
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
 Deductive Verification I

Burkhart Wolff
wolff@lri.fr

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification: Does the system meet the specification ?

Do we build the system right ?
 Is it « correct » ?

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: What are the limits of tests

❑ Assumptions on „Testability“
(system under test must behave deterministically,
 or have controlled non-determinism, must be initializable)

❑ Assumptions like Test-Hypothesis
(Uniform / Regular behaviour is sometimes
 a „realistic“ assumption, but not always)

❑ Limits in perfection:
We know only up to a given “certainty” that the
program meets the specification ...

9/8/20 B. Wolff - GLA - Deductive Verification

The role of formal proof

❑ formal proofs are another technique for program verification
➢ based on a model of the underlying programming language,

the conformance of a concrete program to its specification
can be established

 FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

❑ formal proofs as verification technique can:
➢ verify that a more concrete design-model “fits”

to a more abstract design model
(construction by formal refinement)

➢ verify that a program “fits” to a concrete design model.

9/8/20 B. Wolff - GLA - Deductive Verification

Who is using formal proofs in industry?

❑ Hardware Suppliers:
➢ INTEL: Proof of Floating Point Computation compliance

to IEEE754
➢ INTEL: Correctness of Cash-Memory-Coherence Protocols
➢ AMD: Correctness of Floating-Point-Units againt Design-Spec
➢ GemPlus: Verification of Smart-Card-Applications in Security

❑ Software Suppliers:
➢ MicroSoft: Many Drivers running in „Kernel Mode“ were verified
➢ MicroSoft: Verification of the Hyper-V OS

(60000 Lines of Concurrent, Low-Level C Code ...)
➢ . . .

9/8/20 B. Wolff - GLA - Deductive Verification

Who is using formal proofs in industry?

❑ For the highest certification levels along the lines
of the Common Criteria, formal proofs are

❑ recommended (EAL6)
❑ mandatory (EAL7)

There had been now several industrial cases of EAL7 certifications ...

❑ For lower levels of certifications, still, formal specifications were required.

❑ Recently, Microsoft has agreed in a Monopoly-Lawsuit against the European
Commission to provide a formal Spec of the Windows-Server-Protocols

❑ the tools validating them use internally automated proofs

9/8/20 B. Wolff - GLA - Deductive Verification

Pre-Rerquisites of Formal Proof Techniques

❑ A Formal Specification (MOAL, HOL, but also Z, VDM, CSP, B, ...)
➢ know-how over the application domain
➢ informal and formal requirements of the system

❑ Either a formal model of the programming language
or a trusted code-generator from concrete design specs

❑ Tool Chains to generate, simplify, and solve large formulas
(decision procedures)

❑ Proof Tools and Proof Checker: proofs can also be false …

Nous, on le fera à la main …

9/8/20 B. Wolff - GLA - Deductive Verification

How to do Verification ?

 
In the sequel, we concentrate on  
 
 Deductive Verification  
 
 (Proof Techniques)

9/8/20 B. Wolff - GLA - Deductive Verification

Standard example

The specification in UML/MOAL (Classes in USE Notation):

 class Triangles inherits_from Shapes

attributes
a : Integer
b : Integer
c : Integer

operations
mk(Integer,Integer,Integer):Triangle
is_Triangle(): triangle

end

9/8/20 B. Wolff - GLA - Deductive Verification

Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:
inv def : a.oclIsValid() and b.oclIsValid()...
inv pos : 0<a and 0<b and 0<c
inv triangle : a+b>c and b+c>a and c+a>b

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and

 (a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and

 (a<>b and b<>c and a<>c)
 implies result=arbitrary

9/8/20 B. Wolff - GLA - Deductive Verification

Standard example: Triangle

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;
 if eg = 0 then put(“quelconque”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

9/8/20 B. Wolff - GLA - Deductive Verification

Program Example : Exponentiation

Program_1 :
 (* pre : N≥0 *)

S:=1; P:=N;
 while P >= 1 loop S:= S*X; P:= P-1; end loop;

(* post: S = XN *)

Program_2 :
 (* pre : N≥0 *)

S:=1; P:= N;
 while P >= 1 loop
 if P mod 2 <> 0 then P := P–1; S := S*X; end if;
 S:= S*S; P := P div 2;
 end loop;

(* post: S = XN *)

These programs have the following characteristics:
➢ one is more efficient, but more complex

➢ But both have the same specification !

9/8/20 B. Wolff - GLA - Deductive Verification

How to do Verification ?

 
 
How to PROVE that programs  
 
 meet the specification ?

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

❑ An Inference System (or Logical Calculus) allows to infer formulas
from a set of elementary facts (axioms) and inferred facts by rules:

❑ “from the assumptions A
1
 to A

n
, you can infer the conclusion A

n+1
.”

A rule with n=0 is an elementary fact. Variables occurring in the
formulas A

n
can be arbitrarily substituted.

❑ Assumptions and conclusions are terms in a logic containing variables

9/8/20 B. Wolff - GLA - Deductive Verification

❑ An Inference System for the equality operator
(or “Equational Logic”) looks like this:

Foundations: Proof Systems

❑ where the first rule “reflexivity” is an elementary fact.

9/8/20 B. Wolff - GLA - Deductive Verification

 The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

Foundations: Proof Systems

{x↦1+2,
 y↦2+1,
 z↦3}

{x↦1+2,
 y↦a,
 z↦3}

{x↦τ*5,
 y↦5*τ}

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

❑ A Formal Proof (or : Derivation)
is a tree with rule instances as nodes

❑ The non-elementary facts at the leaves are the global
assumptions (here f(a,b) = a and f(f(a,b),b) = c).

9/8/20 B. Wolff - GLA - Deductive Verification

❑ As a short-cut, we also write for a derivation:

❑ ... or generally speaking: from global assumptions A to
a theorem (in theory E) ϕ:

❑ This is what theorems are: derivable facts from
assumptions in a certain logical system ...

Foundations: Proof Systems

9/8/20 B. Wolff - GLA - Deductive Verification

A Proof System for Propositional Logic

❑ PL + E + Arithmetics (A) in so-called natural deduction:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Now, can we build a

 Logic for Programs ???

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Now, can we build a

 Logic for Programs ???

Well, yes !
 There are actually lots of possibilities ...

❑ We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Basis: The mini-language „IMP“,
(following Glenn Wynskell's Book)

❑ We have the following commands (cmd)
➢ the empty command SKIP
➢ the assignment x:== E (x ∈ V)
➢ the sequential compos. c1 ; c2

➢ the conditional IF cond THEN c1 ELSE c2

➢ the loop WHILE cond DO c

where c, c1, c2, are cmd's, V variables,

E an arithmetic expression, and cond a boolean expression.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Core Concept: A Hoare Triple consisting ...
➢ of a pre-condition P
➢ a post-condition Q
➢ and a piece of program cmd
➢ the triple (P,cmd,Q) is written:

➢ P and Q are formulas over the variables V,
so they can be seen as set of possible states.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare Logic vs. Symbolic Execution

• Hoare Logic is also based notion of
 a symbolic state.

 statesym = V → Set(D)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare Logic vs. Symbolic Execution

• Intuitively:

 means:

 If a program cmd starts in a state
 admitted by P if it terminates, that
 the program must reach a state that
 satisfies Q.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ PL + E + A + Hoare (simplified binding) at a glance:

9/8/20 B. Wolff - GLA - Deductive Verification

Verification : Test or Proof

Test
➢ Requires Testability of Programs (initialisable, reproducible

behaviour, sufficient control over non-determinism)

➢ Can be also Work-Intensive !!!

➢ Requires Test-Tools

➢ Requires a Formal Specification

➢ Makes Test-Hypothesis, which can be hard to justify !

9/8/20 B. Wolff - GLA - Deductive Verification

Summary

Formal Proof
➢ Can be very hard – up to infeasible (no one will

probably ever prove correctness of MS Word!)
➢ Proof Work typically exceeds programming

work by a factor 10!
➢ Tools and Tool-Chains necessary

➢ Makes assumptions on language,
method, tool-correctness, too !

9/8/20 B. Wolff - GLA - Deductive Verification

Validation : Test or Proof (end)

Test and Proof are Complementary ...
❑ ... and extreme ends of a continuum : from static

analysis to formal proof of “deep system properties”

❑ In practice, a good “verification plans” will be necessary
to get the best results with a (usually limited) budget !!!
➢ detect parts which are easy to test
➢ detect parts which are easy to prove
➢ good start: maintained formal specification

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Outlook

❑ Can we be sure, that the logical systems are consistent ?

 Well, yes, practically.
 (See Hales Article in AMS: “Formal Proof”, 2008.
 http://www.ams.org/ams/press/hales-nots-dec08.html)

❑ Can we ever be sure, that a specification “means” what we intend ?

Well, no.
But when can we ever be entirely sure that we know what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them ...

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Outlook

