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Each bug like this costs Microsoft ~USD 1 million
If you’re unlucky, it could cost you too…
Many such bugs are “corner cases” in C/C++ code 
File parsers: video, audio, pictures…
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1) Pick x to be 5
2) Record y = 5+3 = 8, record program tests “8 ?= 13”
3) Symbolic path condition:  “x + 3 != 13”
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Work with x86 binary code on 
Windows
Leverage full-instruction-trace 
recording

Pros:
• If you can run it, you can analyze it
• Don’t care about build processes
• Don’t care if source code available

Cons:
• Lose programmer’s intent (e.g. 

types)
• Hard to “see” string manipulation, 

memory object graph manipulation, 
etc.
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 Reflections
Data invaluable for driving investment priorities
Can’t cover all x86 instructions by hand – look at which ones are used!
Recent: synthesizing circuits from templates (Godefroid & Taly PLDI 
2012)
Plus finds configuration errors, compiler changes, etc. impossible 
otherwise
Data can reveal test programs have special structure
Scaling too long traces needs careful attention to representation
Sometimes run out of memory on 4 GB machine with large programs
Even incomplete, unsound analysis useful because whole-program
SAGE finds bugs missed by all other methods
Supporting users & partners super important, a lot of work!
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Payoff

3.4 billion constraints queried June 2010 – November 2012
Millions of test cases generated
Run daily on Office, Windows 
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