
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé

Part IV : Test Introduction

Burkhart Wolff
wolff@lri.fr

21/09/14 B. Wolff - GLA - System Test 2

Validation and Verification

Validation :
$ Does the system meet the clients requirements ?
$ Will the performance be sufficient ?
$ Will the usability be sufficient ?

21/09/14 B. Wolff - GLA - System Test 3

Validation and Verification

Validation :
$ Does the system meet the clients requirements ?
$ Will the performance be sufficient ?
$ Will the usability be sufficient ?

Do we build the right system ?

21/09/14 B. Wolff - GLA - System Test 4

Validation and Verification

Validation :
$ Does the system meet the clients requirements ?
$ Will the performance be sufficient ?
$ Will the usability be sufficient ?

Do we build the right system ?

Verification: Does the system meet the specification ?

21/09/14 B. Wolff - GLA - System Test 5

Validation and Verification

Validation :
$ Does the system meet the clients requirements ?
$ Will the performance be sufficient ?
$ Will the usability be sufficient ?

Do we build the right system ?

Verification: Does the system meet the specification ?

Do we build the system right ?
 Is it « correct » ?

21/09/14 B. Wolff - GLA - System Test 6

How to do Validation ?

Mesuring customer satisfaction ...
(well, that's afterwards, and its difficult)

Interviews, inspections (again post-hoc)

How to validate a system early?
$ early prototypes, including performance analysis ...
$ mock-ups (fonctionnality, ergonomics,…)

$ Test and Animation on the basis of formal specifications
(e.g., à la OCL !)

21/09/14 B. Wolff - GLA - System Test 7

How to do Verification ?

Test and Proof on the basis of formal
specifications (e.g., à la OCL !) against programs ...

21/09/14 B. Wolff - GLA - System Test 8

How to do Verification ?

Test and Proof on the basis of formal
specifications (e.g., à la OCL !) against programs ...

In the sequel, we concentrate on Testing and
Proof Techniques ...

21/09/14 B. Wolff - GLA - System Test 9

A Philosophical Position Statement :
Test vs. Proof

Note:

Some researcher consider test as opposite to formal
proof! Reasons:

$ “A test can only reveal the presence of bugs,
but not their absence” (Dijkstra, v. Dalen)

$... these researchers referred to unsystematic tests ...
(which are, addmittedly, still quite common in SE practice)

21/09/14 B. Wolff - GLA - System Test 10

A Philosophical Position Statement :
Test vs. Proof

Note:

We consider (systematic!) test more as
an approximation to formal proof. Reasons:

$ The nature of the approximation can be
made formally precise (via explicit test-hypothesis ...)

$ both techniques, model-based tests and formal verification,
share a lot of technologies ...

$ even full-blown proof attempts may profit from testing,
since it can help to debug specs early and cost-effectively

21/09/14 B. Wolff - GLA - System Test 11

�
�

Requirement
Analysis

Conceptual
Specification

Coding Phase

Unit Tests

Integration
Tests

Architecture
Conception

Design

Acceptance
Test

Deployment

Test in the SE Process

" Where to integrate Tests
in the SE-Process:
$ On the methodological level,

à la “Extreme Programming”
(XP) ?
No specs, instead writing test
scenarios and test cases from
the beginning ...

�
�

21/09/14 B. Wolff - GLA - System Test 12

�
�

Requirement
Analysis

Conceptual
Specification

Coding Phase

Unit Tests

Integration
Tests

Architecture
Conception

Design

Acceptance
Test

Deployment

Test in the SE Process

" Where to integrate Tests
in the SE-Process:
$ On the methodological level,

à la “Extreme Programming”
(XP) ?
No specs, instead writing test
scenarios and test cases from
the beginning ...

$ On the specification level for
validation ...

�
�

21/09/14 B. Wolff - GLA - System Test 13

�
�

Requirement
Analysis

Conceptual
Specification

Coding Phase

Unit Tests

Integration
Tests

Architecture
Conception

Design

Acceptance
Test

Deployment

Test in the SE Process

" Where to integrate Tests
in the SE-Process:
$ On the methodological level,

à la “Extreme Programming”
(XP) ?
No specs, instead writing test
scenarios and test cases from
the beginning ...

$ On the specification level for
validation ...

$ On the specification level
against code

�
�

21/09/14 B. Wolff - GLA - System Test 14

Test in the SE Process

" General questions for verification in a process:

$ How to select test-data ? To which purpose ?>

$ How to focus verification activities?
Where to verify formally, and
where to test, and when did we test enough?

Note: The quality of a test does not increase
necessarily by the number of test-cases !

$ Automation ? Tools ?

21/09/14 B. Wolff - GLA - System Test 15

Some empirical data ...

Size of Software ?
$ Peugeot 607 : 2 Mb embedded software
$ Windows 90: 10 Mb. LOC source, Win2000: 30 Mb.
$ Kernel Hyper V: 50000 LOC. (Highly complex, concurrent C)
$ Noyau RedHat 7.1 (2002) : ~2.4 M. LOC, XWindow ~1.8,

Mozilla ~2.1 M.
$ Space Shuttle (and its environment) : ~50 MLOC

Reminder: Development Cost ?
$ Percentage of «Coding» ? 15 - 20 %

Trend: Code is more and more generated (CASE Tools)
$ Proportion of Validation et Verification ? ~20% / ~20%

21/09/14 B. Wolff - GLA - System Test 16

Verification Costs

costs ? 35 - 50 % of the global effort ?

all “real” (large) software has remaining bugs …

The cost of bug ?
$ the cost to reveal and fix it …

or:
the cost of a legal battle it may cause...

or the potential damage to the image
(difficult to evaluate, but veeeery real)

or costs as a result to come later on the market

$ on the other side – you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !

21/09/14 B. Wolff - GLA - System Test 17

Verification Costs

Conclusion:
$ verification is vitally important,

and also critical in the development

$ to do it cost-effectively, it requires
! a lot of expertise on products and process
! a lot of knowledge over methods,

tools, and tool chains ...

21/09/14 B. Wolff - GLA - System Test 18

Overview on the part on « Test »

WHAT IS TESTING ?
A taxonomy on types of tests

$ Static Test / Dynamic (Runtime) Test
$ Structural Test / Functional Test
$ Statistic Tests

Functional Test; Link to UML/OCL
$ Dynamic Unit Tests, Static Unit Tests,

$ Coverage Criteria

Structural Tests
$ Control Flow and Data Flow Graphs

$ Tests and executed paths. Undecidability.

$ Coverage Criteria

21/09/14 B. Wolff - GLA - System Test 19

What is testing ?

It is an approximation to full verification (for ex. by proof)
Main emphasis: finding bugs early,

$ either in the model
$ or in the program
$ or in both

A systematic test is:
$ process programs and specifications

and to compute a set of test-cases
under controlled conditions.

$ ideally: testing is complete if a certain criteria,
the adequacy criteria is reached.

21/09/14 B. Wolff - GLA - System Test 20

Limits of testing ?

We said, test is an approximation to verification,
usually easier (and less expensive)

Note: Sometimes it is easier to verify than
to test. In particular:

$ low-level OS implementations:
memory allocation, garbage collection
memory virtualization, ...
crypt-algorithms, ...

$ non-deterministic programs with
no control over the non-determinism.

21/09/14 B. Wolff - GLA - System Test 21

Taxomomy: Static / Dynamic Tests

static: running a program before deployment on data
carefully constructed by the analyst (in a test environment)
$ analyse the result on the basis of all components
$ working on some classes of executions symbolically

= representing infinitely many executions

dynamic: running the programme (or component)
after deployment, on “real data” as imposed by the
application domain
$ experiment with the real behaviour
$ essentially used for post-hoc ananalysis and debugging

21/09/14 B. Wolff - GLA - System Test 22

Taxonomy: Unit / Sequence / Reactive Tests

unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

sequence: testing of a local component (function,
module), but typicallY sequences of executions,
which typically depend on internal state

reactive sequence: testing components by sequences
of steps, but these sequences represent communication
where later parts in the seqience depend on what has
been earlier cummunicated

21/09/14 B. Wolff - GLA - System Test 23

Taxonomy: Functional / Structural Test

functional: (also: black-box tests). Tests were generated
on a specification of the component, the test focusses
on input output behaviour.

structural: (also: white-box tests). Tests were generated
on the basis of the structure or the program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

both: (also: grey-box testing).

21/09/14 B. Wolff - GLA - System Test 24

Functional Dynamic Unit Test

We got the spec, but not the program, which is considered
a black box:

input output???

Ce que le programme devrait faire…we focus on what the program should do !!!

21/09/14 B. Wolff - GLA - System Test 25

Functional Dynamic Unit Test : an example

The (informal) specification:

Read a “Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

Give a specification, and develop a test set ...

21/09/14 B. Wolff - GLA - System Test 26

Functional Dynamic Unit Test : an example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits_from Shapes
attributes

a : Integer

b : Integer

c : Integer

operations
mk(Integer,Integer,Integer):Triangle

is_Triangle(): triangle
end

21/09/14 B. Wolff - GLA - System Test 27

Functional Dynamic Unit Test : an example

The specification in UML/OCL (Classes in USE Notation):

context Triangles:
inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0<a and 0<b and 0<c
inv triangle : a+b>c and b+c>a and c+a>b

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso :((a<>b or b<>c) and

 (a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and

 (a<>b and b<>c and a<>c)
 implies result=arbitrary

21/09/14 B. Wolff - GLA - System Test 28

Functional Dynamic Unit Test : an example

The specification in UML/OCL (Classes in USE Notation):
Recall implicit consequences due to strictness of all operations

context Triangle::isTriangle()
...
post res_strict: self.oclIsUndefined implies

result.oclIsUndefined
post res_total: result.oclIsDefined implies

self.oclIsDefined

21/09/14 B. Wolff - GLA - System Test 29

Functional Dynamic Unit Test : an example

How to perform Runtime-Test?

Well, compile:

context X:
inv l1 : C1, ...,

inv ln : Cn

to some checking code (with assert as in Junit, VCC, Boogie, ...)

check_X() = assert(C1); ... ; assert(Cn)

21/09/14 B. Wolff - GLA - System Test 30

Functional Dynamic Unit Test : an example

How to perform Runtime-Test?

Moreover, compile:

context C::m(a1:C1,...,an:Cn)

pre : P(self,a1,...,an)

post : Q(self,a1,...,an,result)

to some checking code (with assert as in Junit, VCC, Boogie, ...)

check_C(); check_C1(); ... ; check_Cn();

assert(P(self,a1,...,an));

result=run_m(self,a1,...,an);

assert(Q(self,a1,...,an,result));

21/09/14 B. Wolff - GLA - System Test 31

Functional Dynamic Unit Test : Problems

Thus, any violation of an invariant, a pre-condition or
a post-condition is detected.

If a violation occurs within an execution of a
method, the error is precisely reported.

On the other hand – it is post-hoc. Only when
a problem occured, we know where. And we need
complete program.

Inefficiencies can be partly overcome by optimized
compilations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

