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Validation and Verification
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$ Does the system meet the clients requirements ? 
$ Will the performance be sufficient ?
$ Will the usability be sufficient ?
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Validation and Verification

# Validation : 
$ Does the system meet the clients requirements ? 
$ Will the performance be sufficient ?
$ Will the usability be sufficient ?

Do we build the right system ?

# Verification: Does the system meet the specification ?

Do we build the system right ?
   Is it « correct » ?    
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How to do Validation ?

# Mesuring customer satisfaction ...
(well, that's afterwards, and its difficult)

# Interviews, inspections (again post-hoc)

# How to validate a system early?
$ early prototypes, including performance analysis ...
$ mock-ups (fonctionnality, ergonomics,…)

$ Test and Animation on the basis of formal specifications 
(e.g., à la OCL !)
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How to do Verification ?

# Test and Proof on the basis of formal 
specifications  (e.g., à la OCL !) against programs ...
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How to do Verification ?

# Test and Proof on the basis of formal 
specifications  (e.g., à la OCL !) against programs ...

In the sequel, we concentrate on Testing and
Proof Techniques ...
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A Philosophical Position Statement :
Test vs. Proof

# Note:

Some researcher consider test as opposite to formal
proof! Reasons:

$ “A test can only reveal the presence of bugs,
but not their absence” (Dijkstra, v. Dalen)

$ ... these researchers referred to unsystematic tests ...
(which are, addmittedly, still quite common in SE practice)



21/09/14 B. Wolff - GLA - System Test 10

A Philosophical Position Statement :
Test vs. Proof

# Note:

We consider (systematic!) test more as 
an approximation to formal proof. Reasons:

$ The nature of the approximation can be 
made formally precise (via explicit test-hypothesis ...)

$ both techniques, model-based tests and formal verification,
share a lot of technologies ...

$ even full-blown proof attempts may profit from testing,
since it can help to debug specs early and cost-effectively 
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Test in the SE Process

" General questions for verification in a process:

$ How to select test-data ? To which purpose ?>

$ How to focus verification activities?
Where to verify formally, and 
where to test, and when did we test enough?

Note: The quality of a test does not increase
necessarily by the number of test-cases !

$ Automation ? Tools ?
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Some empirical data ...

# Size of Software ?
$ Peugeot 607 : 2 Mb embedded software
$ Windows 90: 10 Mb. LOC source, Win2000: 30 Mb.
$ Kernel Hyper V: 50000 LOC. (Highly complex, concurrent C)
$ Noyau RedHat 7.1 (2002) : ~2.4 M. LOC, XWindow ~1.8,

Mozilla ~2.1 M.
$ Space Shuttle (and its environment) : ~50 MLOC

# Reminder: Development Cost ?
$ Percentage of «Coding» ? 15 - 20 %

Trend: Code is more and more generated (CASE Tools)
$ Proportion of Validation et Verification ? ~20% / ~20% 
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Verification Costs

# costs ?                  35 - 50 % of the global effort ?

# all “real” (large) software has remaining bugs …

# The cost of bug ?
$ the cost to reveal and fix it …

or:
the cost of a legal battle it may cause...

or the potential damage to the image 
(difficult to evaluate, but veeeery real)

or costs as a result to come later on the market

$ on the other side – you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !
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Verification Costs

# Conclusion: 
$ verification is vitally important,

and also critical in the development

$ to do it cost-effectively, it requires
! a lot of expertise on products and process
! a lot of knowledge over methods,

tools, and tool chains ...
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Overview on the part on « Test »

# WHAT IS TESTING ?
# A taxonomy on types of tests

$ Static Test  / Dynamic (Runtime) Test 
$ Structural Test / Functional Test
$ Statistic Tests

# Functional Test;  Link to UML/OCL
$ Dynamic Unit Tests, Static Unit Tests, 

$ Coverage Criteria

# Structural Tests
$ Control Flow and Data Flow Graphs

$ Tests and executed paths. Undecidability.

$ Coverage Criteria



21/09/14 B. Wolff - GLA - System Test 19

What is testing ?

# It is an approximation to full verification (for ex. by proof)
# Main emphasis: finding bugs early,

$ either in the model
$ or in the program
$ or in both

# A systematic test is:
$ process programs and specifications 

and to compute a set of test-cases 
under controlled conditions.

$ ideally: testing is complete if a certain criteria,
the adequacy criteria is reached.
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Limits of testing ?

# We said, test is an approximation to verification,
usually easier (and less expensive) 

# Note: Sometimes it is easier to verify than
to test. In particular:

$ low-level OS implementations:
memory allocation,  garbage collection
memory virtualization, ...
crypt-algorithms, ...

$ non-deterministic programs with
no control over the non-determinism.
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Taxomomy: Static  / Dynamic Tests

# static: running a program before deployment on data
carefully constructed by the analyst (in a test environment)
$ analyse the result on the basis of all components
$ working on some classes of executions symbolically

= representing infinitely many executions

# dynamic: running the programme (or component)
after deployment, on “real data” as imposed by the 
application domain
$ experiment with the real behaviour
$ essentially used for post-hoc ananalysis and debugging
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Taxonomy: Unit / Sequence / Reactive Tests

# unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

# sequence: testing of a local component (function, 
module), but typicallY sequences of executions,
which typically depend on internal state

# reactive sequence: testing components by sequences
of steps, but these sequences represent communication 
where later parts in the seqience depend on what has
been earlier cummunicated
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Taxonomy: Functional  / Structural Test

# functional: (also: black-box tests). Tests were generated
on a specification of the component, the test focusses
on input output behaviour.

# structural: (also: white-box tests). Tests were generated 
on the basis of the structure or the program, i.e. using
control-flow, data-flow paths or by using symbolic 
executions.

# both: (also: grey-box testing).
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Functional Dynamic Unit Test 

# We got the spec, but not the program, which is considered
a black box:

input output???

Ce que le programme devrait faire…we focus on what the program should do !!!
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Functional Dynamic Unit Test : an example

The (informal) specification:

Read a “Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

Give a specification, and develop a test set ...
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Functional Dynamic Unit Test : an example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits_from Shapes
attributes

a : Integer

b : Integer

c : Integer

operations
mk(Integer,Integer,Integer):Triangle

is_Triangle(): triangle
end
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Functional Dynamic Unit Test : an example

The specification in UML/OCL (Classes in USE Notation):

context Triangles:
inv def      : a.oclIsDefined() and b.oclIsDefined()...
inv pos      : 0<a and 0<b and 0<c
inv triangle : a+b>c  and  b+c>a  and  c+a>b 

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso  :((a<>b or b<>c) and

  (a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and

 (a<>b and b<>c and a<>c) 
  implies result=arbitrary
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Functional Dynamic Unit Test : an example

The specification in UML/OCL (Classes in USE Notation):
Recall implicit consequences due to strictness of all operations

context Triangle::isTriangle()
...
post res_strict: self.oclIsUndefined implies

result.oclIsUndefined
post res_total: result.oclIsDefined implies

self.oclIsDefined  
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Functional Dynamic Unit Test : an example

How to perform Runtime-Test?

Well, compile:

context X:
inv l1 : C1, ..., 

inv ln : Cn

to some checking code (with assert as in Junit, VCC, Boogie, ...)

check_X() = assert(C1);  ... ; assert(Cn)
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Functional Dynamic Unit Test : an example

How to perform Runtime-Test?

Moreover, compile:

context C::m(a1:C1,...,an:Cn)

pre : P(self,a1,...,an) 

post : Q(self,a1,...,an,result)

to some checking code (with assert as in Junit, VCC, Boogie, ...)

check_C(); check_C1(); ... ; check_Cn();

assert(P(self,a1,...,an));

result=run_m(self,a1,...,an);

assert(Q(self,a1,...,an,result));
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Functional Dynamic Unit Test : Problems

# Thus, any violation of an invariant, a pre-condition or 
a post-condition is detected. 

# If a violation occurs within an execution of a
method, the error is precisely reported.

# On the other hand – it is post-hoc. Only when
a problem occured, we know where. And we need
complete program.
 

# Inefficiencies can be partly overcome by optimized 
compilations.
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