
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
White-Box Tests

Burkhart Wolff
wolff@lri.fr

9/8/20 B. Wolff - GLA - White-Box Tests

Towards Static Specification-based Unit Test

❑ How can we test during development
(at coding time, even at design-time ?)

❑ How can we test “systematically”?
❑ What could be a test-generation method?
❑ What could be an algorithm to generate tests?
❑ What could be a coverage criterion ?

(or: adequacy criterion,
 telling that we “tested enough”)

9/8/20 B. Wolff - GLA - White-Box Tests

❑ Let’s exploit the structure of the program !!!

(and not, as before in specification based tests („black
box“-tests), depend entirely on the spec).

❑ Assumption: Programmers make most likely errors in
branching points of a program (Condition, While-Loop, ...),
but get the program “in principle right”.
(Competent programmer assumption)

❑ Lets develop a test method that exploits this !

9/8/20 B. Wolff - GLA - White-Box Tests

Static Structural (“white-box”) Tests

❑ we select “critical” paths
❑ specification used to verify the obtained resultants
Idea:
a path corresponds to one logical expression over initial values x0, y0, z0 .
 corresponding to one test-case (comprising several test data ...)
 ¬ Cond1(x0, y0, z0) ∧ ¬ Cond2(x0, y0, z0)

We are interested either in edges (control flow), or in nodes (data flow)

x0
y0
z0

results

x
y
z

Cond1(x,y,z)

Cond2(x,y,z)

9/8/20 B. Wolff - GLA - White-Box Tests

A Program for the triangle example

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;
 if eg = 0 then put(“arbitrary”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

9/8/20 B. Wolff - GLA - White-Box Tests

What are tests adapted to this program ?

❑ try a certain number of execution “paths”
(which ones ? all of them ?)

❑ find input values to stimulate these paths

❑ compare the results with expected values
(i.e. the specification)

9/8/20 B. Wolff - GLA - White-Box Tests

Functional-test vs. structural test?

Both are complementary and complete each other:

❑ Structural Tests have weaknesses in principle:
➢ if you forget a condition, the specification will most likely reveal this !
➢ if your algorithm is incomplete, a test on the spec has at least

a chance to find this ! (Example: perm generator with 3 loops)

9/8/20 B. Wolff - GLA - White-Box Tests

Functional-test vs. structural test?

Both are complementary and complete each other

❑ Structural Tests have weaknesses in principle:
for a given specification, there are several possible
implementations (working more or less differently from the spec):

➢ sorted arrays : linear search ? binary search ?
➢ (x, n) → xn : successive multiplication ? quadratic multiplication ?

 Each implementation demands for different test sets !

9/8/20 B. Wolff - GLA - White-Box Tests

Equivalent programs ...

Program 1 :
 S:=1; P:=N;
 while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program 2 :
 S:=1; P:= N;
 while P >= 1 loop
 if P mod 2 /= 0 then P := P –1; S := S*X; end if;
 S:= S*S; P := P div 2;
 end loop;

Both programs satisfy the same spec but …
➢ one is more efficient, but more difficult to test.

➢ test sets for one are not necessarily “good” for the other, too !

9/8/20 B. Wolff - GLA - White-Box Tests

Control Flow Graphs

A graph with oriented edges root E and an exit S,
➢ the nodes be either “elementary instruction blocs”

or “decision nodes” labelled by a predicate.
➢ the arcs indicate the control flow between the

elementary instruction blocs and decision nodes (control flow)

➢ all blocs of predicates are accessible from E and lead to S
(otherwise, dead code is to be supressed !)

elementary instruction blocs: a sequence of
➢ assignments
➢ update operations (on arrays, ..., not discussed here)
➢ procedure calls (not discussed here !!!)

• conditions and expressions are assumed to be side-effect free

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

Example:

S:=1;
P:=N;

while P >= 1
loop S:= S*X;
 P:= P-1;
end loop;

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

Example:

S:=1;
P:=N;

while P >= 1
loop S:= S*X;
 P:= P-1;
end loop;

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments
❑ eliminate if_then_else’s by branching

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments
❑ Erase if_then_elses by branching
❑ Erase while_loops by loop-arc, entry-arc, exit-arc

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments
❑ Erase if_then_elses by branching
❑ Erase while_loops by loop-arc, entry-arc, exit-arc

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments
Example:

P>=1

S:= S*X;
P:= P-1;

S:=1;
P:=N;

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments
❑ Erase if_then_elses by branching
❑ Erase while_loops by loops
❑ Add entry node and exit loop-arc, entry-arc, exit-arc

A Control-Flow-Graph (CFG) is usually a by-product of
a compiler ...

9/8/20 B. Wolff - GLA - White-Box Tests

❑ Example:
Add entry node and exit loop-arc, entry-arc, exit-arc

 S

EP>=1

S:= S*X;
P:= P-1;

S:=1;
P:=N;

9/8/20 B. Wolff - GLA - White-Box Tests

Q: What is the CFG

 of the body of triangle ?

9/8/20 B. Wolff - GLA - White-Box Tests

Revisiting our triangle example ...

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;
 if eg = 0 then put(“quelconque”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

9/8/20 B. Wolff - GLA - White-Box Tests

The non-structured control-flow graph of a program

B0 B1

B2

B3

B4

B5

B6B7

S

E

P1

P2

P3

P4

P5

P6

9/8/20 B. Wolff - GLA - White-Box Tests

A procedure with loop and return

procedure supprime (T: in out Table; p: in out integer;
 x: in integer) is

 i: integer := 1;
begin
 while i <> p loop
 if T[i].val <> x then i := i + 1;
 elsif i = p - 1 then p := p - 1; return;
 else T[i] := T[p-1]; p := p -1; return;
 end if;
 end loop;
end supprime;

9/8/20 B. Wolff - GLA - White-Box Tests

… and its control flow graph

Can we represent this
program as control-
 graph ???

B1

B2

B3

B4

S

E

P1

P2

P3

Sure …

9/8/20 B. Wolff - GLA - White-Box Tests

… and its control flow graph

 Are all paths actually
possible executions ?
Are they feasible paths ?

B0 B1

B2

B3

B4

B5

B6B7

S

E

P1

P2

P3

P4

P5

P

Consider:
[S,B0,P1,P2,B2,P3,B3,P4,P5,…]

9/8/20 B. Wolff - GLA - White-Box Tests

Paths and Path Conditions

❑ Some Terminology:

➢ initial path of M = path of the CFG starting at S
➢ path of M = path of the CFG starting at S and ending in E 

(a path corresponds to a complete execution of the procedure)

➢ for an initial path M, a predicate over the parameters and state
can be defined: the path-condition ΦM

➢ ΦM is exactly true over the initial values initiales of parameters
(and global variables) if the program will run exactly M for these parameters

➢ faisable paths : M is feasible exactly if a for parameters and global
variables concrete values exist such that M is executable.

 i.e. the path condition ΦM is satisfiable

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Path Conditions by Symbolic Execution

Let M be an initial path in the CFG of our program.
➢ we give symbolic values for each variable x0,y0,z0, ...

➢ we set the path condition Φ initially to the pre-condition
➢ We follow the path M, block for block:

➢ If the current block is an instruction block B:

 we execute symbolically B by memorising the new possible values
by predicates depending on x0,y0,z0, .. (“symbolically”)

➢ If the current block is a decision block P(x1,...,xn)
➢ if we follow the « true » arc we set Φ := Φ ∧ P(x1,...,xn),
➢ if we follow the «false» arc we set Φ := Φ ∧ ¬P(x1,...,xn).

The x1,…,xn are the symbolic values for the program variables

9/8/20 B. Wolff - GLA - White-Box Tests

Execution

• Execution is based on the notion of state.

 A state is a table (or: function) that maps
 a variable V to some value of a domain D.

 σ = V → D

• As usual, we denote finite functions as follows:

 { x ↦1, y ↦ 5, x ↦ 12 }

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic Execution

• In static program analysis, it is in general not
 possible to infer concrete values of D.

 However, it can be inferred a set of possible values.

• For example, if we know that

 x

0
 ∈ {1..10}

 and we have an assignment x:= x+2, we know:

 x

0
 ∈ {3..12} afterwards.

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic Execution

• This gives rise to the notion of a symbolic state.

 σsym = V → Set(D)

 We denote the set of possible values by a

 predicate over the initial state, so:

 x ↦ (1 ≤ x
0
 ∧ x

0
≤ 10)

• thus, after x:= x+2, we know:

 x ↦ (3 ≤ x
0
 ∧ x

0
≤ 12)

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic States and Substitutions

• An Example substitution:

 (x + 2 * y) {x ↦ 1, y ↦ x0}

 = 1 + 2 * x0

• An initial symbolic state is a map of the form:

 { x ↦ x0, y ↦ y0, z ↦ z0 }

9/8/20 B. Wolff - GLA - White-Box Tests

Basic Blocks as Substitutions

x0, y0 and z0 represent the initial values of x, y et z.

i is supposed to be a un-initialized local variable.

i := x+y+1
z := z+i

Block

i ↦ i0
z ↦ z0
y ↦ y0+3*x0
x ↦ x0

Symbolic Pre-State σsym Symbolic Post-State σ’sym

i ↦ y0+ 4*x0+1
z ↦ z0+y0+4*x0+1

x ↦ x0
y ↦ y0+3*x0

Thus, we update the symbolic state whenever we pass a
basic block on our path.

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic Execution

 x≥y

false

true

Φ ∧ (x≥y)σ

Thus, we update the path-condition whenever we pass a
decision node on our path.

Φ ∧ ¬(x≥y)σ

σsym

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Recall

procedure supprime (T: in out Table; p: in out integer;
 x: in integer) is

 i: integer := 1;
begin
 while i <> p loop
 if T[i] <> x then i := i + 1;
 elsif i = p - 1 then p := p - 1; return;
 else T[i] := T[p-1]; p := p - 1; return;
 end if;
 end loop;
end supprime;

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

… and the corresponding
control flow graph.

We want to execute the path:

 [S,B1,P1,E]

B1

B2

B3

B4

S

E

P1

P2

P3

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

We want to execute the path:

i ↦
x ↦

p0p ↦
T0T ↦

X0

i0

Φ ↦ True
[S, B1, P1, E]

Φ ↦ True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ ↦¬(i<>p)σΒ1

i ↦
x ↦

p0p ↦
T0T ↦

X0

1 i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ ↦ 1 = p0

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Result:

Test-Case:
 For the path M=[S,B1,P1,E]

 we have the path condition Φ ↦ p0 = 1

x ↦
p ↦
T ↦

1

mtTab

17

A concrete Test,
satisfying Φ

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

… and the corresponding
control flow graph.

We want to execute the path:

 [S,B1,P1,P2,B2,P1,E]

B1

B2

B3

B4

S

E

P1

P2

P3

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

We want to execute the path:
[S, B1, P1, P2, B2, P1, E]

i ↦
x ↦

p0p ↦
T0

 Φ ↦

x0

i0

p0

T0

x0

1

T ↦

 True True

(i<>p)σΒ1

≡ p0 ≠ 1

p0

T0

x0

1

(T[i]≠x)σΒ1

p0≠1 ∧

p0

T0

x0

1

p0≠1 ∧
T0[1]≠x0

p0

T0

x0

(i+1)σΒ1

p0≠1 ∧
T0[1] ≠ x0
∧¬(i<>p)σΒ2

p0

T0

x0

 2

p0≠1 ∧
T0[1] ≠ x0
∧ 2=p0

p0

T0

x0

 2

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Result: Test-Case for Path

M = [S,B1,P1,P2,B2,P1,E]

 Path Condition: Φ :=

T0[1]≠X0 ∧ p0=2

x ↦
p ↦
T ↦ [3]

17

2
A concrete Test,

satisfying Φ

9/8/20 B. Wolff - GLA - White-Box Tests

Paths and Test Sets

 In (this version of) program-based testing
a test case with a (feasable) path

❑ a test case ≈ a path M in the CFG
 = a collection of values for variables (params and global)

 (+ the output values described by the specification)

❑ a test case set ≈ a finite set of paths of the CFG
 = a finite set of input values and
 a set of expected outputs.

9/8/20 B. Wolff - GLA - White-Box Tests

Unfeasible paths and decidability

❑ In general, it is undecidable of a path is feasible ...

❑ In general, it is undecidable if a program will terminate ...

❑ In general, equivalence on two programs is undecidable …

❑ In general, a first-order formula over arithmetic is undecidable ...

❑ … Indecidable = it is known (mathematically proven)

that there is no algorithm; this is worse than

“we know none” !~

BUT: for many relevant programs, practically good solutions
 exist (Z3, Simplify, CVC4, AltErgo ...)

9/8/20 B. Wolff - GLA - White-Box Tests

A Challenge-Example (The Collatz-Function):

... A HAIRY EXAMPLE:

while x <> 1 loop
 if pair(x) then x := x / 2;
 else x := 3 * x + 1;
 end if;
 end loop;

- does this function terminate for all x ?
- or equivalently: is end loop reached for all x ?

ANSWER : unknown - this implies that we can not always know
that infeasible paths exist !

9/8/20 B. Wolff - GLA - White-Box Tests

The Triangle Prog without Unfeasible Paths

procedure triangle(j,k,l)
begin

 if j k<=l or k+l<=j or l+j<=k then put(“impossible”);

 elsif j = k and k = l then put(“equilateral”);

 elsif j = k or k =l or j = l then put(“isocele”)

 else put(“quelconque”);

end if;
end;

☞ In the contrary, there are programs where all paths are feasible

☞ That is rare, however.

☞ Worse: in practice the probability for a path to be feasible is

 smaller the longer the path gets.

9/8/20 B. Wolff - GLA - White-Box Tests

The notion of a “coverage criterion”

A coverage criterion is a predicate on CFG
characterising a particular subset of its paths …

• the set of paths covering all basic blocks

• the set of paths covering all instructions

• All loops are traversed

• A particular subset of calls occurring in the CFG
has been executed

• …

9/8/20 B. Wolff - GLA - White-Box Tests

Well-known Coverage Criteria I

 Criterion C = AllInstructions(CFG):

For all nodes N in CFG (basic instructions or decisions)
exists a path in C that contains N

9/8/20 B. Wolff - GLA - White-Box Tests

Well-known Coverage Criteria II

 Criterion C = AllTransitions(CFG):

For all arcs A in the CFG exists a
path in C that uses A

9/8/20 B. Wolff - GLA - White-Box Tests

Well-known Coverage Criteria III

 Criterion C=AllPaths(CFG):

All possible paths ...

☹ Whenever there is a loop, C is infinite !

☞ weaker variant: AllPathsk(CFG).

 We limit the paths through a loop to maximally k times …

☞ we have again a finite number of paths

9/8/20 B. Wolff - GLA - White-Box Tests

A Hierarchy of Coverage Criteria

❑ AllPaths(CFG) ⇒
 AllPathsk(CFG) ⇒

 AllTransitions(CFG) ⇒
 AllInstructions(CFG)

❑ Each of these implications reflects a proper containment;
the other way round is never true.

9/8/20 B. Wolff - GLA - White-Box Tests

Using Coverage Criteria 1

Source du
Programme

Graphe de Flot
de Contrôle

Critère de couverture
(défini à l’avance)

Ensemble fini de chemins
à parcourir pour satisfaire le critère

Ensemble fini de
valeurs d’entrée Spécification

Ensemble des
résultats espérés

Programme
compilé

Ensemble des
résultats obtenus

Verdict: OK / KO

Prédicats de
cheminement résolus ?

Problème potentiel
d’observation ?

❶

❷

9/8/20 B. Wolff - GLA - White-Box Tests

Summary

❑ We have developed a technique for program-based
tests

❑ ... based on symbolic execution
❑ ... used in tools like JavaPathFinder-SE or Pex
❑ Core-Concept: Feasible Paths in a Control Flow Graph
❑ Although many theoretical negative results on key

properties, good practical approximations are available
❑ CFG based Coverage Critieria give rise to a hierarchy

9/8/20 B. Wolff - GLA - White-Box Tests

Schmankerle

❑ Program:

int ???? (int a) {
 int i = 0;
 int tm = 1;
 int sum = 1;
 while(sum <= a) {

 i = i+1;
 tm = tm+2;
 sum = tm+sum;

 }
 return i;

}

