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Revisions
  

!Elementary apply-style 
(backward) proofs

!Elementary attributed 
(forward) proofs

!Advanced apply-style 
proof techniques 
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Introduction to more
Advanced Proof Techniques
  
!  induction and case-splitting 
!  Rewriting
!  Tableaux-provers (fast, blast, auto ...)
!  A magic device: sledgehammer



  

Simple Proof Commands
! Simple (Backward) Proofs: 

– where <contextelem> declare elements of a 
proof context Γ (to be discussed further)

– where <proof> is just a call of a high-level 
proof method by(simp), by(auto), by(metis), 
by(arith) or the discharger sorry
(for the moment).

lemma  <thmname> :  
[ <contextelem>+ shows ]”<φ>”           
<proof>



  

The Syntactic Category <proof>

• Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>)    (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
  done <method>

– structured proofs:    
proof (<method>) … qed 



  

A Summary of Proof Methods

• low-level procedures and 
versions with explicit substitution:

– assumption 
– rule_tac   <subst> in <thmname>
– erule_tac  <subst> in <thmname>
– drule_tac <subst> in <thmname>

• … where <subst> is of the form:
x

1
=”φ

1
” and x

n
=”φ

n



  

A Summary of Proof Methods

• low-level procedures:
– assumption (unifies conclusion vs. a premise)
– subst [(asm)] <thmname>

 does one rewrite-step 
 (by instantiating the HOL subst-rule)

– rule <thmname> 
 PROLOG - like resolution step using HO-Unification

– erule <thmname>
 elimination resolution (for ND elimination rules)

– drule <thmname>
    destruction resolution  (for ND destriction rules)



  

A Summary of Proof Methods

• forward proof constructions by attributes
– <thm>[THEN <thm>]     (unifies conclusion vs. premise)
– <thm>[OF <thm>]       (unifies premise vs. conclusion)
– <thm>[symmetric]         (flips an equation)
– <thm>[of  (<term> | _)*]  (instantiates variables)
– <thm>[simp]                    (simplifies a thm)
– <thm>[simp only: <thm>]   (simplifies a thm)
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Introduction to more
Advanced Proof Techniques
  
!  induction and case-splitting 
!  rewriting (= simplification)
!  tableaux-provers (fast, blast, auto ...)
!  a magic device: sledgehammer



  

A Summary of Proof Methods
• advanced procedures:

– insert <thmname>, insert <thmname>[„[„ of <subst>“]“]
 inserts local and global facts into assumptions

– induct_tac “φ”, induct “φ” [arbitrary : „<variable>“] 

searches for appropriate induction scheme using
 type information and instantiates it

– case_tac “φ”, cases “φ”,   

 searches for appropriate case splitting scheme 
 using type information and instantiates it

 



  

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns, 
! Ordered Rewriting
! Conditional Rewriting
! Context - Rewriting
! Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary
to tell which rule should be used HOW.
Simplification is quite predictable, 
using[[simp_trace]] shuts on tracing of the rewriter



  

The Simplifier
What is a higher-Order Pattern ?
It is a λ-term of form that is:

! constant head, i.e. of the form c t1 ... tn
! linear in free variables
! All HO Variables occur only in the form:
      F(x1 ... xn) for distinct xi

Seems very limited ? Well, you can have λ !!!

Consider the rule:
∀(λ x. P(x) ∧ Q(x)) = ∀(λ x. P(x)) ∧ (∀(λ x.Q(x))

 



  

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns, i.e. rules of the 
form:

<lhs> = <rhs>

where lhs is a HO-Pattern, where
lhs is linear in the free variables and
free variables in rhs occur also in lhs

apply(simp add: <rule>)



  

The Simplifier
Supports Rewriting, in particular:

! Ordered Rewriting: 
There is an implicit wf-ordering on terms.
Rewriting is only done if the re-written
term is smaller. 
Commutativity: a+b = b+a

With a little trickery, one can have ACI rewriting:
disj_comms(2): (P  Q  R) = (Q  P  R)∨ ∨ ∨ ∨
disj_comms(1): (P  Q) = (Q  P)∨ ∨
disj_ac(3): ((P  Q)  R) = (P  Q  R)∨ ∨ ∨ ∨
disj_ac(2): (P  Q  R) = (Q  P  R)∨ ∨ ∨ ∨
disj_ac(1): (P  Q) = (Q  P)∨ ∨
disj_absorb:  (A  A) = A∨
disj_left_absorb: (A  A  B) = (A  B)∨ ∨ ∨



  

The Simplifier
Supports Rewriting, in particular:

! Conditional Rewriting

if_P: P  (if P then x else y) = x⟹
if_not_P: ¬ P  (if P then x else y) = y⟹

apply(simp add: if_P if_not_P)

(Not necessary, somewhere in the library it is stated:
 declare if_P  [simp] if_not_P [simp] )  ... )



  

The Simplifier
Supports Rewriting, in particular:

! Context - Rewriting

HOL.if_cong:
    b = c ⟹
         (c  x = u)  ⟹ ⟹
         (¬ c  y = v)  ⟹ ⟹
         (if b then x else y) = (if c then u else v)

HOL.conj_cong: 
      P = P'  (P'  Q = Q')  (P  Q) = (P'  Q')⟹ ⟹ ⟹ ∧ ∧

apply(simp cong: if_cong)



  

The Simplifier
Supports Rewriting, in particular:

! Automatic Case-Splitting
(by a new type of rule which is NOT constant head)
split_if_asm: P (if Q then x else y) = (¬ (Q  ¬ P x  ¬ Q  ¬ P y))∧ ∨ ∧
split_if: P (if Q then x else y) = ((Q  P x)  (¬ Q  P y))⟶ ∧ ⟶

For any data type (example: Option):
Option.option.split_asm:
    P (case x of None  f1 | Some x  f2 x) =⇒ ⇒
    (¬ (x = None  ¬ P f1  ( a. x = Some a  ¬ P (f2 a))))∧ ∨ ∧∃
 Option.option.split:
    P (case x of None  f1 | Some x  f2 x) =⇒ ⇒
    ((x = None  P f1)  ( a. x = Some a  P (f2 a)))⟶ ∧ ∀ ⟶

apply(simp split: split_if_asm split_if)



  

fast, blast and auto
Tableaux Provers

! For Logic terms and Set terms
! Uses all rules classified as 

• introduction rule   (keyword: intro)
– works on conclusion of a goal

• elimination  rule   (keyword: elim)
– works on assumptions of a goal

• destruction  drule (keyword:: dest)
– works on assumptions of a goal

     applies modus ponens destructively
– frule works on assumptions of a goal,
 applies modus ponens destructively



  

fast, blast and auto
 fast

! will apply safe intro/elim/drule's blindly
 (these are rules like conjI, conjE, disjE, ... 

   allI,  exE, ... Rules that will transform a
   subgoal into an equivalent one, without 
   loosing “logical content”)
! with backtrack on unsafe rules 
  (refines a subgoal into a logically stronger one, 
   can lead into a dead end).

  fast works for HO-Terms, but is fairly slow slow
blast

! dito, but resticted to first-order reasoning

auto 
! intertwines simp and blast



  

fast, blast and auto
 fast

! will apply safe intro/elim/drule's blindly
 (these are rules like conjI, conjE, disjE, ... 

   allI,  exE, ... Rules that will transform a
   subgoal into an equivalent one, without 
   loosing “logical content”)
! will do backtrack-search on unsafe rules 
  (refines a subgoal into a logically stronger one, 
   can lead into a dead end. Ex: exI, allE).

  fast works for HO-Terms, but is fairly slow
blast

! dito, but resticted to first-order reasoning

auto 
! intertwines simp and blast



  

fast, blast and auto

blast
! works similarly like fast, 

but is resticted to first-order reasoning

Substantially faster than fast, 
can treat transitivity rules.

auto 
! intertwines simp, blast, and fast



  

A Summary of Proof Methods

• advanced automated procedures:
– simp [add: <thmname>+] [del: <thmname>+]

      [split: <thmname>+] [cong: <thmname>+]
– auto [simp: <thmname>+]

     [intro: <thmname>+] [intro [!]: <thmname>+] 
     [dest: <thmname>+] [dest [!]: <thmname>+]
     [elim: <thmname>+] [elim[!]: <thmname>+]

– metis <thmname>+
– arith 



  

Magic Device:

• sledgehammer - command.
– asks well-known automatic first-order 

theorem provers such as
• Vampire
• E
• CVC4
• Z3

... if they can construct a proof based on all Isabelle
theorems existing at this point, reconstructs an
Isabelle proof.

– does not work for proofs involving HO or induction.
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Conclusion
! Isabelle focusses on interactive proofs

(enabling presentation of intermediate steps,
 and structuring of proofs and prover   
 instrumentations)

! ... but this does not mean that there are no
automatic proof techniques available and that 
classical ATP's are “better” in any sense ... 
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