
Billions and Billions of
Constraints: Whitebox Fuzz

Testing in Production

Ella Bounimova, Patrice Godefroid, David Molnar
Microsoft Research

Billions and Billions of
Constraints: Whitebox Fuzz

Testing in Production

Ella Bounimova, Patrice Godefroid, David Molnar
Microsoft Research

Each bug like this costs Microsoft ~USD 1 million
If you’re unlucky, it could cost you too…
Many such bugs are “corner cases” in C/C++ code
File parsers: video, audio, pictures…

Each bug like this costs Microsoft ~USD 1 million
If you’re unlucky, it could cost you too…
Many such bugs are “corner cases” in C/C++ code
File parsers: video, audio, pictures…

Random choice of x: one chance in 2^32 to find error
“Fuzz testing” Widely used, remarkably effective!

Random choice of x: one chance in 2^32 to find error
“Fuzz testing” Widely used, remarkably effective!

Core idea:
1) Pick an arbitrary “seed” input
2) Record path taken by program executing on “seed”
3) Create symbolic abstraction of path and generate

tests

Core idea:
1) Pick an arbitrary “seed” input
2) Record path taken by program executing on “seed”
3) Create symbolic abstraction of path and generate

tests

Example:
1) Pick x to be 5
2) Record y = 5+3 = 8, record program tests “8 ?= 13”
3) Symbolic path condition: “x + 3 != 13”

Example:
1) Pick x to be 5
2) Record y = 5+3 = 8, record program tests “8 ?= 13”
3) Symbolic path condition: “x + 3 != 13”

Work with x86 binary code on
Windows
Leverage full-instruction-trace
recording

Pros:
• If you can run it, you can analyze it
• Don’t care about build processes
• Don’t care if source code available

Cons:
• Lose programmer’s intent (e.g.

types)
• Hard to “see” string manipulation,

memory object graph manipulation,
etc.

Work with x86 binary code on
Windows
Leverage full-instruction-trace
recording

Pros:
• If you can run it, you can analyze it
• Don’t care about build processes
• Don’t care if source code available

Cons:
• Lose programmer’s intent (e.g.

types)
• Hard to “see” string manipulation,

memory object graph manipulation,
etc.

Hand-written models (so far)
Uses Z3 support for non-linear operations

Normally “concretize” memory accesses
where address is symbolic

Hand-written models (so far)
Uses Z3 support for non-linear operations

Normally “concretize” memory accesses
where address is symbolic

 Reflections
Data invaluable for driving investment priorities
Can’t cover all x86 instructions by hand – look at which ones are used!
Recent: synthesizing circuits from templates (Godefroid & Taly PLDI
2012)
Plus finds configuration errors, compiler changes, etc. impossible
otherwise
Data can reveal test programs have special structure
Scaling too long traces needs careful attention to representation
Sometimes run out of memory on 4 GB machine with large programs
Even incomplete, unsound analysis useful because whole-program
SAGE finds bugs missed by all other methods
Supporting users & partners super important, a lot of work!

 Reflections
Data invaluable for driving investment priorities
Can’t cover all x86 instructions by hand – look at which ones are used!
Recent: synthesizing circuits from templates (Godefroid & Taly PLDI
2012)
Plus finds configuration errors, compiler changes, etc. impossible
otherwise
Data can reveal test programs have special structure
Scaling too long traces needs careful attention to representation
Sometimes run out of memory on 4 GB machine with large programs
Even incomplete, unsound analysis useful because whole-program
SAGE finds bugs missed by all other methods
Supporting users & partners super important, a lot of work!

Payoff

3.4 billion constraints queried June 2010 – November 2012
Millions of test cases generated
Run daily on Office, Windows

Payoff

3.4 billion constraints queried June 2010 – November 2012
Millions of test cases generated
Run daily on Office, Windows

Thank you!

Questions? dmolnar@icrosoft.com

Thank you!

Questions? dmolnar@icrosoft.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

