2017-2018
POLYTECH"
PARIS-SUD

Cycle Ingénieur — 2°™ année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification
(1)

Burkhart Wolff
Département Informatique
Université Paris-Sud / Orsay

2017-2018
POLYTECH®
PARIS-SUD

Cycle Ingénieur — 2" année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification
(1)

Burkhart Wolff
Département Informatique
Université Paris-Sud / Orsay

2017-2018
POLYTECH"
PARIS-SUD

Cycle Ingénieur — 2°™ année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification
(1)

Burkhart Wolff
Département Informatique
Université Paris-Sud / Orsay

2017-2018
POLYTECH®
PARIS-SUD

Cycle Ingénieur — 2" année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification
(1)

Burkhart Wolff
Département Informatique
Université Paris-Sud / Orsay

Difference between Validation and
Verification

0 Validation :

> Does the system meet the clients requirements ?
> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

0 Verification: Does the system meet the specification ?
Do we build the system right ?
Is it « correct » ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Difference between Validation and
Verification

0 Validation :

> Does the system meet the clients requirements ?
> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

0 Verification: Does the system meet the specification ?

Do we build the system right ?
Is it « correct » ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Difference between Validation and
Verification

0 Validation :

> Does the system meet the clients requirements ?
> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

0 Verification: Does the system meet the specification ?
Do we build the system right ?
Is it « correct » ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Difference between Validation and
Verification

0 Validation :

> Does the system meet the clients requirements ?
> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

O

Verification: Does the system meet the specification ?

Do we build the system right ?
Is it « correct » ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

What are the limits of test-based
verification

Q

a

Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a ,realistic® assumption, but not always)

Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 3

What are the limits of test-based
verification

]

Q

Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a ,realistic" assumption, but not always)

Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 3

What are the limits of test-based
verification

[m]

Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a ,realistic® assumption, but not always)

Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 3

What are the limits of test-based
verification

O

Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a ,realistic" assumption, but not always)

Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 3

How to do Verification ?

Q In the sequel, we
concentrate on Verification
by Proof Techniques ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

How to do Verification ?

0 In the sequel, we
concentrate on Verification
by Proof Techniques ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

How to do Verification ?

0 In the sequel, we
concentrate on Verification
by Proof Techniques ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

How to do Verification ?

0 In the sequel, we
concentrate on Verification
by Proof Techniques ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits from Shapes
attributes
a : Integer
b : Integer

c : Integer

operations
mk (Integer, Integer, Integer) :Triangle
is Triangle(): triangle

end

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits from Shapes
attributes
a : Integer
b : Integer
c : Integer

operations
mk (Integer, Integer, Integer) : Triangle
is Triangle(): triangle

end

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits from Shapes
attributes
a : Integer
b : Integer

c : Integer

operations
mk (Integer, Integer, Integer) : Triangle
is Triangle(): triangle

end

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits from Shapes
attributes
a : Integer
b : Integer
c : Integer

operations
mk (Integer, Integer, Integer) : Triangle
is Triangle(): triangle

end

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:

inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0O<a and 0<b and 0<c
inv triangle : atb>c and bt+c>a and c+a>b

context Triangle::isTriangle ()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and

(a=b or b=c or a=c))implies result=isosceles

post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary

The specification in UML/OCL (Classes in USE Notation):

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example : Triangle

Standard example : Triangle

context Triangles:

inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0O<a and 0<b and 0<c
inv triangle : atb>c and bt+c>a and c+a>b

context Triangle::isTriangle ()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and
(a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary

12/03/18

The specification in UML/OCL (Classes in USE Notation):

context Triangles:

inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0<a and 0<b and 0<c
inv triangle : a+b>c and Dbtc>a and ct+a>b

context Triangle::isTriangle ()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and

(a=b or b=c or a=c))implies result=isosceles

post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary

The specification in UML/OCL (Classes in USE Notation):

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

B. Wolff - Ingé. 2 - Proof-Intro 6

Standard example : Triangle

context Triangles:

inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0<a and 0<b and 0<c
inv triangle : at+b>c and Dbtc>a and ct+a>b

context Triangle::isTriangle ()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and
(a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 6

Standard example: Triangle

|
procedure triangle(j,k,1l : positive) is
eg: natural := 0;
begin
if j + k<=lork+ 1 <= 7Jjor l + j <=k then
put (“impossible”) ;

Standard example: Triangle

|
procedure triangle(j,k,1l : positive) is
eg: natural := 0;
begin
if j + k<=1lork+1 <= jor l + j <=k then
put (“impossible”) ;

else if j = k then eg := eg + 1; end if; else if j = k then eg := eg + 1; end if;
if j =1 then eg := eg + 1; end if; if j =1 then eg := eg + 1; end if;
if 1 =k then eg := eg + 1; end if; if 1 =k then eg := eg + 1; end if;
if eg = 0 then put(“quelconque”); if eg = 0 then put(“quelconque”);
elsif eg = 1 then put (“isocele”); elsif eg = 1 then put (“isocele”);
else put (“equilateral”); else put (“equilateral”);
end if; end if;

end if; end if;

end triangle;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example: Triangle

|
procedure triangle(j,k,l : positive) is
eg: natural := 0;
begin
if j + k<=lork+ 1 <= 7jor l + j <=k then
put (“impossible”) ;

else if j = k then eg := eg + 1; end if;
if 7 =1 then eg := eg + 1; end if;
if 1 = k then eg := eg + 1; end if;
if eg = 0 then put(“quelconque”);
elsif eg = 1 then put (“isocele”);
else put (“equilateral”);
end if;

end if;

end triangle;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

end triangle;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example: Triangle

|
procedure triangle(j,k,l : positive) is
eg: natural := 0;
begin
if j+ k<=lork+ 1 <= 3jor l + j <=k then
put (“impossible”) ;

else if 7§ = k then eg := eg + 1; end if;
if 7 =1 then eg := eg + 1; end if;
if 1 = k then eg := eg + 1; end if;
if eg = 0 then put(“quelconque”);
elsif eg = 1 then put (“isocele”);
else put (“equilateral”);
end if;

end if;

end triangle;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then
if n=0 then 1

else x*exp(x,n-1)

endif
else OclUndefined endif

context Integer exponent (n:Integer) :Real

pre true

post result = if n>= 0 then exp(self,n)

else 1 / exp(self,-n) endif

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then
if n=0 then 1

else x*exp(x,n-1)

endif
else OclUndefined endif

context Integer exponent (n:Integer) :Real
pre true

post result = if n>= 0 then exp(self,n)

else 1 / exp(self,-n) endif

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then
if n=0 then 1

else x*exp(x,n-1)

endif
else OclUndefined endif

context Integer exponent (n:Integer) :Real

pre true

post result = if n>= 0 then exp(self,n)

else 1 / exp(self,-n) endif

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then
if n=0 then 1

else x*exp(x,n-1)

endif
else OclUndefined endif

context Integer exponent (n:Integer) :Real
pre true

post result = if n>= 0 then exp(self,n)

else 1 / exp(self,-n) endif

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop
if P mod 2 <> 0 then P
S:= S*S; P := P div 2;
end loop;

These programs have the following characteristics:

> one is more efficient, but more difficult to test

> good tests for one program are not necessarily
god for the other

P-1; S := S*X; end if;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop
if P mod 2 <> 0 then P := P-1; S := S*X; end if;
S:= S*S; P := P div 2;
end loop;

These programs have the following characteristics:

> one is more efficient, but more difficult to test

> good tests for one program are not necessarily
god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop
if P mod 2 <> 0 then P
S:= S*S; P := P div 2;
mbawoown

P-1; S := S*X; end if;

These programs have the following characteristics:

> one is more efficient, but more difficult to test

> good tests for one program are not necessarily
god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop
if P mod 2 <> 0 then P := P-1; S := S*X; end if;
S:= S*S; P := P div 2;
end loop;

These programs have the following characteristics:

> one is more efficient, but more difficult to test

> good tests for one program are not necessarily
god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro

How to do Verification ?

0 How fo PROVE that the
programs meet the
specification ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

How to do Verification ?

0 How to PROVE that the
programs meet the
specification ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

How to do Verification ?

0 How fo PROVE that the
programs meet the
specification ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

How to do Verification ?

0 How to PROVE that the
programs meet the
specification ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

®

®

POLYTECH"
PARIS-SUD

Introduction to
proof-based

program verification

POLYTECH®
PARIS-SUD

Introduction to
proof-based

program verification

2017-2018

2017-2018

®

®

POLYTECH"
PARIS-SUD

Introduction to
proof-based

program verification

POLYTECH’
PARIS-SUD

Introduction to
proof-based

program verification

2017-2018

2017-2018

The role of formal proof

0 formal proofs are another technique for program validation

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!
0 formal proofs as verification technique can:

> verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

> verify that a program “fits” to a concrete design model.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 12

The role of formal proof

0 formal proofs are another technique for program validation

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!
0 formal proofs as verification technique can:

> verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

> verify that a program “fits” to a concrete design model.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 12

The role of formal proof

0 formal proofs are another technique for program validation

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!
0 formal proofs as verification technique can:

> verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

> verify that a program “fits” to a concrete design model.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 12

The role of formal proof

0 formal proofs are another technique for program validation

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

O

formal proofs as verification technique can:

> verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

> verify that a program “fits” to a concrete design model.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 12

Who is using formal proofs in industry?

0 Hardware Suppliers:

> INTEL: Proof of Floating Point Computation compliance
to IEEE754

> INTEL: Correctness of Cash-Memory-Coherence Protocols
> AMD: Correctness of Floating-Point-Units againt Design-Spec

> GemPlus: Verification of Smart-Card-Applications in
Security

0 Software Suppliers:
> MicroSoft: Many Drivers running in , Kernel Mode"
were verified

> MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 13

Who is using formal proofs in industry?

0 Hardware Suppliers:

> INTEL: Proof of Floating Point Computation compliance
to IEEE754

> INTEL: Correctness of Cash-Memory-Coherence Protocols
> AMD: Correctness of Floating-Point-Units againt Design-Spec

> GemPlus: Verification of Smart-Card-Applications in
Security

0 Software Suppliers:
> MicroSoft: Many Drivers running in ,, Kernel Mode"
were verified

> MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 13

Who is using formal proofs in industry?

0 Hardware Suppliers:

> INTEL: Proof of Floating Point Computation compliance
to IEEE754

> INTEL: Correctness of Cash-Memory-Coherence Protocols
> AMD: Correctness of Floating-Point-Units againt Design-Spec

> GemPlus: Verification of Smart-Card-Applications in
Security

0 Software Suppliers:
> MicroSoft: Many Drivers running in ,Kernel Mode"
were verified

> MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 13

Who is using formal proofs in industry?

0 Hardware Suppliers:

> INTEL: Proof of Floating Point Computation compliance
to IEEE754

> INTEL: Correctness of Cash-Memory-Coherence Protocols
> AMD: Correctness of Floating-Point-Units againt Design-Spec

> GemPlus: Verification of Smart-Card-Applications in
Security

0 Software Suppliers:
> MicroSoft: Many Drivers running in ,,Kernel Mode"
were verified

> MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 13

Who is using formal proofs in industry?

0 For the highest certification levels along the lines
of the Common Criteria, formal proofs are
> recommended (EAL6)
> mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

0 For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 14

Who is using formal proofs in industry?

0 For the highest certification levels along the lines
of the Common Criteria, formal proofs are
> recommended (EAL6)
> mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

0 For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.

(The tools validating them use internally automated proofs).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 14

Who is using formal proofs in industry?

0 For the highest certification levels along the lines
of the Common Criteria, formal proofs are
> recommended (EAL6)
> mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

0 For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 14

Who is using formal proofs in industry?

0 For the highest certification levels along the lines
of the Common Criteria, formal proofs are
> recommended (EAL6)
> mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

0 For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 14

Pre-Rerquisites of Formal Proof Techniques Pre-Rerquisites of Formal Proof Techniques

| |
0 A Formal Specification (OCL, but also Z, VDM, CSP, B, ...) 0 A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
> know-how over the application domain > know-how over the application domain
> informal and formal requirements of the system > informal and formal requirements of the system
0 Either a formal model of the programming language 0 Either a formal model of the programming language
or a trusted code-generator from concrete design specs or a trusted code-generator from concrete design specs
0 Tool Chains to generate, simplify, and solve large formulas 0 Tool Chains to generate, simplify, and solve large formulas
(decision procedures) (decision procedures)
0 Proof Tools and Proof Checker: proofs can also be false ... 0 Proof Tools and Proof Checker: proofs can also be false ...
Nous, on le fera a la main ;-(Nous, on le fera a la main ;-(
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 15 12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 15
Pre-Rerquisites of Formal Proof Techniques Pre-Rerquisites of Formal Proof Techniques
___| ___|
0 A Formal Specification (OCL, but also Z, VDM, CSP, B, ...) 0 A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
> know-how over the application domain > know-how over the application domain
> informal and formal requirements of the system > informal and formal requirements of the system
0 Either a formal model of the programming language 0 Either a formal model of the programming language
or a trusted code-generator from concrete design specs or a trusted code-generator from concrete design specs
0 Tool Chains to generate, simplify, and solve large formulas 0 Tool Chains to generate, simplify, and solve large formulas
(decision procedures) (decision procedures)
0 Proof Tools and Proof Checker: proofs can also be false ... 0 Proof Tools and Proof Checker: proofs can also be false ...
Nous, on le fera a la main ;-(Nous, on le fera a la main ;-(

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 15 12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 15

Foundations: Proof Systems

0 An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

A, ... A,

\wilTH

“from the assumptions A, to A,, you can infer
the conclusion 4, ,." A rule with n=0 is an

elementary fact. Variables occuring in the
formulas A4, can be arbitraryly substituted.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 16

Foundations: Proof Systems

0 An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

A, ... A,

\w,:luw

“from the assumptions A, to A,, you can infer
the conclusion 4, ,." A rule with n=0 is an

elementary fact. Variables occuring in the
formulas A4, can be arbitraryly substituted.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 16

Foundations: Proof Systems

0 An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

Ay ... A,

\VSWTH

“from the assumptions A, to A,, you can infer
the conclusion 4, ,." A rule with n=0 is an

elementary fact. Variables occuring in the
formulas A4, can be arbitraryly substituted.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 16

Foundations: Proof Systems

0 An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

A, ... A,

\wiTTH

“from the assumptions A, to 4,, you can infer
the conclusion 4, ,.” A rule with n=0 is an

elementary fact. Variables occuring in the
formulas A4, can be arbitraryly substituted.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 16

Foundations: Proof Systems

0 An Inference System for the equality operator
(or “Equational Logic”) looks like this:

=1y T=Y Y=2
T=2 y==zx T =z
z=y P(x)
P(y)

(where the first rule is an elementary fact).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 17

Foundations: Proof Systems

0 An Inference System for the equality operator
(or “Equational Logic”) looks like this:

rT= Yy==x ==z
z=y P(z)
P(y)

(where the first rule is an elementary fact).

Foundations: Proof Systems

0 An Inference System for the equality operator
(or “Equational Logic”) looks like this:

=1y T=Y Y=2
T=x y==x T=z
z=y P(x)
P(y)

(where the first rule is an elementary fact).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 17

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 17

Foundations: Proof Systems

0 An Inference System for the equality operator
(or “Equational Logic”) looks like this:

T= Yy==x =2z
z=y P(z)
P(y)

(where the first rule is an elementary fact).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 17

Foundations: Proof Systems

|
0 A series of inference rule applications is usually

displayed as Proof Tree (or : Derivation)

0 The non-elemantary facts are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

|
0 A series of inference rule applications is usually

displayed as Proof Tree (or : Derivation)

.\,APS =a .\.CA@,S,S =cC
fla,b) =a fla,b) =c

0 The non-elemantary facts are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

|
0 A series of inference rule applications is usually

displayed as Proof Tree (or : Derivation)

0 The non-elemantary facts are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

|
0 A series of inference rule applications is usually

displayed as Proof Tree (or : Derivation)

\APS =a .\.CAPS“S =cC
fla,b) =a fa,b) =c

0 The non-elemantary facts are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

0 As a short-cut, we also write for a derivation:

{f(a,b) = a, f(f(a,b),b) = c} - g(a) = g(c)

... or generally speaking: from global
assumptions 4 to a theorem (in theory E) ¢:

AFg ¢

This is what theorems are: derivable facts from

assumptions in a certain logical system ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 19

Foundations: Proof Systems

0 As a short-cut, we also write for a derivation:

{f(a,b) = a, f(f(a,b),b) = c} - g(a) = g(c)

... or generally speaking: from global
assumptions 4 to a theorem (in theory E) ¢:

AFg ¢

This is what theorems are: derivable facts from

Foundations: Proof Systems

0 As a short-cut, we also write for a derivation:

{f(a,b) = a, f(f(a,b),b) = c} - g(a) = g(c)

... or generally speaking: from global
assumptions A4 to a theorem (in theory E) ¢:

AFg ¢

This is what theorems are: derivable facts from
assumptions in a certain logical system ...

assumptions in a certain logical system ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 19

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 19

Foundations: Proof Systems

0 As a short-cut, we also write for a derivation:

{f(a,b) = a, f(f(a,b),b) = c} - g(a) = g(c)

... or generally speaking: from global
assumptions A4 to a theorem (in theory E) ¢:

AFg ¢

This is what theorems are: derivable facts from
assumptions in a certain logical system ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 19

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4] [B]
A B AVB Q Q
AVB AVB 0
4, B]

A B AAB AAB AAB Q
AAB A B 0

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 20

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4] [B]
A B AVB Q Q
AVB AVB Q
4, B]

A B AAB AAB AAB Q
AAB A B 0

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 20

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4] [B]
A B AVB Q Q
AVB AVB 0
4, B]

A B AAB AAB AAB Q
AAB A B Q

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 20

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4] [B]
A B AVB Q Q
AVB AVB Q
4, B]

A B AANB AAB AAB Q
AAB A B 0

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 20

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4]
False : ——A A
B
4]
P—-@Q P m
Q A— B
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 21

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

[A]
False . ——A A
A A A A
B
A
P->Q P B
Q A— B

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 21

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4]
False : ——A A
B
4]
P—->(@Q P W
Q A— B
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 21

A Proof System for Propositional Logic

0 Propositional Logic (PL) in so-called natural deduction:

4]
False : ——A A
A -A A A

B

4

P->Q P B

Q A— B
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 21

A Proof System for Propositional Logic

0 PL + E + Arithmetics (A) in so-called natural deduction:

l+z#x 1+ z=14y) —mz=y

P(0) Vz. P(x) — P(1+x)
Vz.P(z)

l+z)+y=1+(z+vy)

z+y=y+zx z+y+z2)=(x+y)+2

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 22

A Proof System for Propositional Logic

0 PL + E + Arithmetics (A) in so-called natural deduction:

l+z#zx 1+ z=14+y) —»z=y

P(0) Vz. P(z) —» P(1+x)
Vz.P(z)

l1+z)+y=1+(x+vy)

rt+y=y+z z+y+z)=((+y) +=2

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 22

A Proof System for Propositional Logic

0 PL + E + Arithmetics (A) in so-called natural deduction:

l+z#x 1+ z=14y) »z=y

P(0) Vz. P(x) — P(1+x)
Vz.P(z)

l+z)+y=1+(z+y)

r+y=y+z z+y+z2)=(x+y)+2

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 22

A Proof System for Propositional Logic

0O PL + E + Arithmetics (A) in so-called natural deduction:

l+z#zx 1+ z=14+y —mz=y

P(0) Vz. P(z) — P(1+x)
Vz.P(z)

I+z)+y=1+4+(z+y)

rt+y=y+z z+y+z)=((+y) +=2

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 22

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?77

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?77

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?77

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?7?77

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?77
Well, yes !

There are actually lots of possibilities ...

0 We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs ?7??
Well, yes !

There are actually lots of possibilities ...

0 We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs 7?77
Well, yes !

There are actually lots of possibilities ...

0 We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare — Logic: A Proof System for Programs

0 Now, can we build a

Logic for Programs ?7??
Well, yes !

There are actually lots of possibilities ...

O

We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare — Logic: A Proof System for Programs

0 Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

>

the empty command SKIP
the assignment x:==E
the sequential compos. c_ ; c

(x e V)

1 2

IF cond THEN c, ELSE C,
WHILE cond DO c

the conditional

the loop

where ¢, ¢, ¢, are cmd's, V variables,

12/03/18

E an arithmetic expression, cond a boolean expr.

B. Wolff - Ingé. 2 - Proof-Intro 25

Hoare — Logic: A Proof System for Programs

0 Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

>

the empty command SKIP
the assignment x:==E

the sequential compos. c ;¢

(x e V)

2

IF cond THEN C, ELSE C,
WHILE cond DO c

the conditional

the loop

where ¢, c, C, are cmd's, V variables,

12/03/18

E an arithmetic expression, cond a boolean expr.

B. Wolff - Ingé. 2 - Proof-Intro 25

Hoare — Logic: A Proof System for Programs

0 Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

>

the empty command SKIP
the assignment X:=
the sequential compos. ¢, ; ¢

E (xeV)

1 2

IF cond THEN c, ELSE C,
WHILE cond DO c

the conditional

the loop

where ¢, c,, C, are cmd's, V variables,
E an arithmetic expression, cond a boolean expr.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro 25

Hoare — Logic: A Proof System for Programs

0 Basis: IMP, (following Glenn Wynskell's Book)

We have the following commands (cmd)

>

the empty command SKIP
the assignment x:==E

the sequential compos. c ;¢

(x e V)

2

IF cond THEN C, ELSE C,
WHILE cond DO c

the conditional

the loop

where ¢, c,, C, are cmd's, V variables,
E an arithmetic expression, cond a boolean expr.

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro 25

Hoare — Logic: A Proof System for Programs Hoare — Logic: A Proof System for Programs

0 Core Concept: A Hoare Triple consisting ... 0 Core Concept: A Hoare Triple consisting ...
» of a pre-condition P > of a pre-condition P
> a post-condition Q > a post-condition O
> and a piece of program cmd > and a piece of program cmd
written: written:

= {P} cmd {Q} = {P} emd {Q}

P and Q are formulas over the variables V, P and Q are formulas over the variables V,
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 26 12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 26
Hoare — Logic: A Proof System for Programs Hoare — Logic: A Proof System for Programs
0 Core Concept: A Hoare Triple consisting ... 0 Core Concept: A Hoare Triple consisting ...
» of a pre-condition P » of a pre-condition P
> a post-condition Q > a post-condition Q
> and a piece of program cmd > and a piece of program cmd
written: written:

= {P} cmd {Q} - {P} cmd {Q}

P and Q are formulas over the variables V, P and Q are formulas over the variables V,

—so they can be seen as set of possible states. —so they can be seen as set of possible states.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 26 12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 26

Hoare Logic vs. Symbolic Execution

e HL is also based notion of a symbolic state.

mﬂmﬂm& = V - Set(D)

As usual, we denote sets by
{xX|E }

where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 27

Hoare Logic vs. Symbolic Execution

. |
e HL is also based notion of a symbolic state.

mﬂmﬁmz = V - Set(D)

As usual, we denote sets by
{X|E }

where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 27

Hoare Logic vs. Symbolic Execution

e HL is also based notion of a symbolic state.

mﬂm,ﬁm& = V - Set(D)

As usual, we denote sets by
{X|E }

where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 27

Hoare Logic vs. Symbolic Execution

|
e HL is also based notion of a symbolic state.

mnm.nm& = V - Set(D)

As usual, we denote sets by
{xX|E }

where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 27

Hoare Logic vs. Symbolic Execution

e However, instead of:

|- {o::state_ | Pre(o(X)), ..., o (X)}

sym
cmd
lo::state_ | Post(a(X,), ..., o (X)}

sym

where Pre and Post are sets of states.
we just write:

|- {Pre} cmd {Post}

where Pre and Post are expressions over program
-~ variables. —

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 28

Hoare Logic vs. Symbolic Execution

e However, instead of:

|- {o::state_ | Pre(o(X)), ..., o (X)}

sym
cmd
{o::state_ | Post(o(X,), ..., o (X)}

sym

where Pre and Post are sets of states.
we just write:

|- {Pre} cmd {Post}

wher

m
variabl
vartQauouia

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 28

Pre and Post are expressions over program
a

n

Hoare Logic vs. Symbolic Execution

e However, instead of:

|- {o::state_ | Pre(o(X)), ..., o (X)}

sym
cmd
lo::state_ | Post(a(X), ..., o (X)}

sym

where Pre and Post are sets of states.
we just write:

|- {Pre} cmd {Post}

where Pre and Post are expressions over program
-~ variables. ——— — —

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 28

Hoare Logic vs. Symbolic Execution

e However, instead of:

|- {o::state_ | Pre(o(X)), ..., o (X)}

sym
cmd
{o::state_ | Post(o(X), ..., o (X)}

sym

where Pre and Post are sets of states.
we just write:

|- {Pre} cmd {Post}

wher

m
variabl
\VATIELTEA]

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 28

Pre and Post are expressions over program
a

n

Hoare Logic vs. Symbolic Execution

e Intuitively:

- {Pre} cmd {Post}
Mmeans.

If a program cmd starts in a state
admitted by Pre if it terminates, that
the program must reach a state that satisfies

Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 29

Hoare Logic vs. Symbolic Execution

e Intuitively:

- {Pre} cmd {Post}
means.

If a program cmd starts in a state
admitted by Pre if it terminates, that
the program must reach a state that satisfies

Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 29

Hoare Logic vs. Symbolic Execution

e Intuitively:

- {Pre} cmd {Post}
Mmeans.

If a program cmd starts in a state
admitted by Pre if it terminates, that
the program must reach a state that satisfies

Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 29

Hoare Logic vs. Symbolic Execution

e Intuitively:

- {Pre} cmd {Post}
means.

If a program cmd starts in a state

admitted by Pre if it terminates, that

the program must reach a state that satisfies
Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 29

Hoare — Logic: A Proof System for Programs

0 PL + E + A + Hoare (simplified binding) at a glance:

-{P} SKIP {P} + {P[z — E]} x :== E{P}

F{P Acond} c{Q} F {P A -cond} d{Q}
- {P} IF cond THEN c ELSE d{Q}
- {P A cond} c {P}
+{P} WHILE cond DO ¢ {P A —cond}

P—-P +{P}emd{Q} Q —Q
= {P} emd {Q}

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 30

Hoare — Logic: A Proof System for Programs

0 PL + E + A + Hoare (simplified binding) at a glance:

F{P} SKIP {P} + {P[z— E|} x:== E{P}

F{P Acond} c {Q} F {P A-cond} d{Q}
F {P} IF cond THEN c ELSE d{Q}
- {P A cond} c {P}
+{P} WHILE cond DO ¢ {P A —cond}

PP +{P}emd{Q} Q —Q
- {P} cmd {Q}

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 30

Hoare — Logic: A Proof System for Programs

0 PL + E + A + Hoare (simplified binding) at a glance:

-{P} SKIP {P} } {P[z — E]} x :== E{P}

F{P Acond} c {Q} F {P A-cond} d{Q}
- {P} IF cond THEN c ELSE d{Q}
- {P A cond} c {P}
+{P} WHILE cond DO ¢ {P A —cond}

PP +F{P}emd{Q} Q —Q
= {P} emd {Q}

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 30

Hoare — Logic: A Proof System for Programs

0 PL + E + A + Hoare (simplified binding) at a glance:

F{P} SKIP {P} + {P[z— E|} x :== E{P}

F{P Acond} c {Q} F {PA-cond} d{Q}
- {P} IF cond THEN c ELSE d{Q}
F{P A cond} c {P}
+{P} WHILE cond DO c {P A —cond}

P—>P +F{P}emd{Q} Q —Q
= {P} emd {Q}

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 30

Verification : Test or Proof

Test

>

Requires Testability of Programs (initialitzable,
reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!
Requires Test-Tools
Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro 31

Verification : Test or Proof

Test

>

Requires Testability of Programs (initialitzable,
reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!
Requires Test-Tools
Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro 31

Verification : Test or Proof

Test

>

Requires Testability of Programs (initialitzable,
reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!
Requires Test-Tools
Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro 31

Verification : Test or Proof

Test

>

Requires Testability of Programs (initialitzable,
reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!
Requires Test-Tools
Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro 31

Summary

Formal Proof

\%

Can be very hard - up to infeasible (no one will

probably ever prove correctness of MS Word!)

\;7

by a factor 10!

v

v

Tools and Tool-Chains necessary

correctness, too !

Proof Work typically exceeds Programming work

Makes assumptions on language, method, tool-

12/03/18

Summary

Formal Proof

v

B. Wolff - Ingé. 2 - Proof-Intro

32

Can be very hard - up to infeasible (no one will

probably ever prove correctness of MS Word!)

\4

by a factor 10!

‘7’

v

Tools and Tool-Chains necessary

correctness, too !

Proof Work typically exceeds Programming work

Makes assumptions on language, method, tool-

12/03/18

B. Wolff - Ingé. 2 - Proof-Intro

32

Summary

Formal Proof

> Can be very hard - up to infeasible (no one will
probably ever prove correctness of MS Word!)

> Proof Work typically exceeds Programming work
by a factor 10!

> Tools and Tool-Chains necessary

> Makes assumptions on language, method, tool-
correctness, too !

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 32

Summary

Formal Proof

» Can be very hard - up to infeasible (no one will
probably ever prove correctness of MS Word!)

> Proof Work typically exceeds Programming work
by a factor 10!

> Tools and Tool-Chains necessary

> Makes assumptions on language, method, tool-
correctness, too !

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 32

Validation : Test or Proof (end)

Test and Proof are Complementary ...

0 ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

0 In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

> detect parts which are easy to test
> detect parts which are easy to prove
> good start: maintained formal specification
< this leaves room for changes in the conception
< ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Validation : Test or Proof (end)

Test and Proof are Complementary ...

0 ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

0 In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

> detect parts which are easy to test
> detect parts which are easy to prove
> good start: maintained formal specification
< this leaves room for changes in the conception
<« ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Validation : Test or Proof (end)

Test and Proof are Complementary ...

0 ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

0 In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

> detect parts which are easy to test
> detect parts which are easy to prove
> good start: maintained formal specification
< this leaves room for changes in the conception
< ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Validation : Test or Proof (end)

Test and Proof are Complementary ...

0 ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

0 In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

> detect parts which are easy to test
> detect parts which are easy to prove
> good start: maintained formal specification
< this leaves room for changes in the conception
< ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Hoare - Logic: Outlook

0 Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

:Eu“\\<<<<<<.m3m.oB\mBm\vﬂmmm\:m_mm-:oﬂm-amnom.jHB_v

> Can we ever be sure, that a specification "means” what
we intend ?

Well, no.

But when can we ever be entirely sure that we know

what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 34

Hoare - Logic: Outlook

0 Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

:Eo"\\<<<<<<.m3m.01@\mBm\cﬂmmm\:m_mm-:onm-amnom.::.:_v

> Can we ever be sure, that a specification "means” what
we intend ?

Well, no.

But when can we ever be entirely sure that we know

what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 34

Hoare — Logic: Outlook

0 Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

http://www.ams.org/a Bm\nﬂmmm\jm_mm-:onm-amnom.33;

> Can we ever be sure, that a specification "means” what
we intend ?

Well, no.

But when can we ever be entirely sure that we know
what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them .

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 34

Hoare — Logic: Outlook

0 Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

:QU”\\<<<<<<.mBm.oa\mBm\nﬂmmm\:m_mm-:onm-amnom._._.Qj_v

> Can we ever be sure, that a specification "means” what
we intend ?

Well, no.

But when can we ever be entirely sure that we know

what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 34

