
 2017-2018

Cycle Ingénieur – 2ème année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification

(II)
Burkhart Wolff

Département Informatique
Université Paris-Sud / Orsay

 2017-2018

Cycle Ingénieur – 2ème année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification

(II)
Burkhart Wolff

Département Informatique
Université Paris-Sud / Orsay

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

2

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

2

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

3

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

Well, yes !

There are actually lots of possibilities ...

" We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

3

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

Well, yes !

There are actually lots of possibilities ...

" We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

4

Hoare – Logic: A Proof System for Programs

" Basis: IMP, (following Glenn Wynskell's Book)

 We have the following commands (cmd)
the empty command SKIP
the assignment x:== E (x  V)

the sequential compos. c
1
 ; c

2

the conditional IF cond THEN c
1
 ELSE c

2

the loop WHILE cond DO c

where c, c
1
, c

2
, are cmd's, V variables,

E an arithmetic expression, cond a boolean expr.
12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I

I
4

Hoare – Logic: A Proof System for Programs

" Basis: IMP, (following Glenn Wynskell's Book)

 We have the following commands (cmd)
the empty command SKIP
the assignment x:== E (x  V)

the sequential compos. c
1
 ; c

2

the conditional IF cond THEN c
1
 ELSE c

2

the loop WHILE cond DO c

where c, c
1
, c

2
, are cmd's, V variables,

E an arithmetic expression, cond a boolean expr.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

5

Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

state
sym

 = V  Set(D)

 As usual, we denote sets by

{ x | E }

 where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

5

Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

state
sym

 = V  Set(D)

 As usual, we denote sets by

{ x | E }

 where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

6

Hoare – Logic: A Proof System for Programs

" Core Concept: A Hoare Triple consisting ...

of a pre-condition P
a post-condition Q
and a piece of program cmd

written:

P and Q are formulas over the variables V,
so they can be seen as set of possible states.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

6

Hoare – Logic: A Proof System for Programs

" Core Concept: A Hoare Triple consisting ...

of a pre-condition P
a post-condition Q
and a piece of program cmd

written:

P and Q are formulas over the variables V,
so they can be seen as set of possible states.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

7

Hoare Logic vs. Symbolic Execution

• However, instead of:

|– {σ::state
sym

 | Pre(σ(X
1
), ..., σ (X

n
)}

 cmd
 {σ::state

sym
 | Post(σ(X

1
), ..., σ (X

n
)}

 where Pre and Post are sets of states.
 we just write:

|– {Pre} cmd {Post}

 where Pre and Post are expressions over program
 variables.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

7

Hoare Logic vs. Symbolic Execution

• However, instead of:

|– {σ::state
sym

 | Pre(σ(X
1
), ..., σ (X

n
)}

 cmd
 {σ::state

sym
 | Post(σ(X

1
), ..., σ (X

n
)}

 where Pre and Post are sets of states.
 we just write:

|– {Pre} cmd {Post}

 where Pre and Post are expressions over program
 variables.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

8

Hoare Logic vs. Symbolic Execution

• Intuitively:

|– {Pre} cmd {Post}

 means:

If a program cmd starts in a state
 admitted by Pre if it terminates, that

the program must reach a state that satisfies
Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

8

Hoare Logic vs. Symbolic Execution

• Intuitively:

|– {Pre} cmd {Post}

 means:

If a program cmd starts in a state
 admitted by Pre if it terminates, that

the program must reach a state that satisfies
Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

9

Hoare – Logic: A Proof System for Programs

" PL + E + A + Hoare (simplified binding) at a glance:

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

9

Hoare – Logic: A Proof System for Programs

" PL + E + A + Hoare (simplified binding) at a glance:

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

10

Hoare – Logic: A Proof System for Programs

" The rule for the empty statement:

well, states do not change ...

Therefore, valid states remain valid.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

10

Hoare – Logic: A Proof System for Programs

" The rule for the empty statement:

well, states do not change ...

Therefore, valid states remain valid.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

11

Hoare – Logic: A Proof System for Programs

" The rule for the assignment:

Example (1):

 |–{1x ∧ x10} x:== x+2 {3x ∧ x12}

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

11

Hoare – Logic: A Proof System for Programs

" The rule for the assignment:

Example (1):

 |–{1x ∧ x10} x:== x+2 {3x ∧ x12}

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

12

Hoare – Logic: A Proof System for Programs

" The rule for the assignment

Example (2):

|– {true} x:== 2 {x=2}

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

12

Hoare – Logic: A Proof System for Programs

" The rule for the assignment

Example (2):

|– {true} x:== 2 {x=2}

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

13

Hoare – Logic: A Proof System for Programs

" The rule for the conditional:

essentially case-split.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

13

Hoare – Logic: A Proof System for Programs

" The rule for the conditional:

essentially case-split.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

14

Hoare – Logic: A Proof System for Programs

" The rule for the conditional:

Example (3):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

14

Hoare – Logic: A Proof System for Programs

" The rule for the conditional:

Example (3):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

15

Hoare – Logic: A Proof System for Programs

" The rule for the conditional:

Example (3):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

15

Hoare – Logic: A Proof System for Programs

" The rule for the conditional:

Example (3):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

16

Hoare – Logic: A Proof System for Programs

" The rule for the sequence:

essentially relational composition on state sets.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

16

Hoare – Logic: A Proof System for Programs

" The rule for the sequence:

essentially relational composition on state sets.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

17

Hoare – Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

17

Hoare – Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

18

Hoare – Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

18

Hoare – Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

19

Hoare – Logic: A Proof System for Programs

" The rule for the while-loop.

Critical: The invention of an Invariant P.

If we have an invariant (a predicate that remains
stable during loop taversal), then it must be true
after the loop. And if states after the loop exist,
the negation of the condition must be true.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

19

Hoare – Logic: A Proof System for Programs

" The rule for the while-loop.

Critical: The invention of an Invariant P.

If we have an invariant (a predicate that remains
stable during loop taversal), then it must be true
after the loop. And if states after the loop exist,
the negation of the condition must be true.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

20

Hoare – Logic: A Proof System for Programs

" The consequence rule:

Reflects the intuition that P' is a subset of legal
states P and Q is a subset of legal states Q'.
The only rule that is not determined by the
syntax of the program; it can be applied anywhere
in the (Hoare-) proof.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

20

Hoare – Logic: A Proof System for Programs

" The consequence rule:

Reflects the intuition that P' is a subset of legal
states P and Q is a subset of legal states Q'.
The only rule that is not determined by the
syntax of the program; it can be applied anywhere
in the (Hoare-) proof.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

21

Hoare – Logic: A Proof System for Programs

" The consequence rule:

Example (5) (continuation of Example ()):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

21

Hoare – Logic: A Proof System for Programs

" The consequence rule:

Example (5) (continuation of Example ()):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

22

Hoare – Logic: A Proof System for Programs

" A handy derived rule (False):

Proof: by induction over cmd !

A very handy corollary of this and the
consequence is rule (FalseE):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

22

Hoare – Logic: A Proof System for Programs

" A handy derived rule (False):

Proof: by induction over cmd !

A very handy corollary of this and the
consequence is rule (FalseE):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

23

Hoare – Logic: A Proof System for Programs

" Another handy corollary of (False):

Proof:
by consequence, while-rule,
P and cond-contradiction,
False-rule.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

23

Hoare – Logic: A Proof System for Programs

" Another handy corollary of (False):

Proof:
by consequence, while-rule,
P and cond-contradiction,
False-rule.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

24

Hoare – Logic: A Proof System for Programs

" Yet another handy corollary of (consequence):

Proof:
by consequence and the fact that P =P' infers
P → P'
Note: We will apply this rule implicitly, allowing local massage
of pre- and postconditions.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

24

Hoare – Logic: A Proof System for Programs

" Yet another handy corollary of (consequence):

Proof:
by consequence and the fact that P =P' infers
P → P'
Note: We will apply this rule implicitly, allowing local massage
of pre- and postconditions.

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

25

Hoare – Logic: A Proof System for Programs

" Example (6):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

25

Hoare – Logic: A Proof System for Programs

" Example (6):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

26

Hoare – Logic: A Proof System for Programs

" Example (6):

Proof:

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

26

Hoare – Logic: A Proof System for Programs

" Example (6):

Proof:

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

27

Hoare – Logic: A Proof System for Programs

" Example (6):

Note:

Hoare-Logic is a calculus for
partial correctness; on non-terminating
programs, it is possible to prove anything!

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

27

Hoare – Logic: A Proof System for Programs

" Example (6):

Note:

Hoare-Logic is a calculus for
partial correctness; on non-terminating
programs, it is possible to prove anything!

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

28

Hoare – Logic: A Proof System for Programs

" Example (7):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

28

Hoare – Logic: A Proof System for Programs

" Example (7):

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

29

Hoare – Logic: A Proof System for Programs

" Example (7):
Proof:

where I'' = I'[x ↦ x+1] and where we need solutions to:

 A = true → I
 B = I ∧ (x < 2) → 2  x
 C = I ∧ x <2 → I'[x ↦ x+1]
 D = I' → I

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

29

Hoare – Logic: A Proof System for Programs

" Example (7):
Proof:

where I'' = I'[x ↦ x+1] and where we need solutions to:

 A = true → I
 B = I ∧ (x < 2) → 2  x
 C = I ∧ x <2 → I'[x ↦ x+1]
 D = I' → I

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

30

Hoare – Logic: A Proof System for Programs

" Example (7):
Proof:

I must be true, this solves A, B, D
we are fairly free with an invariant I';

e.g. x  2 or x 5 do the trick !

 A = true → I
 B = I ∧ (x < 2) → 2  x
 C = I ∧ x <2 → I'[x ↦ x+1]
 D = I' → I

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

30

Hoare – Logic: A Proof System for Programs

" Example (7):
Proof:

I must be true, this solves A, B, D
we are fairly free with an invariant I';

e.g. x  2 or x 5 do the trick !

 A = true → I
 B = I ∧ (x < 2) → 2  x
 C = I ∧ x <2 → I'[x ↦ x+1]
 D = I' → I

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

31

Hoare – Logic: A Proof System for Programs

" Example (7):
Remarks:
This proof rises the idea of particular

construction method of Hoare-Proofs, which
can be automated:
- apply the consequence rule only at entry

 points of (the body of) loops (deterministic!)
- extract the implications used in these
 consequence rule
- try to find solutions for these implications
 (worst case: ask the user ...)

Essence of all: constraint solving of formulas ...
12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I

I
31

Hoare – Logic: A Proof System for Programs

" Example (7):
Remarks:
This proof rises the idea of particular

construction method of Hoare-Proofs, which
can be automated:
- apply the consequence rule only at entry

 points of (the body of) loops (deterministic!)
- extract the implications used in these
 consequence rule
- try to find solutions for these implications
 (worst case: ask the user ...)

Essence of all: constraint solving of formulas ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

32

Hoare – Logic: Summary

" ... in the essence, the Hoare Calculus
is an entirely syntactic game that constructs
a labelling of the program with assertions P, Q,
etc ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

32

Hoare – Logic: Summary

" ... in the essence, the Hoare Calculus
is an entirely syntactic game that constructs
a labelling of the program with assertions P, Q,
etc ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

33

Hoare-Logic : Summary

" Note: Validity is a « partial correctness notion »

proof under condition that the program
terminates. For non-terminating programs, the
calculus allows to prove anything

" The Proof-Method is therefore two-staged:
verify termination (find mesures for loops and

recursive calls that strictly decrease for each iteration)
prove partial correctness of the spec for the program

via a Hoare-Calculus (or a wp-calculus)

 total correctness = partial correctness + termination …
!

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

33

Hoare-Logic : Summary

" Note: Validity is a « partial correctness notion »

proof under condition that the program
terminates. For non-terminating programs, the
calculus allows to prove anything

" The Proof-Method is therefore two-staged:
verify termination (find mesures for loops and

recursive calls that strictly decrease for each iteration)
prove partial correctness of the spec for the program

via a Hoare-Calculus (or a wp-calculus)

 total correctness = partial correctness + termination …
!

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

34

Hoare – Logic: Summary

Theorem: Correctness of the
Hoare-Calculus

Theorem: Relative Correctness
of the Hoare-Calculus

where we define for a given semantic function C:

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

34

Hoare – Logic: Summary

Theorem: Correctness of the
Hoare-Calculus

Theorem: Relative Correctness
of the Hoare-Calculus

where we define for a given semantic function C:

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

35

Hoare – Logic: Summary

Formal Proof

Can be very hard – up to infeasible (no one will
probably ever prove correctness of MS Word!)

Proof Work typically exceeds Programming work
by a factor 10!

Tools and Tool-Chains necessary

Makes assumptions on language, method, tool-
correctness, too !

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

35

Hoare – Logic: Summary

Formal Proof

Can be very hard – up to infeasible (no one will
probably ever prove correctness of MS Word!)

Proof Work typically exceeds Programming work
by a factor 10!

Tools and Tool-Chains necessary

Makes assumptions on language, method, tool-
correctness, too !

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

36

Hoare – Logic: Outlook

" Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

 http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification “means” what
we intend ?

Well, no.
But when can we ever be entirely sure that we know what

we have in mind ?
But at least, we can gain confidence validating specs, i.e. by

animation and test, thus, by experimenting with them ...
12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I

I
36

Hoare – Logic: Outlook

" Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

 http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification “means” what
we intend ?

Well, no.
But when can we ever be entirely sure that we know what

we have in mind ?
But at least, we can gain confidence validating specs, i.e. by

animation and test, thus, by experimenting with them ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

37

Verification : Test or Proof

Test
Requires Testability of Programs (initialitzable,

reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!

Requires Test-Tools

Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

37

Verification : Test or Proof

Test
Requires Testability of Programs (initialitzable,

reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!

Requires Test-Tools

Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

38

Validation : Test or Proof (end)

Test and Proof are Complementary ...

" ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

" In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

detect parts which are easy to test
detect parts which are easy to prove
good start: maintained formal specification

! this leaves room for changes in the conception
! ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Based Verification I
I

38

Validation : Test or Proof (end)

Test and Proof are Complementary ...

" ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

" In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

detect parts which are easy to test
detect parts which are easy to prove
good start: maintained formal specification

! this leaves room for changes in the conception
! ... and for different implementation of sub-components

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

