammer

A Summary of Proof Methods

- advanced procedures:
- insert <thmname>, insert <thmname>[,[", of <subst>"]"] inserts local and global facts into assumptions
- induct_tac " ϕ ", induct " ϕ " [arbitrary : „<variable>"]
searches for appropriate induction scheme using type information and instantiates it
- case_tac " ϕ ", cases " ϕ ",
searches for appropriate case splitting scheme using type information and instantiates it

The Simplifier

Supports Rewriting, in particular:

- Rewriting of HO-Patterns,
- Ordered Rewriting
- Conditional Rewriting
- Context - Rewriting
- Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary to tell which rule should be used HOW.
Simplification is quite predictable, using[[simp_trace]] shuts on tracing of the rewriter

The Simplifier

What is a higher-Order Pattern ?
It is a λ-term of form that is:

- constant head, i.e. of the form $\mathrm{c}_{1} \ldots \mathrm{t}_{\mathrm{n}}$
- linear in free variables
- All HO Variables occur only in the form:

$$
F\left(x_{1} \ldots x_{n}\right) \text { for distinct } x_{i}
$$

Seems very limited? Well, you can have $\lambda .$.
Consider the rule:

$$
\forall(\lambda x \cdot P(x) \wedge Q(x))=\forall(\lambda x \cdot P(x)) \wedge(\forall(\lambda x \cdot Q(x))
$$

The Simplifier

Supports Rewriting, in particular:

- Rewriting of HO-Patterns, i.e. rules of the form: <lhs> = <rhs>
where Ihs is a HO-Pattern, where Ihs is linear in the free variables and free variables in rhs occur also in Ihs apply(simp add: <rule>)

The Simplifier

Supports Rewriting, in particular:

- Ordered Rewriting:

There is an implicit wf-ordering on terms.
Rewriting is only done if the re-written term is smaller.
Commutativity:

$$
a+b=b+a
$$

With a little trickery, one can have ACI rewriting:

$$
\begin{array}{ll}
\text { disj_comms(2): } & (P \vee Q \vee R)=(Q \vee P \vee R) \\
\text { disj_comms(1): } & (P \vee Q)=(Q \vee P) \\
\text { disj_ac(3): } & ((P \vee Q) \vee R)=(P \vee Q \vee R) \\
\text { disj_ac(2): } & (P \vee Q \vee R)=(Q \vee P \vee R) \\
\text { disj_ac(1): } & (P \vee Q)=(Q \vee P) \\
\text { disj_absorb: } & (A \vee A)=A \\
\text { disj_left_absorb: } & (A \vee A \vee B)=(A \vee B)
\end{array}
$$

The Simplifier

Supports Rewriting, in particular:

- Conditional Rewriting

$$
\begin{array}{ll}
\text { if_P: } & P \Longrightarrow \text { (if } P \text { then } x \text { else } y)=x \\
\text { if_not_P: } & \neg P \Longrightarrow \text { (if } P \text { then } x \text { else } y \text {) }=y
\end{array}
$$

apply(simp add: if_P if_not_P)
(Not necessary, somewhere in the library it is stated:
declare if_P [simp] if_not_P [simp]) ...)

The Simplifier

Supports Rewriting, in particular:

- Context - Rewriting

HOL.if_cong:

$$
b=c \Longrightarrow
$$

$$
(c \Longrightarrow x=u) \Longrightarrow
$$

$$
(\neg c \Longrightarrow y=v) \Longrightarrow
$$

(if b then x else y) $=$ (if c then u else v)

HOL.conj_cong:

$$
P=P^{\prime} \Longrightarrow\left(P^{\prime} \Longrightarrow Q=Q^{\prime}\right) \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)
$$

apply(simp cong: if_cong)

The Simplifier

Supports Rewriting, in particular:

- Automatic Case-Splitting
(by a new type of rule which is NOT constant head)
split_if_asm: P (if Q then x else $y)=(\neg(Q \wedge \neg P x \vee \neg Q \wedge \neg P y))$
split_if: P (if Q then x else $y)=((Q \longrightarrow P x) \wedge(\neg Q \longrightarrow P y))$
For any data type (example: Option):
Option.option.split_asm:
$P($ case x of None $\Rightarrow f 1$ I Some $x \Rightarrow f 2 x)=$
$(\neg(x=$ None $\wedge \neg P f 1 \vee(\exists a . x=$ Some $a \wedge \neg P(f 2 a))))$
Option.option.split:

$$
\begin{aligned}
& P(\text { case } x \text { of None } \Rightarrow f 1 \text { I Some } x \Rightarrow f 2 x)= \\
& ((x=\text { None } \longrightarrow P f 1) \wedge(\forall a . x=\text { Some } a \longrightarrow P(f 2 a)))
\end{aligned}
$$

apply(simp split: split_if_asm split_if)

fast, blast and auto

Tableaux Provers

- For Logic terms and Set terms
- Uses all rules classified as
- introduction rule (keyword: intro)
- works on conclusion of a goal
- elimination rule (keyword: elim)
-works on assumptions of a goal
- destruction drule (keyword:: dest)
- works on assumptions of a goal applies modus ponens destructively
- frule works on assumptions of a goal, applies modus ponens destructively

fast, blast and auto

fast

- will apply safe intro/elim/drule's blindly (these are rules like conjl, conjE, disjE, ... alll, exE, ... Rules that will transform a subgoal into an equivalent one, without loosing "logical content")
- with backtrack on unsafe rules (refines a subgoal into a logically stronger one, can lead into a dead end).
fast works for HO-Terms, but is fairly slow slow blast
- dito, but resticted to first-order reasoning

fast, blast and auto

fast

- will apply safe intro/elim/drule's blindly (these are rules like conjl, conjE, disjE, ... alll, exE, ... Rules that will transform a subgoal into an equivalent one, without loosing "logical content")
- will do backtrack-search on unsafe rules (refines a subgoal into a logically stronger one, can lead into a dead end. Ex: exl, allE).
fast works for HO-Terms, but is fairly slow blast
- dito, but resticted to first-order reasoning

fast, blast and auto

blast

- works similarly like fast, but is resticted to first-order reasoning

Substantially faster than fast, can treat transitivity rules.
auto

- intertwines simp, blast, and fast

A Summary of Proof Methods

- advanced automated procedures:
- simp [add: <thmname>+] [del: <thmname>+] [split: <thmname>+] [cong: <thmname>+]
- auto [simp: <thmname>+] [intro: <thmname>+] [intro [!]: <thmname>+] [dest: <thmname>+] [dest [!]: <thmname>+] [elim: <thmname>+] [elim[!]: <thmname>+]
- metis <thmname>+
- arith

Magic Device:

- sledgehammer - command.
- asks well-known automatic first-order theorem provers such as
- Vampire
- E
- CVC4
-Z3
... if they can construct a proof based on all Isabelle theorems existing at this point, reconstructs an Isabelle proof.
- does not work for proofs involving HO or induction.

Conclusion

- Isabelle focusses on interactive proofs (enabling presentation of intermediate steps, and structuring of proofs and prover instrumentations)
- ... but this does not mean that there are no automatic proof techniques available and that classical ATP's are "better" in any sense ...

