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Difference between Validation and
Verification

0 Validation :

> Does the system meet the clients requirements ?
> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

0 Verification: Does the system meet the specification ?
Do we build the system right ?
Is it « correct » ?
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What are the limits of test-based
verification

Q

a

Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a ,realistic® assumption, but not always)

Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...
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How to do Verification ?

Q In the sequel, we
concentrate on Verification
by Proof Techniques ...
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Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits from Shapes
attributes
a : Integer
b : Integer

c : Integer

operations
mk (Integer, Integer, Integer) :Triangle
is Triangle(): triangle

end
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Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:

inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0O<a and 0<b and 0<c
inv triangle : atb>c and bt+c>a and c+a>b

context Triangle::isTriangle ()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and

(a=b or b=c or a=c))implies result=isosceles

post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary
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Standard example: Triangle

|
procedure triangle(j,k,1l : positive) is
eg: natural := 0;
begin
if j + k<=lork+ 1 <= 7Jjor l + j <=k then
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|
procedure triangle(j,k,1l : positive) is
eg: natural := 0;
begin
if j + k<=1lork+1 <= jor l + j <=k then
put (“impossible”) ;

else if j = k then eg := eg + 1; end if; else if j = k then eg := eg + 1; end if;
if j =1 then eg := eg + 1; end if; if j =1 then eg := eg + 1; end if;
if 1 =k then eg := eg + 1; end if; if 1 =k then eg := eg + 1; end if;
if eg = 0 then put(“quelconque”); if eg = 0 then put(“quelconque”);
elsif eg = 1 then put (“isocele”); elsif eg = 1 then put (“isocele”);
else put (“equilateral”); else put (“equilateral”);
end if; end if;

end if; end if;

end triangle;
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Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then
if n=0 then 1

else x*exp(x,n-1)

endif
else OclUndefined endif

context Integer exponent (n:Integer) :Real

pre true

post result = if n>= 0 then exp(self,n)

else 1 / exp(self,-n) endif
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Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop
if P mod 2 <> 0 then P
S:= S*S; P := P div 2;
end loop;

These programs have the following characteristics:

> one is more efficient, but more difficult to test

> good tests for one program are not necessarily
god for the other

P-1; S := S*X; end if;
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How to do Verification ?

0 How fo PROVE that the
programs meet the
specification ?
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The role of formal proof

0 formal proofs are another technique for program validation

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!
0 formal proofs as verification technique can:

> verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

> verify that a program “fits” to a concrete design model.
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Who is using formal proofs in industry?

0 Hardware Suppliers:

> INTEL: Proof of Floating Point Computation compliance
to IEEE754

> INTEL: Correctness of Cash-Memory-Coherence Protocols
> AMD: Correctness of Floating-Point-Units againt Design-Spec

> GemPlus: Verification of Smart-Card-Applications in
Security

0 Software Suppliers:
> MicroSoft: Many Drivers running in , Kernel Mode"
were verified

> MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)
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Who is using formal proofs in industry?

0 For the highest certification levels along the lines
of the Common Criteria, formal proofs are
> recommended (EAL6)
> mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

0 For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).
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0 Proof Tools and Proof Checker: proofs can also be false ... 0 Proof Tools and Proof Checker: proofs can also be false ...
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Foundations: Proof Systems

0 An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

A, ... A,

\wilTH

“from the assumptions A, to A,, you can infer
the conclusion 4, ,." A rule with n=0 is an

elementary fact. Variables occuring in the
formulas A4, can be arbitraryly substituted.
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Foundations: Proof Systems

0 An Inference System for the equality operator
(or “Equational Logic”) looks like this:

=1y T=Y Y=2
T=2 y==zx T =z
z=y P(x)
P(y)

(where the first rule is an elementary fact).
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Foundations: Proof Systems

|
0 A series of inference rule applications is usually

displayed as Proof Tree (or : Derivation)

0 The non-elemantary facts are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).
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Foundations: Proof Systems

0 As a short-cut, we also write for a derivation:

{f(a,b) = a, f(f(a,b),b) = c} - g(a) = g(c)

... or generally speaking: from global
assumptions 4 to a theorem (in theory E) ¢:

AFg ¢

This is what theorems are: derivable facts from

assumptions in a certain logical system ...
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A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4] [B]
A B AVB Q Q
AVB AVB 0
4, B]

A B AAB AAB AAB Q
AAB A B 0
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A Proof System for Propositional Logic

0  PL + E + Arithmetics (A) in so-called natural deduction:

l+z#x 1+ z=14y) —mz=y

P(0) Vz. P(x) — P(1+x)
Vz.P(z)

l+z)+y=1+(z+vy)

z+y=y+zx z+y+z2)=(x+y)+2
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Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?77
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Logic for Programs 7?77
Well, yes !

There are actually lots of possibilities ...

0 We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare
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Hoare — Logic: A Proof System for Programs

0 Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

>

the empty command SKIP
the assignment x:==E
the sequential compos. c_ ; c

(x e V)

1 2

IF cond THEN c, ELSE C,
WHILE cond DO c

the conditional

the loop

where ¢, ¢, ¢, are cmd's, V variables,

12/03/18

E an arithmetic expression, cond a boolean expr.
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Hoare — Logic: A Proof System for Programs Hoare — Logic: A Proof System for Programs

0 Core Concept: A Hoare Triple consisting ... 0 Core Concept: A Hoare Triple consisting ...
» of a pre-condition P > of a pre-condition P
> a post-condition Q > a post-condition O
> and a piece of program cmd > and a piece of program cmd
written: written:

= {P} cmd {Q} = {P} emd {Q}

P and Q are formulas over the variables V, P and Q are formulas over the variables V,
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> a post-condition Q > a post-condition Q
> and a piece of program cmd > and a piece of program cmd
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P and Q are formulas over the variables V, P and Q are formulas over the variables V,

—so they can be seen as set of possible states. —so they can be seen as set of possible states.
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Hoare Logic vs. Symbolic Execution

e HL is also based notion of a symbolic state.

mﬂmﬂm& = V - Set(D)

As usual, we denote sets by
{xX|E }

where E is a boolean expression.
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Hoare Logic vs. Symbolic Execution

e However, instead of:

|- {o::state_ | Pre(o(X)), ..., o (X )}

sym
cmd
lo::state_ | Post(a(X,), ..., o (X )}

sym

where Pre and Post are sets of states.
we just write:

|- {Pre} cmd {Post}

where Pre and Post are expressions over program
-~ variables. —
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Hoare Logic vs. Symbolic Execution

e Intuitively:

- {Pre} cmd {Post}
Mmeans.

If a program cmd starts in a state
admitted by Pre if it terminates, that
the program must reach a state that satisfies

Post.
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Hoare — Logic: A Proof System for Programs

0 PL + E + A + Hoare (simplified binding) at a glance:

-{P} SKIP {P}  + {P[z — E]} x :== E{P}

F{P Acond} c{Q} F {P A -cond} d{Q}
- {P} IF cond THEN c ELSE d{Q}
- {P A cond} c {P}
+{P} WHILE cond DO ¢ {P A —cond}

P—-P +{P}emd{Q} Q —Q
= {P} emd {Q}
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Verification : Test or Proof

Test

>

Requires Testability of Programs (initialitzable,
reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!
Requires Test-Tools
Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !
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Summary

Formal Proof

\%

Can be very hard - up to infeasible (no one will

probably ever prove correctness of MS Word!)

\;7

by a factor 10!

v

v

Tools and Tool-Chains necessary

correctness, too !

Proof Work typically exceeds Programming work

Makes assumptions on language, method, tool-
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by a factor 10!

> Tools and Tool-Chains necessary

> Makes assumptions on language, method, tool-
correctness, too !
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Summary

Formal Proof

» Can be very hard - up to infeasible (no one will
probably ever prove correctness of MS Word!)

> Proof Work typically exceeds Programming work
by a factor 10!

> Tools and Tool-Chains necessary

> Makes assumptions on language, method, tool-
correctness, too !
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Validation : Test or Proof (end)

Test and Proof are Complementary ...

0 ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

0 In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

> detect parts which are easy to test
> detect parts which are easy to prove
> good start: maintained formal specification
< this leaves room for changes in the conception
< ... and for different implementation of sub-components
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Hoare - Logic: Outlook

0 Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

:Eu“\\<<<<<<.m3m.oB\mBm\vﬂmmm\:m_mm-:oﬂm-amnom.jHB_v

> Can we ever be sure, that a specification "means” what
we intend ?

Well, no.

But when can we ever be entirely sure that we know

what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them ...
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