
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé

Part VII : White-Box Test

Burkhart Wolff
wolff@lri.fr

18/10/17 B. Wolff - GLA - White-Box-Test 2

Idea:

% Lets exploit the structure of the program !!!

(and not, as before in specification based tests
(„black box“-tests), depend entirely on the
spec).

Assumption: Programmers make most likely
errors in branching points of a program
(Condition, While-Loop, ...), but get the
program “in principle right”.
(Competent programmer assumption)

Lets develop a test method that exploits this !

18/10/17 B. Wolff - GLA - White-Box-Test 3

Static Structural (“white-box”) Tests

% we select “critical” paths

% specification used to verify the obtained resultats

A path corresponds to one logical expression over x0, y0, z0 .
 corresponding to one test-case (comprising several test data ...)

' Cond1(x0, y0, z0) ¶ ' Cond2(x0, y0, z0)

We are interested either in edges (control flow), or in nodes (data flow)

what the program does and how …

x0

y0

z0

Results

x
y
z

Cond1(x,y,z)
Cond2(x,y,z)

18/10/17 B. Wolff - GLA - White-Box-Test 4

A Program for the triangle example

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;

 if eg = 0 then put(“arbitrary”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

18/10/17 B. Wolff - GLA - White-Box-Test 5

What are tests adapted to this program ?

% try a certain number of execution “paths”
(which ones ? all of them ?)

% find input values to stimulate these paths

% compare the results with expected values
(i.e. the specification)

18/10/17 B. Wolff - GLA - White-Box-Test 6

Functional-test vs. structural test?

Both are complementary and complete each other:

% Structural Tests have weaknesses in principle:
& if you forget a condition, the specification will most likely reveal this !
& if your algorithm is incomplete, a test on the spec has at least

a chance to find this ! (Example: perm generator with 3 loops)

% Structural Tests have weaknesses in principle:
for a given specification, there are several possible
implementations (working more or less differently from the spec):

& sorted arrays : linear search ? binary search ?
& (x, n) $ xn : successive multiplication ? quadratic multiplication ?

Each implementation demands for different test sets !

18/10/17 B. Wolff - GLA - White-Box-Test 7

Equivalent programs ...

Program 1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program 2 :
S:=1; P:= N;
while P >= 1 loop

if P mod 2 /= 0 then P := P –1; S := S*X; end if;
S:= S*S; P := P div 2;

end loop;

Both programs satisfy the same spec but …

& one is more efficient, but more difficult to test.
& test sets for one are not necessarily “good” for the other, too !

18/10/17 B. Wolff - GLA - White-Box-Test 8

Control Flow Graphs

A graph with oriented edges root E and an exit S,
& the nodes be either “elementary instruction blocs”

or “decision nodes” labelled by a predicate.

& the arcs indicate the control flow between the
elementary instruction blocs and decision nodes (control flow)

& all blocs of predicates are accessible from E and lead to S
(otherwise, dead code is to be supressed !)

elementary instruction blocs: a sequence of
& assignments
& update operations (on arrays, ..., not discussed here)
& procedure calls (not discussed here !!!)

• conditions and expressions are assumed
to be side-effect free

18/10/17 B. Wolff - GLA - White-Box-Test 9

Computing Control Flow Graphs

% Identify longest sequences of assignments

18/10/17 B. Wolff - GLA - White-Box-Test 10

Computing Control Flow Graphs

% Identify longest sequences of assignments

Example:

S:=1;
P:=N;

while P >= 1
loop S:= S*X;
 P:= P-1;
end loop;

18/10/17 B. Wolff - GLA - White-Box-Test 11

Computing Control Flow Graphs

% Identify longest sequences of assignments

Example:

S:=1;
P:=N;

while P >= 1
loop S:= S*X;
 P:= P-1;
end loop;

18/10/17 B. Wolff - GLA - White-Box-Test 12

Computing Control Flow Graphs

% Identify longest sequences of assignments
% Erase if_then_elses by branching

18/10/17 B. Wolff - GLA - White-Box-Test 13

Computing Control Flow Graphs

% Identify longest sequences of assignments
% Erase if_then_elses by branching
% Erase while_loops by loop-arc, entry-arc, exit-arc

18/10/17 B. Wolff - GLA - White-Box-Test 14

Computing Control Flow Graphs

% Identify longest sequences of assignments
% Erase if_then_elses by branching
% Erase while_loops by loop-arc, entry-arc, exit-arc

Example:

S:=1;
P:=N;

 S:= S*X;
 P:= P-1;

!(P>=1)

P>=1

18/10/17 B. Wolff - GLA - White-Box-Test 15

Computing Control Flow Graphs

% Identify longest sequences of assignments
% Erase if_then_elses by branching
% Erase while_loops by loop-arc, entry-arc, exit-arc

Example:

S:=1;
P:=N;

 S:= S*X;
 P:= P-1;

P>=1

S

E

18/10/17 B. Wolff - GLA - White-Box-Test 16

Computing Control Flow Graphs

% Identify longest sequences of assignments
% Erase if_then_elses by branching
% Erase while_loops by loops
% Add entry node and exit loop-arc, entry-arc, exit-arc

A Control-Flow-Graph (CFG) is usually a by-product of
a compiler ...

Q: What is the CFG of the body
of triangle ?

18/10/17 B. Wolff - GLA - White-Box-Test 18

Revisiting our triangle example ...

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;

 if eg = 0 then put(“quelconque”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

18/10/17 B. Wolff - GLA - White-Box-Test 19

P1 B1

B2

B3

B4

B5

B6

P2

P3

P4

P5

P6B7

B0

The non-structured control-flow graph of a program

S

E

18/10/17 B. Wolff - GLA - White-Box-Test 20

A procedure with loop and return

procedure supprime (T: in out Table; p: in out integer;
 x: in integer) is

 i: integer := 1;

begin

 while i <> p loop

 if T[i].val <> x then i := i + 1;

 elsif i = p - 1 then p := p - 1; return;

 else T[i] := T[p-1]; p := p -1; return;

 end if;

 end loop;

end supprime;

18/10/17 B. Wolff - GLA - White-Box-Test 21

… and its control flow graph

What are the feasible paths ?

How to describe this ?

P1

B1

P2

P3

B2

B3

B4

S

E

18/10/17 B. Wolff - GLA - White-Box-Test 22

Paths and Path Conditions

% Let M a procedure to test, and G its control-flow graph.
Terminology:

& sub-path of M = path of G
& initial path of M = path of G starting at S

& path of M = path of G starting at S and leading to E

i.e. a complete execution of the procedure

& a given path is associated to predicate (over parameters and state):
a condition over the initial values initiales of parameters
(and global variables) to achieve exactly this execution path

& faisable paths = a path of M pour a set for all parameters and global
variables exists such that the path is executable.

i.e. the path condition is satisfiable

18/10/17 B. Wolff - GLA - White-Box-Test 23

Computing Path Conditions by Symbolic Execution

Let P be an initial path in M.
& we give symbolic values for each variable x0,y0,z0, ...

& we set the path condition Φ initially “true“
& We follow the path, block for block, along P:

If the block is an instruction block B:
 we execute symbolically B by memorizing the new values

by expressions (symbolically) dependent on x0,y0,z0, ...

If the block is a decision block P(x,...,z)

 if we follow the « true » arc we set Φ Φ "# ∧ P(x,...,z),
if we follow the «false» arc we set Φ Φ "# ∧ 'P(x,...,z).
(The x,...,z are the symbolic values for x,...,z.
 This effect is produced by a substitution to be
 discussed later.)

18/10/17 B. Wolff - GLA - White-Box-Test 24

Execution

• Execution (in imperative languages) is based
on the notion of state.

A state is a table (or: function) that maps
a variable V to some value of a domain D.

state = V $ D

As usual, we denote (finite) functions as follows:

{ x ↦1, y ↦ 5, x ↦ 12 }

18/10/17 B. Wolff - GLA - White-Box-Test 25

Symbolic Execution

• In static program analysis, it is in general not
possible to infer concrete values of D.

However, it can be inferred a set of possible
values.

For example, if we know that

x & {1..10}

and we have an assignment x:= x+2, we know:

x & {3..12} afterwards.

18/10/17 B. Wolff - GLA - White-Box-Test 26

Symbolic Execution

• This gives rise to the notion of a symbolic state.

state
sym

 = V $ Set(D)

As usual, we denote sets by

{ x | E }

where E is a boolean expression.
In our concrete technique, sets will always have
the form { x

0
 | x

0
 = E } where E is an arithmetic

expression (possibly containing variables of V).

18/10/17 B. Wolff - GLA - White-Box-Test 27

Symbolic States and Substitutions

• Since in our concrete technique, sets have
have the form {x

0
 | x

0
 = E }, we can abbreviate:

{x↦{x
0
|x

0
=E

1
}, y ↦ {y

0
|y

0
=E

2
}, z ↦ {z

0
|z

0
=E

3
}}

to
{x ↦ E

1
, y ↦ E

2
, z ↦ E

3
}

and treat them as substitutions - all
variables in an expression were subse-
quently replaced by their substituands ...

18/10/17 B. Wolff - GLA - White-Box-Test 28

Symbolic States and Substitutions

• Example substitution:

(x + 2 * y) {x ↦ 1, y ↦ x
0
}

= 1 + 2 * x
0

• An initial symbolic state is a state of the form:

{ x ↦ x
0
, y ↦ y

0
, z ↦ z

0
 }

18/10/17 B. Wolff - GLA - White-Box-Test 29

Basic Blocks as Substitutions

i := x+y+1
z := z+i

x0, y0 and z0 represent the initial values of x, y et z.

i is supposed to be a local variable (not initialized at the beginning).

i ↦ i0

z ↦ z0

y ↦ y0+3*x0

x ↦ x0

BlockSymbolic Pre-State Symbolic Post-State

i ↦ y0+ 4*x0+1
z ↦ z0+y0+4*x0+1

x ↦ x0

y ↦ y0+3*x0

18/10/17 B. Wolff - GLA - White-Box-Test 30

Symbolic Execution

 x ≥ y

false

true

Φ ∧ (x ≥ y)σ

Thus, we execute symbolically and transform the symbolic state in order to
obtain an expression depending on the initial values of the parameters,
(accesses to undefined local variables are treated by exception)

Thus, we can construct for a given path the path-condition. For reasoning
GLOBALLY over a loop, we would have to invent an « invariant »
(corresponding to an induction scheme).

Φ ∧ '(x ≥ y)σ

σ : state
sym

18/10/17 B. Wolff - GLA - White-Box-Test 31

Symbolic Execution

 x ≥ y

false

true

Φ ∧ x0 ≥ y0+ 3*x0

Thus, we execute symbolically and transform the symbolic state in order to
obtain an expression depending on the initial values of the parameters,
(accesses to undefined local variables are treated by exception)

Thus, we can construct for a given path the path-condition. For reasoning
GLOBALLY over a loop, we would have to invent an « invariant »
(corresponding to an induction scheme).

y0+ 3*x0

x0

Φ ∧ '(x0 ≥ y0+ 3*x0)

y ↦
x ↦

18/10/17 B. Wolff - GLA - White-Box-Test 32

Example: A Symbolic Path Execution

Recall

procedure supprime (T: in out Table; p: in out integer;
 x: in integer) is

 i: integer := 1;

begin

 while i <> p loop

 if T[i] <> x then i := i + 1;

 elsif i = p - 1 then p := p - 1; return;

 else T[i] := T[p-1]; p := p - 1; return;

 end if;

 end loop;

end supprime;

18/10/17 B. Wolff - GLA - White-Box-Test 33

Example: A Symbolic Path Execution

… and the corresponding
control flow graph.

We want to execute the path:

[S,B1,P1,E]

P1

B1

P2

P3

B2

B3

B4

S

E

18/10/17 B. Wolff - GLA - White-Box-Test 34

Example: A Symbolic Path Execution

We want to execute the path:

[S, B1, P1, E]

18/10/17 B. Wolff - GLA - White-Box-Test 35

Example: A Symbolic Path Execution

We want to execute the path:

[S, B1, P1, E]

i ↦
x ↦

p0p ↦
T0T ↦

X0

i0

Φ := True

18/10/17 B. Wolff - GLA - White-Box-Test 36

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0T ↦

X0

i0

Φ := True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ := True

We want to execute the path:

[S, B1, P1, E]

18/10/17 B. Wolff - GLA - White-Box-Test 37

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0T ↦

X0

i0

Φ := True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ := True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ"='(i<>p)σ
Β1

We want to execute the path:

[S, B1, P1, E]

18/10/17 B. Wolff - GLA - White-Box-Test 38

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0T ↦

X0

i0

Φ := True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ := True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1 i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ := p
0
 = 1

We want to execute the path:

[S, B1, P1, E]

Φ"='(i<>p)σ
Β1

18/10/17 B. Wolff - GLA - White-Box-Test 39

Example: A Symbolic Path Execution

Result:

Test-Case:
Path : [S,B1,P1,E]

 Path Condition: Φ := p
0
 = 1

A concrete Test,
satisfying Φ

x ↦
p ↦
T ↦

1

mtTab

17

18/10/17 B. Wolff - GLA - White-Box-Test 40

Example: A Symbolic Path Execution

… and the corresponding
control flow graph.

We want to execute the path:

[S,B1,P1,P2,B2,P1,E]

P1

B1

P2

P3

B2

B3

B4

S

E

18/10/17 B. Wolff - GLA - White-Box-Test 41

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

T ↦

 True True

18/10/17 B. Wolff - GLA - White-Box-Test 42

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

p0

T0

X0

1

T ↦

 True

(i<>p)σ
Β1

≡ p
0
 ≠ 1 True

18/10/17 B. Wolff - GLA - White-Box-Test 43

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

p0

T0

X0

1

T ↦
p0

T0

X0

1

 True

(i<>p)σ
Β1

≡ p
0
 ≠ 1 (T[i]

 <>x)σ
Β1

p
0
≠1 ∧

 True

18/10/17 B. Wolff - GLA - White-Box-Test 44

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

p0

T0

X0

1

T ↦
p0

T0

X0

1

Φ Φ Φ Φ

 True

(i<>p)σ
Β1

≡ p
0
 ≠ 1 (T[i]

 <>x)σ
Β1

p
0
≠1 ∧ p

0
≠1 ∧

T0[1]≠X0

p0

T0

X0

(i+1)σ
Β1

 True

18/10/17 B. Wolff - GLA - White-Box-Test 45

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

p0

T0

X0

2

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

p0

T0

X0

1

T ↦
p0

T0

X0

1

 True

(i<>p)σ
Β1

≡ p
0
 ≠ 1 (T[i]

 <>x)σ
Β1

p
0
≠1 ∧ p

0
≠1 ∧

T0[1]≠X0

p0

T0

X0

(i+1)σ
Β1

 True

p
0
≠1 ∧

T0[1] ≠ X0

∧'(i<>p)σ
Β2

18/10/17 B. Wolff - GLA - White-Box-Test 46

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

p0

T0

X0

2

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

p0

T0

X0

1

T ↦
p0

T0

X0

1

 True

(i<>p)σ
Β1

≡ p
0
 ≠ 1 (T[i]

 <>x)σ
Β1

p
0
≠1 ∧ p

0
≠1 ∧

T0[1]≠X0

p0

T0

X0

(i+1)σ
Β1

 True

p
0
≠1 ∧

T0[1] ≠ X0

∧'(i<>p)σ
Β2

p0

T0

X0

2

p
0
≠1 ∧

T0[1]≠X0

 ∧ p
0
=2

18/10/17 B. Wolff - GLA - White-Box-Test 47

Example: A Symbolic Path Execution

i ↦
x ↦

p0p ↦
T0

 Φ ↦

X0

i0

p0

T0

X0

1

p0

T0

X0

2

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

p0

T0

X0

1

T ↦
p0

T0

X0

1

 True

(i<>p)σ
Β1

≡ p
0
 ≠ 1 (T[i]

 <>x)σ
Β1

p
0
≠1 ∧ p

0
≠1 ∧

T0[1]≠X0

p0

T0

X0

(i+1)σ
Β1

 True

p
0
≠1 ∧

T0[1] ≠ X0

∧'(i<>p)σ
Β2

p0

T0

X0

2

p
0
≠1 ∧

T0[1]≠X0

 ∧ p
0
=2

18/10/17 B. Wolff - GLA - White-Box-Test 48

Example: A Symbolic Path Execution

Result:

Test-Case:
Path : [S,B1,P1,P2,B2,P1,E]

 Path Condition: Φ :=

A concrete Test,
satisfying Φ

x ↦
p ↦
T ↦ [3]

17

T0[1]≠X0 ∧ p
0
=2

2

18/10/17 B. Wolff - GLA - White-Box-Test 49

Paths and Test Sets

In (this version of) program-based testing
a test case with a (feasable) path

% a test case % an initial path in M

 = a collection of values for variables (params and global)

 (+ the output values described by the spécification)

% a test case set % a finite set of paths of M
 = (by assuming a uniformity hypothesis)

a finite set of input values and
a set of expected outputs.

18/10/17 B. Wolff - GLA - White-Box-Test 50

Unfeasible paths and decidability

% In general, it is undecidable of a path is feasible ...

% In general, it is undecidable if a program will terminate ...

% In general, equivalence on two programs is undecidable …

% In general, a first-order formula over arithmetic is undecidable ...

% …

Indecidable = it is known (mathematically proven)
that there is no algorithm; this is worse than
“we know none” !

BUT: for many relevant programs, practically good solutions
 exist (Z3, Simplify, CVC4, AltErgo ...)

18/10/17 B. Wolff - GLA - White-Box-Test 51

A Challange-Example (Collatz-Function):

... ALTHOUGH FOR SOME SPEC-
TACULARLY SIMPLE PROGRAMS
THESE SYSTEMS FAIL:

while x <> 1 loop
 if pair(x) then x := x / 2;
 else x := 3 * x + 1;
 end if;
 end loop;

- does this function terminate for all x ?
- or equivalently: is B2 reached for all x ?

 x /= 1 true B1

B2

18/10/17 B. Wolff - GLA - White-Box-Test 52

A Challange-Example (Collatz-Function):

... ALTHOUGH FOR SOME SPEC-
TACULARLY SIMPLE PROGRAMS
THESE SYSTEMS FAIL:

while x <> 1 loop
 if pair(x) then x := x / 2;
 else x := 3 * x + 1;
 end if;
 end loop;

- does this function terminate for all x ?
- or equivalently: is B2 reached for all x ? ANSWER:unknown

 x /= 1 true B1

B2

18/10/17 B. Wolff - GLA - White-Box-Test 53

A Challange-Example (Collatz-Function):

... ALTHOUGH FOR SOME SPEC-
TACULARLY SIMPLE PROGRAMS
THESE SYSTEMS FAIL:

while x <> 1 loop
 if pair(x) then x := x / 2;
 else x := 3 * x + 1;
 end if;
 end loop;

- does this function terminate for all x ?
- or equivalently: is B2 reached for all x ? ANSWER:unknown
- this implies that we can not know in advance that

there exist infeasible paths !

 x /= 1 true B1

B2

18/10/17 B. Wolff - GLA - White-Box-Test 54

The Triangle Prog without Unfeasible Paths

procedure triangle(j,k,l)

begin

 if j k<=l or k+l<=j or l+j<=k then put(“impossible”);

 elsif j = k and k = l then put(“equilateral”);

 elsif j = k or k =l or j = l then put(“isocele”)

 else put(“quelconque”);

end if;
end;

! If we find a path for which we do not know that it is feasible

 (maybe for deep mathematical reasons, maybe simply because

 our prover is too week), however, it is likely in practice that there

is an error ...

18/10/17 B. Wolff - GLA - White-Box-Test 55

The notion of a “couverage criteria”

A coverage criterion is a predicate on CFG
characterizing a particular subset of its paths ...

M = a procedure (with associated CFG G)
T = a test case set = a finite set of feasable paths in M
C = a coverage criterion (= a “set of paths”)

C(M, T) is true iff T satisfies the criterion C
Examples

& all nodes appear at least once in T
& all arcs appear at least once in T
& …

18/10/17 B. Wolff - GLA - White-Box-Test 56

Well-known Coverage Criteria I

Criterion AllInstructions(M,T):

For all nodes N (basic instructions or decisions)
in the CFG of M exists a path in T that contains N

18/10/17 B. Wolff - GLA - White-Box-Test 57

Well-known Coverage Criteria II

Criterion AllTransitions(M,T):

For all arcs A in the CFG of M exists a
path in T that uses A

18/10/17 B. Wolff - GLA - White-Box-Test 58

Well-known Coverage Criteria III

Criterion AllPaths(M,T):

All possible paths ...

" Whenever there is a loop, T is usually infinite !

Variant: AllPathsk(M,T).

We limit the paths through a loop to maximally k times …

! we have again a finite number of paths
! the criterion is less constraining than AllTransitionsk(M,T)

18/10/17 B. Wolff - GLA - White-Box-Test 59

A Hierarchy of Coverage Criteria

% AllPaths(M,T) (
AllPathsk(M,T) (

AllTransitions(M,T) (
AllInstructions(M,T)

% Each of these implications reflects a proper
containement; the other way round is never
true.

18/10/17 B. Wolff - GLA - White-Box-Test 60

Using Coverage Criteria 1

Source du
Programme

Graphe de Flot
de Contrôle

Critère de couverture
(défini à l’avance)

Ensemble fini de chemins
à parcourir pour satisfaire le critère

Ensemble fini de
valeurs d’entrée Spécification

Ensemble des
résultats espérés

Programme
compilé

Ensemble des
résultats obtenus

Verdict: OK / KO

Prédicats de
cheminement résolus ?

Problème potentiel
d’observation ?

#

$

18/10/17 B. Wolff - GLA - White-Box-Test 61

Summary

% We have developed a technique for program-
based tests

% ... based on symbolic execution
% ... used in tools like JavaPathFinder-SE or Pex
% Core-Concept:

Feasible Paths in a Control Flow Graph
% Although many theoretical negative results

on key properties, good practical approximations
are available

% CFG based Coverage Critieria give rise to
a Hierarchy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

