

L3 Mention Informatique Parcours Informatique et MIAGE

Génie Logiciel Avancé -Advanced Software Engineering White-Box Tests

Burkhart Wolff wolff@lri.fr

Towards Static Specification-based Unit Test

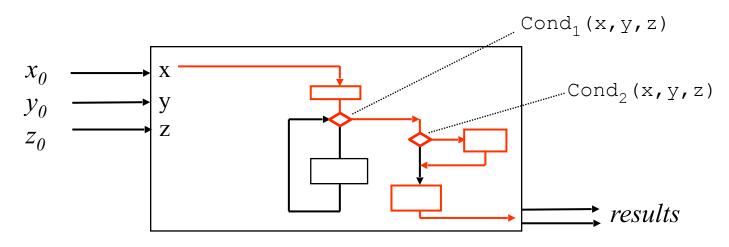
- How can we test during development (at coding time, even at design-time ?)
- How can we test "systematically"?
 - What could be a test-generation method?
 - What could be an algorithm to generate tests?
 - What could be a coverage criterion?
 (or: adequacy criterion, telling that we "tested enough")

Let's exploit the structure of the program !!!

(and not, as before in specification based tests ("black box"-tests), depend entirely on the spec).

- Assumption: Programmers make most likely errors in branching points of a program (Condition, While-Loop, ...), but get the program "in principle right". (Competent programmer assumption)
- Lets develop a test method that exploits this !

Static Structural ("white-box") Tests



Idea: we select "critical" paths

apath corresponds to one logical expression over initial values x expension over initial values x expension over initial values x expension corresponding to one test-case (comprising several test data ...)

 $\neg Cond_1(x_0, y_0, z_0) \land \neg Cond_2(x_0, y_0, z_0)$

We are interested either in edges (control flow), or in nodes (data flow)

A Program for the triangle example

```
procedure triangle(j,k,l : positive) is
 eq: natural := 0;
begin
if j + k \le 1 or k + 1 \le j or 1 + j \le k then
   put("impossible");
else if j = k then eq := eq + 1; end if;
     if j = 1 then eg := eg + 1; end if;
     if l = k then eg := eg + 1; end if;
     if eq = 0 then put("arbitrary");
    elsif eq = 1 then put("isocele");
    else put ("equilateral");
    end if;
end if;
end triangle;
```

What are tests adapted to this program?

- try a certain number of execution "paths" (which ones ? all of them ?)
- find input values to stimulate these paths
- compare the results with expected values
 (i.e. the specification)

Functional-test vs. structural test?

Both are complementary and complete each other:

- Structural Tests have weaknesses in principle:
 - if you forget a condition, the specification will most likely reveal this !
 - if your algorithm is incomplete, a test on the spec has at least a chance to find this ! (Example: perm generator with 3 loops)

Functional-test vs. structural test?

Both are complementary and complete each other

- Structural Tests have weaknesses in principle: for a given specification, there are several possible implementations (working more or less differently from the spec):
 - sorted arrays : linear search ? binary search ?
 - > $(x, n) \rightarrow x^n$: successive multiplication ? quadratic multiplication ?

Each implementation demands for different test sets !

Equivalent programs ...

```
Program 1:
    S:=1; P:=N;
    while P >= 1 loop S:= S*X; P:= P-1; end loop;
Program 2:
    S:=1; P:= N;
    while P >= 1 loop
        if P mod 2 /= 0 then P := P -1; S := S*X; end if;
        S:= S*S; P := P div 2;
    end loop;
```

Both programs satisfy the same spec but ...

- one is more efficient, but more difficult to test.
- test sets for one are not necessarily "good" for the other, too !

Control Flow Graphs

A graph with oriented edges root E and an exit S,

- the <u>nodes</u> be either "elementary instruction blocs" or "decision nodes" labelled by a predicate.
- the <u>arcs</u> indicate the control flow between the elementary instruction blocs and decision nodes (control flow)
- all blocs of predicates are accessible from E and lead to S
 (otherwise, dead code is to be supressed !)

elementary instruction blocs: a sequence of

- assignments
- update operations (on arrays, ..., not discussed here)
- procedure calls (not discussed here !!!)
- conditions and expressions are assumed to be side-effect free

Identify longest sequences of assignments

Identify longest sequences of assignments

Example:

S:=1; P:=N;

while P >= 1
loop S:= S*X;
P:= P-1;
end loop;

Identify longest sequences of assignments

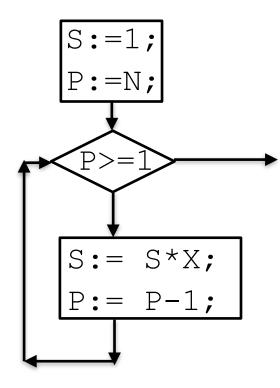
Example:

- Identify longest sequences of assignments
- eliminate if_then_else's by branching

- Identify longest sequences of assignments
- Erase if then elses by branching
- Erase while_loops by loop-arc, entry-arc, exit-arc

- Identify longest sequences of assignments
- Erase if then elses by branching
- Erase while_loops by loop-arc, entry-arc, exit-arc

Identify longest sequences of assignments Example:



- Identify longest sequences of assignments
- Erase if then elses by branching
- Erase while_loops by loops

^{9/8/20}a compiler

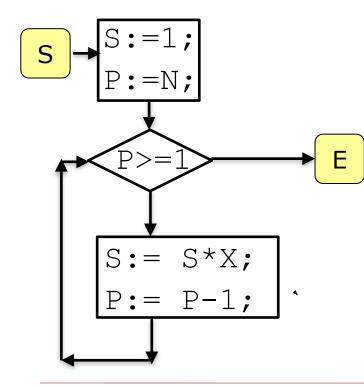
Add entry node and exit loop-arc, entry-arc, exit-arc

A Control-Flow-Graph (CFG) is usually a by-product of

B. Wolff - GLA - White-Box Tests

Example:

Add entry node and exit loop-arc, entry-arc, exit-arc

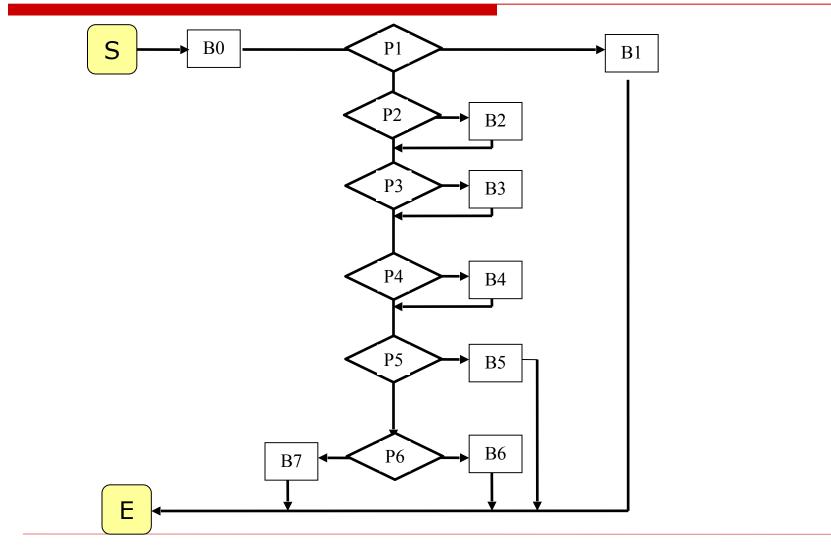


Q: What is the CFG of the body of triangle ?

Revisiting our triangle example ...

```
procedure triangle(j,k,l : positive) is
 eq: natural := 0;
begin
if j + k \le 1 or k + 1 \le j or 1 + j \le k then
   put("impossible");
else if j = k then eg := eg + 1; end if;
     if j = 1 then eq := eq + 1; end if;
     if l = k then eg := eg + 1; end if;
     if eg = 0 then put("quelconque");
     elsif eq = 1 then put("isocele");
     else put ("equilateral");
    end if;
end if;
end triangle;
```

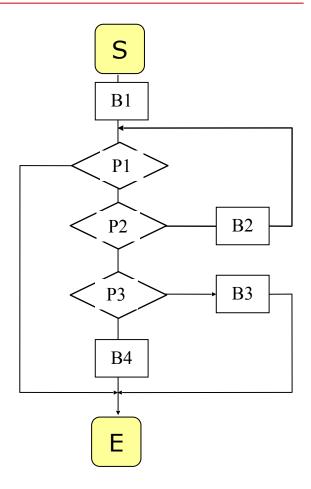
The non-structured control-flow graph of a program



A procedure with loop and return

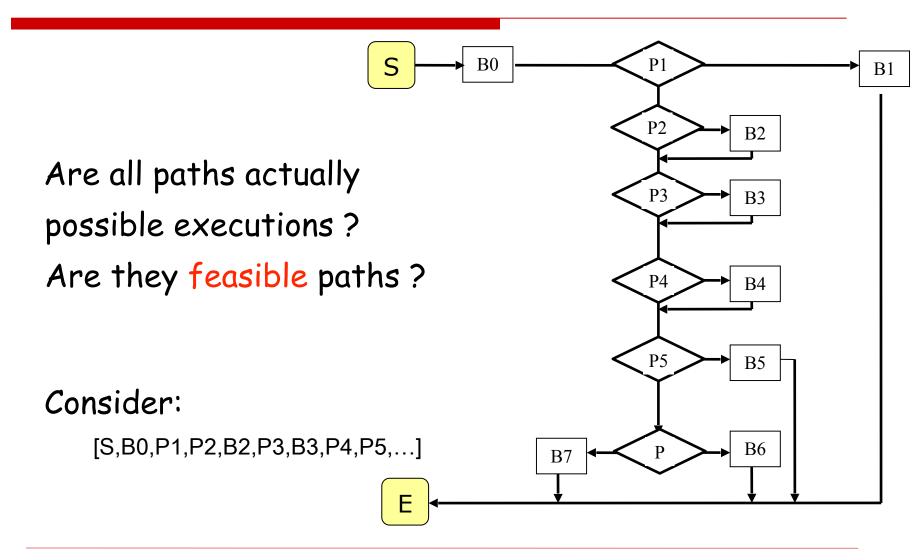
... and its control flow graph

Can we represent this program as controlgraph ???



Sure ...

... and its control flow graph



Paths and Path Conditions

Some Terminology:

- initial path of M = path of the CFG starting at S
- path of M = path of the CFG starting at S and ending in E
 (a path corresponds to a complete execution of the procedure)
- \succ for an initial path M, a <u>predicate</u> over the parameters and state can be defined: the path-condition $\Phi_{\rm M}$
- > Φ_M is exactly true over the **initial values initiales** of parameters (and global variables) if the program will run **exactly** M for these parameters
- <u>faisable paths</u>: <u>M</u> is feasible exactly if a for parameters and global variables concrete values exist such that <u>M</u> is executable.

i.e. the path condition Φ_{M} is satisfiable

Computing Path Conditions by Symbolic Execution

Let M be an initial path in the CFG of our program.

- > we give symbolic values for each variable $x_0, y_0, z_0, ...$
- > we set the path condition Φ initially to the pre-condition
- > We follow the path M, block for block:
 - If the current block is an instruction block B:
 we execute symbolically B by memorising the new possible values
 by predicates depending on x₀, y₀, z₀, .. ("symbolically")
 - If the current block is a decision block P(x1,...,xn)
 - if we follow the « true » arc we set $\Phi := \Phi \land P(\underline{x1},...,\underline{xn})$,
 - ▶ if we follow the «false» arc we set $\Phi := \Phi \land \neg P(\underline{x1,...,xn})$.

The $\underline{x1}, \dots, \underline{xn}$ are the symbolic values for the program variables

Execution

• Execution is based on the notion of state.

A state is a table (or: function) that maps a variable V to some value of a domain D.

$$\sigma = V \rightarrow D$$

• As usual, we denote finite functions as follows:

$$\{ x \mapsto 1, y \mapsto 5, x \mapsto 12 \}$$

Symbolic Execution

• In static program analysis, it is in general not possible to infer concrete values of D.

However, it can be inferred a set of possible values.

• For example, if we know that

 $x_0 \in \{1..10\}$

and we have an assignment x := x+2, we know:

$$x_0 \in \{3..12\}$$
 afterwards.

Symbolic Execution

• This gives rise to the notion of a symbolic state.

$$\sigma_{sym} = V \rightarrow Set(D)$$

We denote the set of possible values by a

predicate over the initial state, so:

$$x \mapsto (1 \leq x_0 \wedge x_0 \leq 10)$$

• thus, after x:= x+2, we know:

$$x \mapsto (3 \le x_0 \land x_0 \le 12)$$

Symbolic States and Substitutions

• An Example substitution:

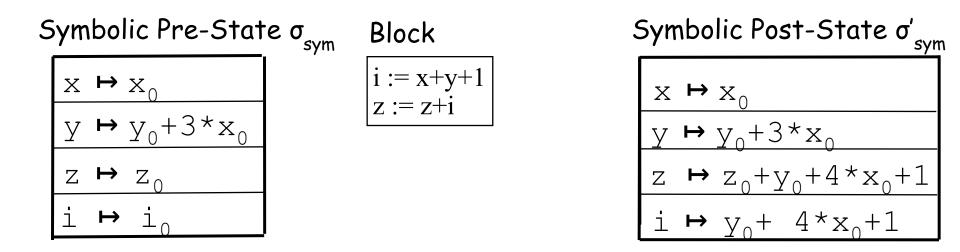
$$(x + 2 * y) \{x \mapsto 1, y \mapsto x_0\}$$

$$= 1 + 2 * x_0$$

• An initial symbolic state is a map of the form:

$$\{ x \mapsto x_0, y \mapsto y_0, z \mapsto z_0 \}$$

Basic Blocks as Substitutions

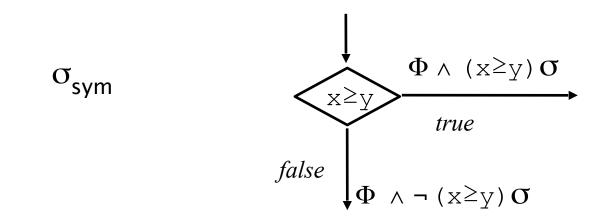


 x_0, y_0 and z_0 represent the initial values of x, y et z.

i is supposed to be a un-initialized local variable.

Thus, we update the symbolic state whenever we pass a basic block on our path.

Symbolic Execution



Thus, we update the path-condition whenever we pass a decision node on our path.

Example: A Symbolic Path Execution

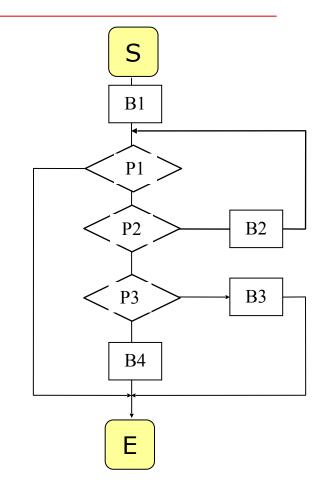
Recall

Example: A Symbolic Path Execution

... and the corresponding control flow graph.

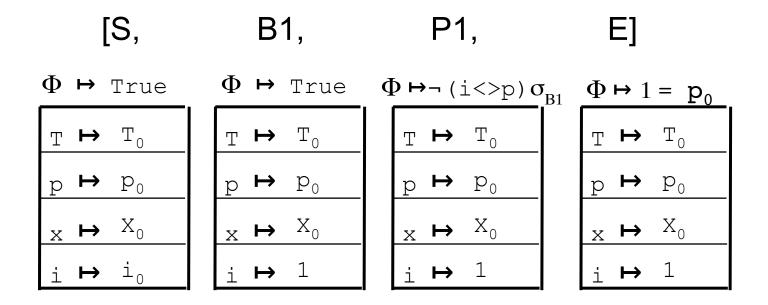
We want to execute the path:

[S,B1,P1,E]



Example: A Symbolic Path Execution

We want to execute the path:

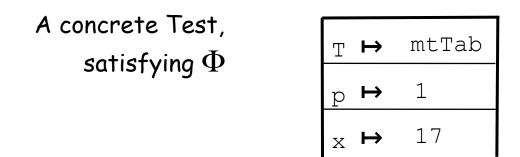


Result:

Test-Case:

For the path M=[S,B1,P1,E]

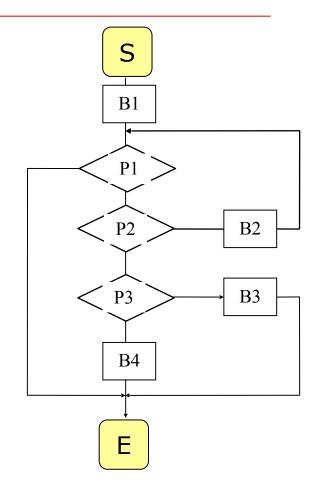
we have the path condition $\Phi \mapsto p_0 = 1$



... and the corresponding control flow graph.

We want to execute the path:

[S,B1,P1,P2,B2,P1,E]



We want to execute the path:

[S,	B1,	P1,	P2,	B2,	P1,	E]
$\Phi \mapsto$ True	True	(i<>p) σ _{B1} ≡ p ₀ ≠ 1 (p ₀ ≠1 ∧ T[i]≠x)σ _{B1}	p ₀ ≠1 ∧ T ₀ [1]≠x ₀	p ₀ ≠1 ∧ T ₀ [1] ≠ x ₀ ∧¬(i<>p)σ _B	p ₀ ≠1 ∧ T ₀ [1] ≠ x ₀ ∧ 2=p ₀
T → T ₀	Τ ₀	Τ _ο	Τ _ο	Τ ₀	Τ _ο	Τ _ο
p ↔ p ₀	p ₀	p ₀	p ₀	p ₀	p ₀	p ₀
x → x ₀	x ₀	x ₀	x ₀	x ₀	x ₀	x ₀
i → i₀	1	1	1	(i+1) $\sigma_{\!_{B1}}$	2	2

Result: Test-Case for Path

M = [S,B1,P1,P2,B2,P1,E]Path Condition: $\Phi := T_0[1] \neq X_0 \land p_0=2$

A concrete Test, satisfying Φ

Т	↦	[3]
р	↦	2
х	↦	17

In (this version of) program-based testing a test case with a (feasable) path

- a test case \approx a path M in the CFG
 - a collection of values for variables (params and global)
 (+ the output values described by the specification)
- a test case set \approx a finite set of paths of the CFG
 - a finite set of input values and
 a set of expected outputs.

Unfeasible paths and decidability

- In general, it is undecidable of a path is feasible ...
- In general, it is undecidable if a program will terminate ...
- □ In general, equivalence on two programs is undecidable ...
- □ In general, a first-order formula over arithmetic is undecidable ...
- Indecidable = it is known (mathematically proven)
 that there is no algorithm; this is worse than
 "we know none" !~

BUT: for many relevant programs, practically good solutions exist (Z3, Simplify, CVC4, AltErgo ...)

A Challenge-Example (The Collatz-Function):

.. A HAIRY EXAMPLE:

```
while x <> 1 loop
    if pair(x) then x := x / 2;
    else x := 3 * x + 1;
    end if;
end loop;
```

does this function terminate for all x ?
 this implies that we for all you know always know all x ?
 or equivalently. is end loop reached for all x ?
 that infeasible paths exist !

The Triangle Prog without Unfeasible Paths

```
procedure triangle(j,k,l)
begin
    if j k<=l or k+l<=j or l+j<=k then put("impossible");
    elsif j = k and k = l then put("equilateral");
    elsif j = k or k =l or j = l then put("isocele")
    else    put("quelconque");
end if;
end;</pre>
```

- In the contrary, there are programs where all paths are feasible
- That is rare, however.
- Worse: in practice the probability for a path to be feasible is smaller the longer the path gets.

The notion of a "coverage criterion"

A coverage criterion is a predicate on CFG characterising a particular subset of its paths ...

- the set of paths covering all basic blocks
- $\boldsymbol{\cdot}$ the set of paths covering all instructions
- All loops are traversed
- A particular subset of calls occurring in the CFG has been executed

...

Well-known Coverage Criteria I

Criterion C = AllInstructions(CFG):

For all nodes N in CFG (basic instructions or decisions) exists a path in C that contains N

Well-known Coverage Criteria II

Criterion C = AllTransitions(CFG):

For all arcs A in the CFG exists a path in C that uses A

Well-known Coverage Criteria III

Criterion C=AllPaths(CFG):

All possible paths ...

- [©] Whenever there is a loop, C is infinite !
- $rest weaker variant: AllPaths_{k}(CFG).$

We limit the paths through a loop to maximally k times ...

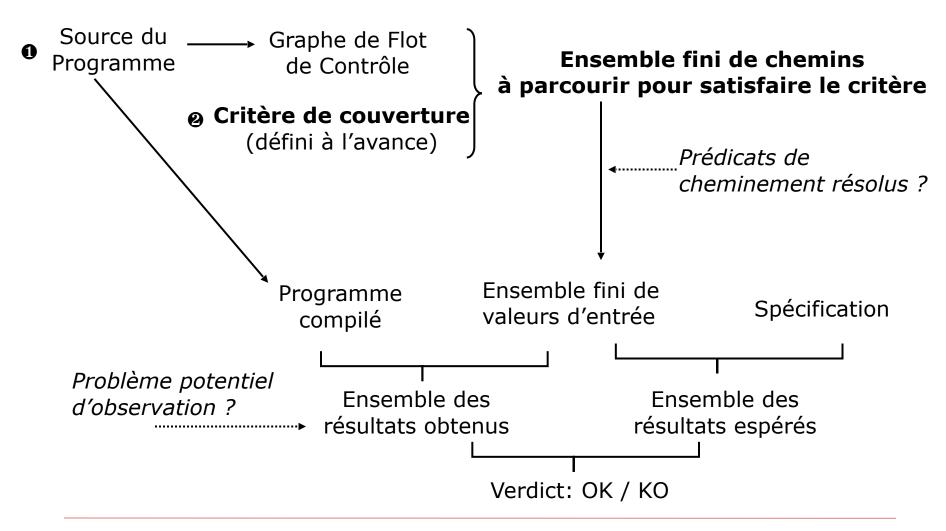
we have again a finite number of paths

A Hierarchy of Coverage Criteria

AllPaths(CFG) ⇒
 AllPaths_k(CFG) ⇒
 AllTransitions(CFG) ⇒
 AllInstructions(CFG)

 Each of these implications reflects a proper containment; the other way round is never true.

Using Coverage Criteria 1



B. Wolff - GLA - White-Box Tests

- We have developed a technique for program-based tests
- ... based on symbolic execution
- ... used in tools like JavaPathFinder-SE or Pex
- Core-Concept: Feasible Paths in a Control Flow Graph
- Although many theoretical negative results on key properties, good practical approximations are available
- CFG based Coverage Critieria give rise to a hierarchy

Schmankerle

Program:

```
int ???? (int a) {
    int i = 0;
    int tm = 1;
    int sum = 1;
    while(sum <= a) {</pre>
           i = i+1;
           tm = tm+2;
           sum = tm+sum;
    }
    return i;
```

9/8/20

}