
10/03/17 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

Advanced Proof Techniques
inb Isabelle/HOL

Université Paris-Saclay

Burkhart Wolff

https://www.lri.fr/~wolff/teach-material/2017-18/M2-
CSMR/index.html

10/03/17 B. Wolff - M2 - PIA 2

Revisions

!Elementary apply-style
(backward) proofs

!Elementary attributed
(forward) proofs

!Advanced apply-style
proof techniques

10/03/17 B. Wolff - M2 - PIA 3

Introduction to more
Advanced Proof Techniques

! induction and case-splitting
! Rewriting
! Tableaux-provers (fast, blast, auto ...)
! A magic device: sledgehammer

Simple Proof Commands
! Simple (Backward) Proofs:

– where <contextelem> declare elements of a
proof context Γ (to be discussed further)

– where <proof> is just a call of a high-level
proof method by(simp), by(auto), by(metis),
by(arith) or the discharger sorry
(for the moment).

lemma <thmname> :
[<contextelem>+ shows]”<φ>”
<proof>

The Syntactic Category <proof>

• Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

A Summary of Proof Methods

• low-level procedures and
versions with explicit substitution:

– assumption
– rule_tac <subst> in <thmname>
– erule_tac <subst> in <thmname>
– drule_tac <subst> in <thmname>

• … where <subst> is of the form:
x

1
=”φ

1
” and x

n
=”φ

n

A Summary of Proof Methods

• low-level procedures:
– assumption (unifies conclusion vs. a premise)
– subst [(asm)] <thmname>

 does one rewrite-step
 (by instantiating the HOL subst-rule)

– rule <thmname>
 PROLOG - like resolution step using HO-Unification

– erule <thmname>
 elimination resolution (for ND elimination rules)

– drule <thmname>
 destruction resolution (for ND destriction rules)

A Summary of Proof Methods

• forward proof constructions by attributes
– <thm>[THEN <thm>] (unifies conclusion vs. premise)
– <thm>[OF <thm>] (unifies premise vs. conclusion)
– <thm>[symmetric] (flips an equation)
– <thm>[of (<term> | _)*] (instantiates variables)
– <thm>[simp] (simplifies a thm)
– <thm>[simp only: <thm>] (simplifies a thm)

10/03/17 B. Wolff - M2 - PIA 9

Introduction to more
Advanced Proof Techniques

! induction and case-splitting
! rewriting (= simplification)
! tableaux-provers (fast, blast, auto ...)
! a magic device: sledgehammer

A Summary of Proof Methods
• advanced procedures:

– insert <thmname>, insert <thmname>[„[„ of <subst>“]“]
 inserts local and global facts into assumptions

– induct_tac “φ”, induct “φ” [arbitrary : „<variable>“]

searches for appropriate induction scheme using
 type information and instantiates it

– case_tac “φ”, cases “φ”,

 searches for appropriate case splitting scheme
 using type information and instantiates it

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns,
! Ordered Rewriting
! Conditional Rewriting
! Context - Rewriting
! Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary
to tell which rule should be used HOW.
Simplification is quite predictable,
using[[simp_trace]] shuts on tracing of the rewriter

The Simplifier
What is a higher-Order Pattern ?
It is a λ-term of form that is:

! constant head, i.e. of the form c t1 ... tn
! linear in free variables
! All HO Variables occur only in the form:
 F(x1 ... xn) for distinct xi

Seems very limited ? Well, you can have λ !!!

Consider the rule:
∀(λ x. P(x) ∧ Q(x)) = ∀(λ x. P(x)) ∧ (∀(λ x.Q(x))

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns, i.e. rules of the
form:

<lhs> = <rhs>

where lhs is a HO-Pattern, where
lhs is linear in the free variables and
free variables in rhs occur also in lhs

apply(simp add: <rule>)

The Simplifier
Supports Rewriting, in particular:

! Ordered Rewriting:
There is an implicit wf-ordering on terms.
Rewriting is only done if the re-written
term is smaller.
Commutativity: a+b = b+a

With a little trickery, one can have ACI rewriting:
disj_comms(2): (P Q R) = (Q P R)∨ ∨ ∨ ∨
disj_comms(1): (P Q) = (Q P)∨ ∨
disj_ac(3): ((P Q) R) = (P Q R)∨ ∨ ∨ ∨
disj_ac(2): (P Q R) = (Q P R)∨ ∨ ∨ ∨
disj_ac(1): (P Q) = (Q P)∨ ∨
disj_absorb: (A A) = A∨
disj_left_absorb: (A A B) = (A B)∨ ∨ ∨

The Simplifier
Supports Rewriting, in particular:

! Conditional Rewriting

if_P: P (if P then x else y) = x⟹
if_not_P: ¬ P (if P then x else y) = y⟹

apply(simp add: if_P if_not_P)

(Not necessary, somewhere in the library it is stated:
 declare if_P [simp] if_not_P [simp]) ...)

The Simplifier
Supports Rewriting, in particular:

! Context - Rewriting

HOL.if_cong:
 b = c ⟹
 (c x = u) ⟹ ⟹
 (¬ c y = v) ⟹ ⟹
 (if b then x else y) = (if c then u else v)

HOL.conj_cong:
 P = P' (P' Q = Q') (P Q) = (P' Q')⟹ ⟹ ⟹ ∧ ∧

apply(simp cong: if_cong)

The Simplifier
Supports Rewriting, in particular:

! Automatic Case-Splitting
(by a new type of rule which is NOT constant head)
split_if_asm: P (if Q then x else y) = (¬ (Q ¬ P x ¬ Q ¬ P y))∧ ∨ ∧
split_if: P (if Q then x else y) = ((Q P x) (¬ Q P y))⟶ ∧ ⟶

For any data type (example: Option):
Option.option.split_asm:
 P (case x of None f1 | Some x f2 x) =⇒ ⇒
 (¬ (x = None ¬ P f1 (a. x = Some a ¬ P (f2 a))))∧ ∨ ∧∃
 Option.option.split:
 P (case x of None f1 | Some x f2 x) =⇒ ⇒
 ((x = None P f1) (a. x = Some a P (f2 a)))⟶ ∧ ∀ ⟶

apply(simp split: split_if_asm split_if)

fast, blast and auto
Tableaux Provers

! For Logic terms and Set terms
! Uses all rules classified as

• introduction rule (keyword: intro)
– works on conclusion of a goal

• elimination rule (keyword: elim)
– works on assumptions of a goal

• destruction drule (keyword:: dest)
– works on assumptions of a goal

 applies modus ponens destructively
– frule works on assumptions of a goal,
 applies modus ponens destructively

fast, blast and auto
 fast

! will apply safe intro/elim/drule's blindly
 (these are rules like conjI, conjE, disjE, ...

 allI, exE, ... Rules that will transform a
 subgoal into an equivalent one, without
 loosing “logical content”)
! with backtrack on unsafe rules
 (refines a subgoal into a logically stronger one,
 can lead into a dead end).

 fast works for HO-Terms, but is fairly slow slow
blast

! dito, but resticted to first-order reasoning

auto
! intertwines simp and blast

fast, blast and auto
 fast

! will apply safe intro/elim/drule's blindly
 (these are rules like conjI, conjE, disjE, ...

 allI, exE, ... Rules that will transform a
 subgoal into an equivalent one, without
 loosing “logical content”)
! will do backtrack-search on unsafe rules
 (refines a subgoal into a logically stronger one,
 can lead into a dead end. Ex: exI, allE).

 fast works for HO-Terms, but is fairly slow
blast

! dito, but resticted to first-order reasoning

auto
! intertwines simp and blast

fast, blast and auto

blast
! works similarly like fast,

but is resticted to first-order reasoning

Substantially faster than fast,
can treat transitivity rules.

auto
! intertwines simp, blast, and fast

A Summary of Proof Methods

• advanced automated procedures:
– simp [add: <thmname>+] [del: <thmname>+]

 [split: <thmname>+] [cong: <thmname>+]
– auto [simp: <thmname>+]

 [intro: <thmname>+] [intro [!]: <thmname>+]
 [dest: <thmname>+] [dest [!]: <thmname>+]
 [elim: <thmname>+] [elim[!]: <thmname>+]

– metis <thmname>+
– arith

Magic Device:

• sledgehammer - command.
– asks well-known automatic first-order

theorem provers such as
• Vampire
• E
• CVC4
• Z3

... if they can construct a proof based on all Isabelle
theorems existing at this point, reconstructs an
Isabelle proof.

– does not work for proofs involving HO or induction.

10/03/17 B. Wolff - M2 - PIA 24

Conclusion
! Isabelle focusses on interactive proofs

(enabling presentation of intermediate steps,
 and structuring of proofs and prover
 instrumentations)

! ... but this does not mean that there are no
automatic proof techniques available and that
classical ATP's are “better” in any sense ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

