Cycle Ingénieur – 2ème année

Département Informatique

Verification and Validation

Part IV: Proof-based Verification

Université Paris-Sud / Orsay Département Informatique Burkhart Wolff

Cycle Ingénieur – 2 ème année Département Informatique

Verification and Validation

Part IV : Proof-based Verification

Université Paris-Sud / Orsay Département Informatique Burkhart Wolff

Cycle Ingénieur – 2 ème année Département Informatique

Verification and Validation

Part IV: Proof-based Verification

Université Paris-Sud / Orsay Département Informatique Burkhart Wolff

Cycle Ingénieur – 2 ème année Département Informatique

Verification and Validation

Part IV: Proof-based Verification

Université Paris-Sud / Orsay Département Informatique Burkhart Wolff

Difference between Validation and Verification

- Validation :
- Does the system meet the clients requirements?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Do we build the right system?

Verification: Does the system meet the specification ?

Do we build the system right?
Is it « correct »?

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Difference between Validation and Verification

- Validation :
- Does the system meet the clients requirements?
- Will the performance be sufficient?
- Will the usability be sufficient ?

Do we build the right system?

Verification: Does the system meet the specification ?

Do we build the system right?
Is it « correct »?

B. Wolff - Ingé. 2 - Proof-Intro

Difference between Validation and Verification

- Validation:
- Does the system meet the clients requirements?
- Will the performance be sufficient?
- Will the usability be sufficient?

Do we build the right system?

Verification: Does the system meet the specification?

Do we build the system right? Is it « correct »?

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

J

Difference between Validation and Verification

- Validation :
- Does the system meet the clients requirements ?
- Will the performance be sufficient?
- Will the usability be sufficient?

Do we build the right system?

Verification: Does the system meet the specification ?

Do we build the system right? Is it « correct »?

verification What are the limits of test-based

Assumptions on "Testability"

(system under test must behave deterministically or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes a "realistic" assumption, but not always)

Limits in perfection: program meets the specifiation ... We know only up to a given "certainty" that the

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

ω

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

ω

verification What are the limits of test-based

Assumptions on "Testability"

(system under test must behave deterministically, or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes a "realistic" assumption, but not always)

Limits in perfection: program meets the specifiation .. We know only up to a given "certainty" that the

B. Wolff - Ingé. 2 - Proof-Intro

ω

verification What are the limits of test-based

Assumptions on "Testability'

(system under test must behave deterministically, or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes a "realistic" assumption, but not always)

program meets the specifiation ... Limits in perfection: We know only up to a given "certainty" that the

verification What are the limits of test-based

Assumptions on "Testability"

(system under test must behave deterministically, or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes a "realistic" assumption, but not always)

Limits in perfection: program meets the specifiation ... We know only up to a given "certainty" that the

12/03/18

□ In the sequel, we

□ In the sequel, we

concentrate on Verification

by Proof Techniques ...

by Proof Techniques ...

concentrate on Verification

B. Wolff - Ingé. 2 - Proof-Intro

How to do Verification?

□ In the sequel, we concentrate on Verification by Proof Techniques ...

How to do Verification?

□ In the sequel, we by Proof Techniques ... concentrate on Verification

Standard example

The specification in UML/OCL (Classes in USE Notation):

```
class Triangles inherits_from Shapes
  attributes
  a : Integer
  b : Integer
  c : Integer
```

operations

```
mk(Integer,Integer,Integer):Triangle
is_Triangle(): triangle
end
```

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Ф

Standard example

The specification in UML/OCL (Classes in USE Notation):

```
class Triangles inherits_from Shapes
  attributes
  a : Integer
  b : Integer
  c : Integer
```

operations

```
mk(Integer, Integer, Integer):Triangle
is_Triangle(): triangle
```

end

B. Wolff - Ingé. 2 - Proof-Intro

Ф

Standard example

The specification in UML/OCL (Classes in USE Notation):

```
class Triangles inherits_from Shapes
attributes
a : Integer
b : Integer
c : Integer
```

operations

```
mk(Integer,Integer,Integer):Triangle
is_Triangle(): triangle
nd
```

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

5

Standard example

The specification in UML/OCL (Classes in USE Notation):

```
class Triangles inherits_from Shapes
  attributes
  a : Integer
  b : Integer
  c : Integer
```

operations

```
mk(Integer,Integer,Integer):Triangle
is_Triangle(): triangle
```

12/03/18

Standard example: Triangle

The specification in UML/OCL (Classes in USE Notation):

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

6

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

6

Standard example: Triangle

The specification in UML/OCL (Classes in USE Notation):

/10

B. Wolff - Ingé. 2 - Proof-Intro

Standard example: Triangle

The specification in UML/OCL (Classes in USE Notation):

Standard example: Triangle

The specification in UML/OCL (Classes in USE Notation):

```
post default: (a<>b or b<>c) and
                                                                                                                    post iso
                                                                                                                                                       post equi : a=b and b=c implies result=equilateral
                                                                                                                                                                                         context Triangle::isTriangle()
                                                                                                                                                                                                                                                                                                                         inv def
                                                                                                                                                                                                                                                      inv triangle : a+b>c
                                                                                                                                                                                                                                                                                                                                                              context Triangles:
                                                                                                                                                                                                                                                                                           sod Aut
                                                                                                                  : ((a<>b or b<>c) and
                                                                                      (a=b or b=c or a=c))implies result=isosceles
                                                                                                                                                                                                                                                                                         : 0 \le a and 0 \le b and 0 \le c
                                                                                                                                                                                                                                                                                                                             : a.oclIsDefined() and b.oclIsDefined()...
implies result=arbitrary
                        (a <> b and b <> c and a <> c)
                                                                                                                                                                                                                                                          and b+c>a and
                                                                                                                                                                                                                                                          c+a>b
```

6

Standard example: Triangle

```
end triangle;
                                                                                                                                                                                  else if j = k then
                                                                                                                                                                                                                          if j + k <= 1 or k + 1
                                                                                                                                                                                                                                                                                           procedure triangle(j,k,l : positive) is
                      end if;
                                                                                                                                                                                                                                                   begin
                                                                                                                                                                                                                                                                      eg: natural := 0;
                                                                                                                                                                                                        put("impossible");
                                            end if;
                                                                                      elsif eg = 1 then put("isocele");
                                                                                                              if eg = 0 then put("quelconque");
                                                                                                                                      if 1 = k then
                                                                                                                                                          j = 1 then
                                                                 put("equilateral");
                                                                                                                                                                                                                          <= j or 1 + j <= k then
                                                                                                                                   eg := eg + 1; end if;
                                                                                                                                                          eg := eg + 1; end if;
                                                                                                                                                                              eg := eg + 1;
                                                                                                                                                                                  end if;
```

Standard example: Triangle

B. Wolff - Ingé. 2 - Proof-Intro

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

```
end triangle;
                     end if;
                                                                                                                                                                      else if j = k then
                                                                                                                                                                                                            if j + k <= 1 or k + 1
                                                                                                                                                                                                                                    begin
                                                                                                                                                                                                                                                                             procedure triangle(j,k,l : positive) is
                                                                                                                                                                                                                                                       eg: natural := 0;
                                                                                                                                                                                             put("impossible");
                                           end if;
                                                                                  elsif eg = 1 then put("isocele");
                                                                                                        if eg = 0 then put("quelconque");
                                                                                                                              if 1 = k then
                                                                                                                                                  j = 1 then
                                                               put("equilateral");
                                                                                                                                                                                                                   ^
                                                                                                                             eg := eg + 1; end if;
                                                                                                                                                eg := eg + 1; end if;
                                                                                                                                                                     eg := eg + 1;
                                                                                                                                                                                                              j or 1 + j \le k then
                                                                                                                                                                         end if;
```

B. Wolff - Ingé. 2 - Proof-Intro

Standard example: Triangle

```
else if j = k then
                                                                                                                                                                                   if j + k \le 1 or k + 1
                                                                                                                                                                                                                                           procedure triangle(j,k,l : positive) is
end triangle;
                                                                                                                                                                                                                         eg: natural := 0;
                                                                                                                                                                      put("impossible");
                                   end if;
                                                                                                              if 1 = k then
                                                                                                                                if j = 1 then
                                                        else
                                                                        elsif eg = 1 then put("isocele");
                                                                                           if eg = 0 then put("quelconque");
                                                      put("equilateral");
                                                                                                                                                                                         Â
                                                                                                                             eg := eg + 1;
                                                                                                             eg := eg + 1; end if;
                                                                                                                                                eg :=
                                                                                                                                                                                      or
| +
                                                                                                                                                  eg
                                                                                                                                                                                         <u>^</u>
                                                                                                                                                    end if;
                                                                                                                                  end if;
                                                                                                                                                                                       k then
```

Standard example: Triangle

```
else if j = k then
                                                                                                                                                                                      if j + k <= 1 or k + 1
                                                                                                                                                                                                                                               procedure triangle(j,k,l : positive) is
end triangle;
                                                                                                                                                                                                                            eg: natural := 0;
                                                                                                                                                                        put("impossible");
                                      end if;
                                                                                                                                  if j = 1 then
                                                                                                                if 1 = k then
                                                         else
                                                                          elsif eg = 1 then put("isocele");
                                                                                             if eg = 0 then put("quelconque");
                                                        put("equilateral");
                                                                                                                                                                                            Â
                                                                                                              eg := eg + 1; end if;
                                                                                                                                eg := eg + 1;
                                                                                                                                                    eg := eg
                                                                                                                                                                                       j or 1 +
                                                                                                                                                     + 1;
                                                                                                                                                                                            Â
                                                                                                                                    end if;
                                                                                                                                                      end if;
                                                                                                                                                                                          k then
```

Standard example: Exponentiation

The specification in UML/OCL (Classes in USE Notation):

```
context OclAny:
def exp(x,n) = if n >= 0 then
    if n=0 then 1
        else x*exp(x,n-1)
        endif
        else OclUndefined endif

context Integer :: exponent(n:Integer):Real
```

pre true
post result = if n>= 0 then exp(self, n)
else 1 / exp(self, -n) endif

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Standard example: Exponentiation

The specification in UML/OCL (Classes in USE Notation):

B. Wolff - Ingé. 2 - Proof-Intro

Standard example: Exponentiation

The specification in UML/OCL (Classes in USE Notation):

```
context OclAny:
def exp(x,n) = if n >= 0 then
    if n=0 then 1
        else x*exp(x,n-1)
        endif
    else OclUndefined endif
```

```
context Integer :: exponent(n:Integer):Real
pre true
post result = if n>= 0 then exp(self,n)
else 1 / exp(self,-n) endif
```

12/03/18

œ

B. Wolff - Ingé. 2 - Proof-Intro

œ

Standard example: Exponentiation

The specification in UML/OCL (Classes in USE Notation):

```
context Integer :: exponent(n:Integer):Real
pre true
post result = if n>= 0 then exp(self,n)
else 1 / exp(self,-n) endif
```

œ

œ

Program Example: Exponentiation

```
Program_1:
    S:=1; P:=N;
    while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2:
    S:=1; P:= N;
    while P >= 1 loop
    if P mod 2 <> 0 then P := P-1; S := S*X; end if;
    S:= S*S; P := P div 2;
end loop;
```

These programs have the following characteristics:

- one is more efficient, but more difficult to test
- good tests for one program are not necessarily god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

9

Program Example: Exponentiation

```
Program_1:
    S:=1; P:=N;
    while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2:
    S:=1; P:= N;
    while P >= 1 loop
    if P mod 2 <> 0 then P := P-1; S := S*X; end if;
    S:= S*S; P := P div 2;
end loop;
```

These programs have the following characteristics:

- one is more efficient, but more difficult to test
- good tests for one program are not necessarily god for the other

B. Wolff - Ingé. 2 - Proof-Intro

Program Example: Exponentiation

```
Program_1:
    S:=1; P:=N;
    while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2:
    S:=1; P:= N;
    while P >= 1 loop
    if P mod 2 <> 0 then P := P-1; S := S*X; end if;
    S:= S*S; P := P div 2;
end loop;
```

These programs have the following characteristics:

- one is more efficient, but more difficult to test
- good tests for one program are not necessarily god for the other

```
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 9
```

Program Example: Exponentiation

```
Program_1:
    S:=1; P:=N;
    while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2:
    S:=1; P:= N;
    while P >= 1 loop
    if P mod 2 <> 0 then P := P-1; S := S*X; end if;
    S:= S*S; P := P div 2;
end loop;
```

These programs have the following characteristics:

- one is more efficient, but more difficult to test
- good tests for one program are not necessarily god for the other

□ How to PROVE that the

specification?

programs meet the

B. Wolff - Ingé. 2 - Proof-Intro

10

How to do Verification?

How to PROVE that the programs meet the specification?

How to PROVE that the programs meet the specification?

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

10

How to do Verification?

How to PROVE that the programs meet the specification?

proof-based

program verification

Introduction to

proof-based

program verification

Introduction to

proof-based

program verification

2017-2018

Introduction to

proof-based

program verification

2017-2018

The role of formal proof

- formal proofs are another technique for program validation
- based on a model of the underlying programming language, can be established the conformance of a concrete program to its specification

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

- formal proofs as verification technique can:
- verify that a more concrete design-model "fits" to a more abstract design model (construction by formal refinement)
- verify that a program "fits" to a concrete design model.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

12

The role of formal proof

- formal proofs are another technique for program validation
- based on a model of the underlying programming language, can be established the conformance of a concrete program to its specification

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

- formal proofs as verification technique can:
- verify that a more concrete design-model "fits" to a more abstract design model (construction by formal refinement)
- verify that a program "fits" to a concrete design model.

B. Wolff - Ingé. 2 - Proof-Intro

12/03/18

The role of formal proof

formal proofs are another technique for program validation

based on a model of the underlying programming language, can be established the conformance of a concrete program to its specification

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

- formal proofs as verification technique can:
- verify that a more concrete design-model "fits" to a more abstract design model (construction by formal refinement)
- verify that a program "fits" to a concrete design model.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

12

The role of formal proof

- formal proofs are another technique for program validation
- based on a model of the underlying programming language, can be established the conformance of a concrete program to its specification

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

- formal proofs as verification technique can:
- verify that a more concrete design-model "fits" to a more abstract design model (construction by formal refinement)
- verify that a program "fits" to a concrete design model.

B. Wolff - Ingé. 2 - Proof-Intro

12

Who is using formal proofs in industry?

Hardware Suppliers

- to IEEE754 INTEL: Proof of Floating Point Computation compliance
- INTEL: Correctness of Cash-Memory-Coherence Protocols
- AMD: Correctness of Floating-Point-Units againt Design-Spec
- Security GemPlus: Verification of Smart-Card-Applications in

Software Suppliers

- were verified MicroSoft: Many Drivers running in "Kernel Mode"
- MicroSoft: Verification of the Hyper-V OS (60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

13

Who is using formal proofs in industry?

Hardware Suppliers:

- INTEL: Proof of Floating Point Computation compliance to IEEE754
- INTEL: Correctness of Cash-Memory-Coherence Protocols
- AMD: Correctness of Floating-Point-Units againt Design-Spec
- Security GemPlus: Verification of Smart-Card-Applications in

Software Suppliers

- were verified MicroSoft: Many Drivers running in "Kernel Mode"
- MicroSoft: Verification of the Hyper-V OS (60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Who is using formal proofs in industry?

Hardware Suppliers

- to IEEE754 INTEL: Proof of Floating Point Computation compliance
- INTEL: Correctness of Cash-Memory-Coherence Protocols
- AMD: Correctness of Floating-Point-Units againt Design-Spec
- Security GemPlus: Verification of Smart-Card-Applications in

Software Suppliers

- MicroSoft: Many Drivers running in "Kernel Mode" were verified
- MicroSoft: Verification of the Hyper-V OS (60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

13

Who is using formal proofs in industry?

Hardware Suppliers:

- INTEL: Proof of Floating Point Computation compliance to IEEE754
- INTEL: Correctness of Cash-Memory-Coherence Protocols
- AMD: Correctness of Floating-Point-Units againt Design-Spec
- Security GemPlus: Verification of Smart-Card-Applications in

Software Suppliers

- MicroSoft: Many Drivers running in "Kernel Mode" were verified
- MicroSoft: Verification of the Hyper-V OS (60000 Lines of Concurrent, Low-Level C Code ...)

B. Wolff - Ingé. 2 - Proof-Intro

Who is using formal proofs in industry?

- For the highest certification levels along the lines of the Common Criteria, formal proofs are
- recommended (EAL6)
- mandatory (EAL7)

EAL7 certifications ... There had been now several industrial cases of

For lower levels of certifications, still, formal specifications Monopoly-Lawsuit against the European Commission to were required. Recently, Microsoft has agreed in a provide a formal Spec of the Windows-Server-Protocols (The tools validating them use internally automated proofs).

B. Wolff - Ingé. 2 - Proof-Intro

14

Who is using formal proofs in industry?

- For the highest certification levels along the lines of the Common Criteria, formal proofs are
- recommended (EAL6)
- mandatory (EAL7)

EAL7 certifications ... There had been now several industrial cases of

For lower levels of certifications, still, formal specifications Monopoly-Lawsuit against the European Commission to were required. Recently, Microsoft has agreed in a provide a formal Spec of the Windows-Server-Protocols (The tools validating them use internally automated proofs).

Who is using formal proofs in industry?

- For the highest certification levels along the lines of the Common Criteria, formal proofs are
- recommended (EAL6)
- mandatory (EAL7)

EAL7 certifications ... There had been now several industrial cases of

were required. Recently, Microsoft has agreed in a For lower levels of certifications, still, formal specifications provide a formal Spec of the Windows-Server-Protocols. Monopoly-Lawsuit against the European Commission to (The tools validating them use internally automated proofs).

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

14

Who is using formal proofs in industry?

- of the Common Criteria, formal proofs are For the highest certification levels along the lines
- recommended (EAL6)
- mandatory (EAL7)

EAL7 certifications ... There had been now several industrial cases of

were required. Recently, Microsoft has agreed in a For lower levels of certifications, still, formal specifications provide a formal Spec of the Windows-Server-Protocols. Monopoly-Lawsuit against the European Commission to (The tools validating them use internally automated proofs).

Pre-Rerquisites of Formal Proof Techniques

- A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
- know-how over the application domain
- informal and formal requirements of the system
- Either a formal model of the programming language or a trusted code-generator from concrete design specs
- Tool Chains to generate, simplify, and solve large formulas (decision procedures)
- Proof Tools and Proof Checker: proofs can also be false ...

Nous, on le fera à la main ;-(

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

15

Pre-Rerquisites of Formal Proof Techniques

- A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
- know-how over the application domain
- informal and formal requirements of the system
- Either a formal model of the programming language or a trusted code-generator from concrete design specs
- Tool Chains to generate, simplify, and solve large formulas (decision procedures)
- Proof Tools and Proof Checker: proofs can also be false ...

 Nous, on le fera à la main ;-(

B. Wolff - Ingé. 2 - Proof-Intro

15

Pre-Rerquisites of Formal Proof Techniques

- A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
- know-how over the application domain
- informal and formal requirements of the system
- Either a formal model of the programming language or a trusted code-generator from concrete design specs
- Tool Chains to generate, simplify, and solve large formulas (decision procedures)
- Proof Tools and Proof Checker: proofs can also be false ...

Nous, on le fera à la main ;-(

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

0 15

Pre-Rerquisites of Formal Proof Techniques

- A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
- know-how over the application domain
- informal and formal requirements of the system
- Either a formal model of the programming language or a trusted code-generator from concrete design specs
- Tool Chains to generate, simplify, and solve large formulas (decision procedures)
- Proof Tools and Proof Checker: proofs can also be false ...

Nous, on le fera à la main ;-(

12/03/18

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

$$A_1 \quad \cdots \quad A_n \\ A_{n+1}$$

"from the assumptions A_I to A_n , you can infer the conclusion A_{n+I} ." A rule with n=0 is an elementary fact. Variables occuring in the formulas A_n can be arbitraryly substituted.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

16

Foundations: Proof Systems

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

$$\frac{A_1 \quad \dots \quad A_n}{A_{n+1}}$$

"from the assumptions A_l to A_n , you can infer the conclusion A_{n+l} ." A rule with n=0 is an elementary fact. Variables occuring in the formulas A_n can be arbitraryly substituted.

Foundations: Proof Systems

An Inference System (or *Logical Calculus*) allows to infer formulas from a set of *elementary* facts (axioms) and inferred facts by rules:

$$A_1 \quad \cdots \quad A_n$$

$$A_{n+1}$$

"from the assumptions A_I to A_n , you can infer the conclusion A_{n+I} ." A rule with n=0 is an elementary fact. Variables occuring in the formulas A_n can be arbitraryly substituted.

B. WOII

B. Wolff - Ingé. 2 - Proof-Intro

16

Foundations: Proof Systems

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

$$A_1 \quad \cdots \quad A_r$$

$$A_{n+1}$$

"from the assumptions A_I to A_n , you can infer the conclusion A_{n+I} ." A rule with n=0 is an elementary fact. Variables occuring in the formulas A_n can be arbitraryly substituted.

16

B. Wolff - Ingé. 2 - Proof-Intro

An Inference System for the equality operator (or "Equational Logic") looks like this:

$$x = x$$

$$\frac{x=y}{y=x}$$

$$x = y \quad y = z$$

x =

 \mathcal{V}

P(x)

$$x = z$$

(where the first rule is an elementary fact)

12/03/18

17

Foundations: Proof Systems

An Inference System for the equality operator (or "Equational Logic") looks like this:

$$x = x$$

$$\frac{x=y}{y=x}$$

$$x = y \quad y = z$$

||

Ŋ

$$\frac{x = y \quad P(x)}{P(y)}$$

(where the first rule is an elementary fact)

Foundations: Proof Systems

An Inference System for the equality operator (or "Equational Logic") looks like this:

$$x = x$$

$$y = x$$

x = y

$$x = y \quad y = z$$

$$\frac{x = y \quad P(x)}{P(y)}$$

(where the first rule is an elementary fact).

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

17

Foundations: Proof Systems

An Inference System for the equality operator (or "Equational Logic") looks like this:

$$x = x$$

$$\frac{x=y}{y=x}$$

$$x = y \quad y = z$$

$$y = y \quad P(x)$$
 $P(y)$

 \boldsymbol{x}

(where the first rule is an elementary fact).

A series of inference rule applications is usually displayed as Proof Tree (or: Derivation)

$$\frac{f(a,b) = a \quad f(f(a,b),b) = c}{f(a,b) = a}$$

$$f(a,b) = c$$

2

||

$$g(a) = g(c)$$

$$g(a) = g(c)$$

g(a) = g(a)

□ The non-elemantary facts are the *global* assumptions (here
$$f(a,b) = a$$
 and $f(f(a,b),b) = c$).

B. Wolff - Ingé. 2 - Proof-Intro

18

12/03/18

Foundations: Proof Systems

A series of inference rule applications is usually displayed as Proof Tree (or: Derivation)

$$\frac{f(a,b) = a \quad f(f(a,b),b) = c}{f(a,b) = a \quad f(a,b) = c}$$

$$g(a) = g(c)$$

a

||

g(a) = g(a)

The non-elemantary facts are the global **assumptions** (here f(a,b) = a and f(f(a,b),b) = c).

Foundations: Proof Systems

A series of inference rule applications is usually displayed as Proof Tree (or: Derivation)

$$\frac{f(a,b) = a \quad f(f(a,b),b) = c}{f(a,b) = a \quad f(a,b) = c}$$

$$a = c \qquad g(a) = g(a)$$

g(a) = g(c)

The non-elemantary facts are the globa. **assumptions** (here f(a,b) = a and f(f(a,b),b) = c).

B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

A series of inference rule applications is usually displayed as Proof Tree (or: Derivation)

$$\frac{f(a,b) = a \quad f(f(a,b),b) = c}{f(a,b) = a \quad f(a,b) = c}$$

$$a = c \quad g(a) = g(c)$$

The non-elemantary facts are the global **assumptions** (here f(a,b) = a and f(f(a,b),b) = c).

As a short-cut, we also write for a derivation:

$$\{f(a,b) = a, f(f(a,b),b) = c\} \vdash g(a) = g(c)$$

assumptions A to a theorem (in theory E) ϕ : ... or generally speaking: from globa

$$A \vdash_E \phi$$

assumptions in a certain logical system ... This is what theorems are: derivable facts from

B. Wolff - Ingé. 2 - Proof-Intro

Foundations: Proof Systems

As a short-cut, we also write for a derivation:

$$\{f(a,b) = a, f(f(a,b),b) = c\} \vdash g(a) = g(c)$$

assumptions A to a theorem (in theory E) ϕ : ... or generally speaking: from globa

$$A \vdash_E \phi$$

assumptions in a certain logical system ... This is what theorems are: derivable facts from

B. Wolff - Ingé. 2 - Proof-Intro

19

Foundations: Proof Systems

As a short-cut, we also write for a derivation:

$$\{f(a,b) = a, f(f(a,b),b) = c\} \vdash g(a) = g(c)$$

assumptions A to a theorem (in theory E) ϕ : ... or generally speaking: from global

$$A \vdash_E \phi$$

assumptions in a certain logical system ... This is what theorems are: derivable facts from

B. Wolff - Ingé. 2 - Proof-Intro

Foundations: Proof Systems

As a short-cut, we also write for a derivation:

$$\{f(a,b) = a, f(f(a,b),b) = c\} \vdash g(a) = g(c)$$

assumptions A to a theorem (in theory E) ϕ : ... or generally speaking: from global

$$A \vdash_E \phi$$

assumptions in a certain logical system ... This is what theorems are: derivable facts from

B. Wolff - Ingé. 2 - Proof-Intro

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

$$egin{array}{ccc} [A] & [B] \end{array}$$

$$\frac{A}{A \lor B}$$

$$\overline{A \vee B}$$

$$A \lor B$$

$$B$$
 (

$$\left[\stackrel{A,B}{\cdot} \right]$$

12/03/18

 $A \wedge B$

B. Wolff - Ingé. 2 - Proof-Intro

20

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

$$egin{bmatrix} A \ . \end{bmatrix}$$

$$A \lor B$$

$$\overline{A \lor B}$$

$$A \lor B$$

$$\left[A,B
ight]$$

 $A \wedge B$

$$A \wedge B$$

$$B = A$$

$$A \wedge B$$

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

$$\frac{A}{A \lor B}$$

$$A \lor B$$

$$\overline{A} \vee \overline{A}$$

$$\overline{A \lor B}$$

$$A \wedge B$$

$$A \wedge B$$

$$A \wedge B$$

12/03/18

 $A \wedge B$

20

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

$$\overline{A \vee B}$$

 $A \lor B$

$$A \lor B$$

[A, B]

 $A \wedge B$

$$A \wedge B$$
 (

12/03/18

 $A \wedge B$

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

$$\frac{\neg \neg A}{A}$$

$$\neg \neg A$$

False

$$\neg \neg A$$

$$\frac{\dot{B}}{A \to B}$$

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

21

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

[A]

 $\neg \neg A$

A

A

 $\neg \neg A$

False

$$\begin{array}{ccc}
 & & & [A] \\
 & & \vdots \\
 P \to Q & P & B \\
\hline
 Q & & \overline{A} \to B
\end{array}$$

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

 \overline{A}

 $\neg \neg A$

 $\neg \neg A$

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

A o B

21

A Proof System for Propositional Logic

Propositional Logic (PL) in so-called natural deduction:

A Proof System for Propositional Logic

PL + E + Arithmetics (A) in so-called natural deduction:

$$\frac{1}{1+x\neq x}$$

$$(1+x=1+y) \to x=y$$

$$(0) \quad \forall x. \ P(x) \to P(1+x)$$
$$\forall x. P(x)$$

$$(1+x) + y = 1 + (x+y)$$

$$x + y = y + x$$

$$x + (y + z) = (x + y) + z$$

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

22

A Proof System for Propositional Logic

PL + E + Arithmetics (A) in so-called natural deduction:

$$1 + x \neq x$$

$$(1+\ x=1+\ y) \rightarrow x=y$$

$$P(0) \quad \forall x. \ P(x) \to P(1+x)$$
$$\forall x. P(x)$$

$$(1+x) + y = 1 + (x+y)$$

$$x+y=y+x$$

$$x + (y + z) = (x + y) + z$$

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

A Proof System for Propositional Logic

PL + E + Arithmetics (A) in so-called natural deduction:

$$1+x \neq x$$

$$(1+ x=1+ y) \rightarrow x=y$$

$$P(0) \quad \forall x. \ P(x) \to P(1+x)$$
 $\forall x. P(x)$

$$(1+x) + y = 1 + (x+y)$$

$$x + y = y + x$$

$$x + (y + z) = (x + y) + z$$

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

22

A Proof System for Propositional Logic

PL + E + Arithmetics (A) in so-called natural deduction:

$$1+x \neq x$$

$$\left(1+\ x=1+\ y\right) \to x=y$$

$$\frac{P(0) \quad \forall x. \ P(x) \to P(1+x)}{\forall x. P(x)}$$

$$(1+x) + y = 1 + (x+y)$$

$$x + y = y + x \qquad \qquad x$$

$$x + (y + z) = (x + y) + z$$

Hoare – Logic: A Proof System for Programs
Hoare – Logic: A Proof System for Programs

Now, can we build a

Logic for Programs ???

Now, can we build a

Logic for Programs ???

Hoare - Logic: A Proof System for Programs

B. Wolff - Ingé. 2 - Proof-Intro

23

12/03/18

Now, can we build a

B. Wolff - Ingé. 2 - Proof-Intro

23

Hoare - Logic: A Proof System for Programs

Now, can we build a

Logic for Programs ???

Logic for Programs ???

Hoare - Logic: A Proof System for Programs

Now, can we build a

Logic for Programs ???

Well, yes!

There are actually lots of possibilities ...

We consider the Hoare-Logic (Sir Anthony Hoare ...) technically an inference system PL + E + A + Hoare

B. Wolff - Ingé. 2 - Proof-Intro

24

Hoare - Logic: A Proof System for Programs

Now, can we build a

Logic for Programs ???

Well, yes !

There are actually lots of possibilities ...

We consider the Hoare-Logic (Sir Anthony Hoare ...)

technically an inference system PL + E + A + Hoare B. Wolff - Ingé. 2 - Proof-Intro

Hoare - Logic: A Proof System for Programs

Now, can we build a

Logic for Programs ???

Well, yes !

There are actually lots of possibilities ...

We consider the Hoare-Logic (Sir Anthony Hoare ...), technically an inference system PL + E + A + Hoare

B. Wolff - Ingé. 2 - Proof-Intro

24

Hoare - Logic: A Proof System for Programs

Now, can we build a

Logic for Programs ???

Well, yes!

There are actually lots of possibilities ...

We consider the Hoare-Logic (Sir Anthony Hoare ...), technically an inference system PL + E + A + Hoare

B. Wolff - Ingé. 2 - Proof-Intro

Hoare – Logic: A Proof System for Programs

Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

- the empty command SKIP
- the assignment X:== E
- the sequential compos. c_1 ; c_2
- the conditional IF cond THEN c, ELSE c2
- the loop WHILE cond DO c

E an arithmetic expression, cond a boolean expr. where c, c_1 , c_2 , are cmd's, V variables

B. Wolff - Ingé. 2 - Proof-Intro

Hoare – Logic: A Proof System for Programs

Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

- the empty command SKIP
- the assignment X:== E $(x \in \checkmark)$
- the sequential compos. c_1 ; c_2
- the conditiona

IF cond THEN c_1 ELSE c_2

- the loop

WHILE cond DO c

E an arithmetic expression, cond a boolean expr. where c, c_1 , c_2 , are cmd's, V variables

B. Wolff - Ingé. 2 - Proof-Intro

Hoare – Logic: A Proof System for Programs

Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

- the empty command SKIP
- the assignment
- X:== E
- the sequential compos. c_1 ; c_2
- the conditiona
- IF cond THEN c_1 ELSE c_2
- the loop

WHILE cond DO c

E an arithmetic expression, cond a boolean expr where c, c_1 , c_2 , are cmd's, V variables, B. Wolff - Ingé. 2 - Proof-Intro

Hoare – Logic: A Proof System for Programs

Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

- the empty command SKIP
- the assignment X:== E

 $(x \in \lor)$

- the sequential compos. c_1 ; c_2
- the conditiona

the loop

IF cond THEN c_1 ELSE c_2

WHILE cond DO c

E an arithmetic expression, cond a boolean expr. where c, c_1 , c_2 , are cmd's, V variables,

Hoare – Logic: A Proof System for Programs

- Core Concept: A Hoare Triple consisting ...
- of a pre-condition P
- ightharpoonup a post-condition ${\cal Q}$
- and a piece of program cmd

written:

$$\vdash \{P\} \ cmd \ \{Q\}$$

P and Q are formulas over the variables V, so they can be seen as set of possible states.

B. Wolff - Ingé. 2 - Proof-Intro

Hoare - Logic: A Proof System for Programs

- Core Concept: A Hoare Triple consisting ...
- of a pre-condition P
- ightharpoonup a post-condition ${\cal Q}$
- and a piece of program cmd

written:

$$\vdash \{P\} \ cmd \ \{Q\}$$

P and Q are formulas over the variables V, so they can be seen as set of possible states.

B. Wolff - Ingé. 2 - Proof-Intro

Hoare - Logic: A Proof System for Programs

- Core Concept: A Hoare Triple consisting ...
- of a pre-condition P
- a post-condition ${\cal Q}$
- and a piece of program *cmd*

written:

$$\vdash \{P\} \ cmd \ \{Q\}$$

P and \widehat{Q} are formulas over the variables V, so they can be seen as set of possible states.

B. Wolff - Ingé. 2 - Proof-Intro

Hoare – Logic: A Proof System for Programs

- Core Concept: A Hoare Triple consisting ...
- \triangleright of a pre-condition P
- \dot{arrho} a post-condition \dot{arrho}
- and a piece of program *cmd*

written:

$$\vdash \{P\} \ cmd \ \{Q\}$$

P and Q are formulas over the variables V, so they can be seen as set of possible states.

B. Wolff - Ingé. 2 - Proof-Intro

Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

$$state_{sym} = V \rightarrow Set(D)$$

As usual, we denote sets by

$$\frac{\times}{E}$$

where E is a boolean expression.

12/03/1

B. Wolff - Ingé. 2 - Proof-Intro

27

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

27

Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

$$state_{sym} = V \rightarrow Set(D)$$

As usual, we denote sets by

$$\frac{\times}{E}$$

where E is a boolean expression.

Hoare Logic vs. Symbolic Execution

HL is also based notion of a symbolic state.

$$\mathsf{state}_{\mathsf{sym}} = \ \mathsf{V} \to \mathsf{Set}(\mathsf{D})$$

As usual, we denote sets by

$$\frac{\times}{E}$$

where E is a boolean expression.

Hoare Logic vs. Symbolic Execution

HL is also based notion of a symbolic state.

$$\mathsf{state}_{\mathsf{sym}} = \ \mathsf{V} \to \mathsf{Set}(\mathsf{D})$$

As usual, we denote sets by

$$\frac{\times}{E}$$

where E is a boolean expression.

12/03/18

Hoare Logic vs. Symbolic Execution

However, instead of

$$|-\{\sigma::\mathsf{state}_{\mathsf{sym}} \mid \mathsf{Pre}(\sigma(\mathsf{X}_1), ..., \sigma(\mathsf{X}_n)\} \\ \mathsf{cmd} \\ \{\sigma::\mathsf{state}_{\mathsf{sym}} \mid \mathsf{Post}(\sigma(\mathsf{X}_1), ..., \sigma(\mathsf{X}_n)\}$$

where Pre and Post are sets of states we just write:

variables. where Pre and Post are expressions over program

B. Wolff - Ingé. 2 - Proof-Intro

28

Hoare Logic vs. Symbolic Execution

However, instead of

$$|-\{\sigma::\mathsf{state}_{\mathsf{sym}} \mid \mathsf{Pre}(\sigma(\mathsf{X}_1), ..., \sigma(\mathsf{X}_n)\} \\ \mathsf{cmd} \\ \{\sigma::\mathsf{state}_{\mathsf{sym}} \mid \mathsf{Post}(\sigma(\mathsf{X}_1), ..., \sigma(\mathsf{X}_n)\}$$

where Pre and Post are sets of states we just write:

variables. where Pre and Post are expressions over program

B. Wolff - Ingé. 2 - Proof-Intro

Hoare Logic vs. Symbolic Execution

However, instead of:

$$|-\{\sigma::\mathsf{state}_{\mathsf{sym}} \mid \mathsf{Pre}(\sigma(\mathsf{X}_1), \, ..., \, \sigma \, (\mathsf{X}_n)\} \\ \mathsf{cmd} \\ \{\sigma::\mathsf{state}_{\mathsf{sym}} \mid \mathsf{Post}(\sigma(\mathsf{X}_1), \, ..., \, \sigma \, (\mathsf{X}_n)\}$$

we just write: where Pre and Post are sets of states

|- {Pre} cmd {Post}

variables. where Pre and Post are expressions over program

B. Wolff - Ingé. 2 - Proof-Intro

28

Hoare Logic vs. Symbolic Execution

However, instead of:

|-
$$\{\sigma:: state_{sym} \mid Pre(\sigma(X_1), ..., \sigma(X_n))\}$$

cmd
 $\{\sigma:: state_{sym} \mid Post(\sigma(X_1), ..., \sigma(X_n))\}$

we just write: where Pre and Post are sets of states

|- {Pre} cmd {Post}

variables. where Pre and Post are expressions over program

28

B. Wolff - Ingé. 2 - Proof-Intra

Hoare Logic vs. Symbolic Execution

Intuitively:

$$\vdash \{Pre\} \ cmd \ \{Post\}$$

means

If a program cmd starts in a state admitted by Pre if it terminates, that the program must reach a state that satisfies Post.

2/03/18

B. Wolff - Ingé. 2 - Proof-Intro

29

Hoare Logic vs. Symbolic Execution

Intuitively:

$$\vdash \{Pre\} \ cmd \ \{Post\}$$

means:

If a program cmd starts in a state admitted by Pre if it terminates, that the program must reach a state that satisfies Post.

Hoare Logic vs. Symbolic Execution

Intuitively:

$$\vdash \{Pre\} \ cmd \ \{Post\}$$

means:

If a program cmd starts in a state admitted by Pre if it terminates, that the program must reach a state that satisfies Post.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

29

Hoare Logic vs. Symbolic Execution

Intuitively:

$$\vdash \{Pre\} \ cmd \ \{Post\}$$

means

If a program cmd starts in a state admitted by Pre if it terminates, that the program must reach a state that satisfies Post.

Hoare – Logic: A Proof System for Programs

Hoare – Logic: A Proof System for Programs

 $\vdash \{P\} \text{ SKIP } \{P\} \qquad \vdash \{P[x \mapsto E]\} \text{ x} :== \text{E}\{P\}$

 $\vdash \{P \land cond\} \ c \ \{Q\} \quad \vdash \{P \land \neg cond\} \ d \ \{Q\}$

 $\vdash \{P\} \text{ IF } cond \text{ THEN } c \text{ ELSE } d\{Q\}$

 $\vdash \{P \land cond\} \ c \ \{P\}$

PL + E + A + Hoare (simplified binding) at a glance

PL + E + A + Hoare (simplified binding) at a glance

$$\overline{\vdash\{P\} \text{ SKIP } \{P\}} \qquad \overline{\vdash\{P[x \mapsto E]\} \text{ } x :== \text{E}\{P\}}$$

$$\vdash \{P\} \text{ WHILE } cond \text{ DO } c \text{ } \{P \land \neg cond\}$$

B. Wolff - Ingé. 2 - Proof-Intro

30

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

30

Hoare – Logic: A Proof System for Programs

PL + E + A + Hoare (simplified binding) at a glance

$$\vdash \{P\} \text{ SKIP } \{P\} \qquad \vdash \{P[x \mapsto E]\} \text{ x } :== \text{E}\{P\}$$

$$\begin{array}{c|c} \vdash \{P \land cond\} \ c \ \{Q\} & \vdash \{P \land \neg cond\} \ d \ \{Q\} \\ \hline \qquad \vdash \{P\} \ \text{IF} \ cond \ \text{THEN} \ c \ \text{ELSE} \ d\{Q\} \\ \hline \qquad \vdash \{P \land cond\} \ c \ \{P\} \end{array}$$

$$\vdash \{P\} \text{ WHILE } cond \text{ DO } c \text{ } \{P \land \neg cond\}$$

$$P' \rightarrow P' + \{P'\} \ cmd \ \{Q'\} \quad Q' \rightarrow Q$$
$$+ \{P\} \ cmd \ \{Q\}$$

B. Wolff - Ingé. 2 - Proof-Intro

 $\vdash \{P\} \text{ WHILE } cond \text{ DO } c \text{ } \{P \land \neg cond\}$ $\vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \rightarrow Q$ $\vdash \{P\} \ cmd \ \{Q\}$

Hoare – Logic: A Proof System for Programs

PL + E + A + Hoare (simplified binding) at a glance

$$\overline{\vdash \{P\} \text{ SKIP } \{P\}} \qquad \overline{\vdash \{P[x \mapsto E]\} \text{ } \mathbf{x} :== \mathbf{E}\{P\}}$$

30

B. Wolff - Ingé. 2 - Proof-Intro

Verification: Test or Proof

Test

- Requires Testability of Programs (initialitzable, reproducible behaviour, sufficient control over non-determinism)
- Can be also Work-Intensive !!!
- Requires Test-Tools
- Requires a Formal Specification
- Makes Test-Hypothesis, which can be hard to justify!

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

31

12/03/18

Verification: Test or Proof

Test

- Requires Testability of Programs (initialitzable, reproducible behaviour, sufficient control over non-determinism)
- Can be also Work-Intensive !!!
- Requires Test-Tools
- Requires a Formal Specification
- Makes Test-Hypothesis, which can be hard to justify!

Verification: Test or Proof

Test

- Requires Testability of Programs (initialitzable, reproducible behaviour, sufficient control over non-determinism)
- Can be also Work-Intensive !!!
- Requires Test-Tools
- Requires a Formal Specification
- Makes Test-Hypothesis, which can be hard to justify!

B. Wolff - Ingé. 2 - Proof-Intro

31

Verification: Test or Proof

Test

- Requires Testability of Programs (initialitzable, reproducible behaviour, sufficient control over non-determinism)
- Can be also Work-Intensive !!!
- Requires Test-Tools
- Requires a Formal Specification
- Makes Test-Hypothesis, which can be hard to justify!

12/03/18

Summary

Formal Proof

- Can be very hard up to infeasible (no one will probably ever prove correctness of MS Word!)
- Proof Work typically exceeds Programming work by a factor 10!
- Tools and Tool-Chains necessary
- Makes assumptions on language, method, toolcorrectness, too !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

32

Summary

Formal Proof

- Can be very hard up to infeasible (no one will probably ever prove correctness of MS Word!)
- Proof Work typically exceeds Programming work by a factor 10!
- Tools and Tool-Chains necessary
- Makes assumptions on language, method, toolcorrectness, too !

2/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Summary

Formal Proof

- Can be very hard up to infeasible (no one will probably ever prove correctness of MS Word!)
- Proof Work typically exceeds Programming work by a factor 10!
- Tools and Tool-Chains necessary
- Makes assumptions on language, method, toolcorrectness, too !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

ω

Summary

Formal Proof

- Can be very hard up to infeasible (no one will probably ever prove correctness of MS Word!)
- Proof Work typically exceeds Programming work by a factor 10!
- Tools and Tool-Chains necessary
- Makes assumptions on language, method, toolcorrectness, too !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Validation: Test or Proof (end)

Test and Proof are Complementary ...

- ... and extreme ends of a continuum : from static analysis to formal proof of "deep system properties"
- get the best results with a (usually limited) budget !!! In practice, a good "verification plan" will be necessary to
- detect parts which are easy to test
- detect parts which are easy to prove
- good start: maintained formal specification
- this leaves room for changes in the conception
- ... and for different implementation of sub-components

B. Wolff - Ingé. 2 - Proof-Intro

33

Validation: Test or Proof (end)

Test and Proof are Complementary ...

- ... and extreme ends of a continuum : from static analysis to formal proof of "deep system properties"
- get the best results with a (usually limited) budget !!! In practice, a good "verification plan" will be necessary to
- detect parts which are easy to test
- detect parts which are easy to prove
- good start: maintained formal specification
- rhis leaves room for changes in the conception ... and for different implementation of sub-components

Validation: Test or Proof (end)

Test and Proof are Complementary ...

- ... and extreme ends of a continuum : from static analysis to formal proof of "deep system properties"
- get the best results with a (usually limited) budget !!! In practice, a good "verification plan" will be necessary to
- detect parts which are easy to test
- detect parts which are easy to prove
- good start: maintained formal specification
- this leaves room for changes in the conception
- ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Validation: Test or Proof (end)

Test and Proof are Complementary ...

- ... and extreme ends of a continuum : from static analysis to formal proof of "deep system properties"
- get the best results with a (usually limited) budget !!! In practice, a good "verification plan" will be necessary to
- detect parts which are easy to test
- detect parts which are easy to prove
- good start: maintained formal specification
- this leaves room for changes in the conception
- ... and for different implementation of sub-components

12/03/18

Hoare - Logic: Outlook

Can we be sure, that the logical systems are consistent?

Well, yes, practically. (See Hales Article in AMS: "Formal Proof", 2008. http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification "means" what we intend?

what we have in mind? But when can we ever be entirely sure that we know But at least, we can gain confidence validating specs, i.e. by Well, no.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

animation and test, thus, by experimenting with them ...

34

Hoare - Logic: Outlook

Can we be sure, that the logical systems are consistent?

Well, yes, practically. (See Hales Article in AMS: "Formal Proof", 2008. http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification "means" what we intend?

animation and test, thus, by experimenting with them ... what we have in mind? But when can we ever be entirely sure that we know But at least, we can gain confidence validating specs, i.e. by Well, no.

B. Wolff - Ingé. 2 - Proof-Intro

12/03/18

Hoare - Logic: Outlook

consistent? Can we be sure, that the logical systems are

Well, yes, practically. (See Hales Article in AMS: "Formal Proof", 2008. http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification "means" what we intend?

Well, no.

what we have in mind? But when can we ever be entirely sure that we know

animation and test, thus, by experimenting with them ... But at least, we can gain confidence validating specs, i.e. by

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

Hoare - Logic: Outlook

consistent? Can we be sure, that the logical systems are

Well, yes, practically. (See Hales Article in AMS: "Formal Proof", 2008. http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification "means" what we intend?

Well, no.

what we have in mind? But when can we ever be entirely sure that we know

But at least, we can gain confidence validating specs, i.e. by animation and test, thus, by experimenting with them ...

12/03/18

34

B. Wolff - Ingé. 2 - Proof-Intro