
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
 Deductive Verification III

Burkhart Wolff
wolff@lri.fr

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: Hoare – Logic

❑ A means to reason over all input and all states: Is there

❑ We consider the Hoare-Logic, technically
an inference system PL + E + A + Hoare

❑ … and transit to a more automatic variant,
Dijkstra’s wp calculus.

A Logic for Programs ???

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):
Proof (bottom up):

We can’t apply the WHILE-rule directly — the only other choice is
the consequence rule. Instantiating the invariant variable P by a
fresh variable I allows us to bring the triple into a shape that we
can apply the WHILE rule later

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):
Proof (bottom up):

Now we can apply the while rule.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):
Proof (bottom up):

To be sure (entering the while loop) we apply again the
consequence rule. For the missing bit, we instantiate I’’.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):
Proof (bottom up):

Now, in order to make the assignment rule “fit”, we must have
I’’ ≡ I'[x ↦ x+1].

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

Additionally, in order that this constitutes a Hoare-Proof, we must
have all the implications.

❑ Revision Example (7):
Proof (bottom up):

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):
  

So, we have a Hoare Proof iff we have a solution to the
following list of constraints:

I'' ≡ I'[x ↦ x+1]

A ≡ true → I

B ≡ I ∧ ¬(x < 2) → 2 ≤ x

C ≡ I ∧ x <2 → I'[x ↦ x+1]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):
Proof:

➢ I must be true, this solves A, B, D
➢ we are fairly free for a solution for I';

e.g. x ≤ 2 or x ≤ 5 would do the trick !

I'' ≡ I'[x ↦ x+1]

A ≡ true → I

B ≡ I ∧ ¬(x < 2) → 2 ≤ x

C ≡ I ∧ x <2 → I'[x ↦ x+1]
D = I' → I

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ This proof rises the idea of particular construction
method of Hoare-Proofs, which can be automated:
❑ apply bottom-up all rules following the cmd-syntax;

introduce fresh variables for the wholes where necessary
❑ apply the consequence rule only at entry

points of loops (this is deterministic!)
❑ extract the implications used in these consequence rule
❑ try to find solutions for these implications

 (worst case: ask the user ...)
➢ Essence of all: again, we reduced a program verification

problem to a constraint resolution problem of formulas …
➢ … provided we have solutions for the invariants.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Another Example (8) : The integer square-root

❑ Program and Specification in a Hoare Triple

}≡ prelude

}≡ body

⊢{a ≥ 0} prelude; WHILE sum ≤ a DO body {post}

where post ≡ i2 ≤ a ∧ a < (i+1)2

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ We cut it into 2 parts (sequence rule):
❑ first:

❑ and:

⊢{a ≥ 0} prelude {a≥0 ∧ i=0 ∧ tm=1 ∧ sum=1}

We k
now

 th
at

alr
ead

y …
.

⊢{a ≥ 0 ∧ A} WHILE sum ≤ a DO body {i2 ≤ a ∧ a < (i+1)2}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ so, for the body, we derive bottom-up:

⊢{a ≥ 0 ∧ A} WHILE sum ≤ a DO body {post}

a ≥ 0 ∧ A ⟶ I ⊢{I} WHILE sum ≤ a DO body {a < sum ∧ I} a < sum ∧ I ⟶ post
 ⊢{I ∧ sum ≤ a} body {I}

I ∧ sum ≤ a ⟶ I’ ⊢{I’} i := i+1; tm := tm+2; sum:=sum+tm {I} I ⟶ I

⊢{I’} i := i+1; tm := tm+2{I[sum↦sum+tm]} ⊢{I[sum↦sum+tm]}sum:=sum+tm {I}

⊢{I’} i := i+1{I[sum↦sum+tm][tm↦tm+2]} ⊢{I[sum↦sum+tm][tm↦tm+2]}tm := tm+2{I[sum↦sum+tm]}

I’ ⟶ I’’[i↦i+1] ⊢{I’’[i↦i+1] }I := I+1{I’’} I’’ ⟶ I[sum↦sum+tm][tm↦tm+2]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ so, for the body, we derive bottom-up:

⊢{a ≥ 0 ∧ A} WHILE sum ≤ a DO body {post}

a ≥ 0 ∧ A ⟶ I ⊢{I} WHILE sum ≤ a DO body {a < sum ∧ I} a < sum ∧ I ⟶ post
 ⊢{I ∧ sum ≤ a} body {I}

I ∧ sum ≤ a ⟶ I’ ⊢{I’} i := i+1; tm := tm+2; sum:=sum+tm {I} I ⟶ I

⊢{I’} i := i+1; tm := tm+2{I[sum↦sum+tm]} ⊢{I[sum↦sum+tm]}sum:=sum+tm {I}

⊢{I’} i := i+1{I[sum↦sum+tm][tm↦tm+2]} ⊢{I[sum↦sum+tm][tm↦tm+2]}tm := tm+2{I[sum↦sum+tm]}

I’ ⟶ I’’[i↦i+1] ⊢{I’’[i↦i+1] }I := I+1{I’’} I’’ ⟶ I[sum↦sum+tm][tm↦tm+2]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Our proof boils down to the constraints:

I’ ⟶ I’’[i↦i+1]

I’’⟶I[sum↦sum+tm][tm↦tm+2]

I ∧ sum ≤ a ⟶ I’

a ≥ 0 ∧ A ⟶ I

a < sum ∧ I ⟶ post

Solution I’’ ≡ I[sum↦sum+tm][tm↦tm+2]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Our proof boils down to the constraints:

I’ ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

I ∧ sum ≤ a ⟶ I’

a ≥ 0 ∧ A ⟶ I

a < sum ∧ I ⟶ post

Solution I’ ≡ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Our proof boils down to the constraints:

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

a ≥ 0 ∧ A ⟶ I

a < sum ∧ I ⟶ post

“Invariant is preserved in body”

“Invariant initially holds at loop entry”

“Invariant at loop exit implies post”

Recall: … ≡ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Our proof boils further down to finding the invariant I

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 ⟶ I

a < sum ∧ I ⟶ i2 ≤ a ∧ a < (i+1)2

i ≥ 0

tm ≥ 1

sum ≥ 1

tm = 2*i + 1

sum = (i+1)2

sum = Σi
k=0

 (2*k + 1)

a ≥ i2

I ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ We check our invariant (1)

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 ⟶ I

a < sum ∧ I ⟶ i2 ≤ a ∧ a < (i+1)2

I ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ We check our invariant (constraint 1)

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

I ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

 ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a
 ⟶ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1[sum↦sum+tm][tm↦tm+2][i↦i+1]

 ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a
 ⟶ sum+tm+2 = ((i+1)+1)2 ∧ a ≥ (i+1)2 ∧ tm+2 = 2*(i+1) + 1 ∧ tm+2 ≥ 1

 ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a
 ⟶ (i+1)2 +2*(i+1)+1 = ((i+1)+1)2 ∧ a ≥ (i+1)2 ∧ (2*i + 1)+2 = 2*(i+1) + 1

 ≡ True

 ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a
 ⟶ a ≥ (i+1)2

Invariant preserved

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ We check our invariant (constraint 2)

a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 ⟶ I

I ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

 ≡ a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1
 ⟶ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

 ≡ a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1
 ⟶ 1 = (0+1)2 ∧ a ≥ 02 ∧ 1 = 2*0 + 1 ∧ 1 ≥ 1

 ≡ a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1
 ⟶ a ≥ 0 ∧ 1 = 1

 ≡ True

Invariant initially holds

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ We check our invariant (constraint 3)

a < sum ∧ I ⟶ i2 ≤ a ∧ a < (i+1)2

I ≡ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

 ≡ a < sum ∧ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ⟶ i2 ≤ a ∧ a < (i+1)2

 ≡ a < sum ∧ sum = (i+1)2 ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ⟶ a < sum

 ≡ True

Invariant implies post-condition

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ We check termination:
❑ We provide a function m that decreases for the

program state (a, i , tm, sum) for any possible
loop traversal (i.e. sum ≤ a ∧ I), i.e.

 sum ≤ a ∧ I ⟶ m(a, i , tm, sum) > m(a, i+1 , tm+2, sum+tm)

❑ Iff such a function m (a measure) exists, the
loop will terminate.

❑ A candidate for m: m(a, i , tm, sum) ≡ a - i
which obviously decreases.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Now, can we build a

 Mechanised Logic for Programs ???

 Well, yes ! Dijkstra's wp-calculus.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ How can we automate the tedious task ?

➢ can we make the Hoare-calculus more
deterministic ?

➢ can we reduce the task of program-verification
to ordinary, standard logic problems ?
(like constraint-solving in test generation ?)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Hoare revisited (i):

❑ ... this part is actually highly deterministic

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Hoare revisited (ii):

❑ ... this part needs some work, and some new ideas.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Hoare revisited (ii):
... this part needs some work, and some new ideas.

➢ Note: the sequence rule is deterministic for „basic programs“:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Hhm, do we actually really need pre- and postconditions?

For assignment sequences, if we have the post-condition,
we can compute a pre-condition from it by proceeding
from right to left

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Core Concept: The predicate transformer wp
❑ It captures our “strategy” to construct Hoare Proofs
❑ It is a recursive function going over elementary cmd’s
❑ It calculates from the post-condition P the „weakest liberal precondition“

wp(SKIP, P) ≡ P
wp(x:==E, P) ≡ P[x↦E]
wp(c;d , P) ≡ wp(c, wp(d, P))
wp(IF c THEN d ELSE e, P) ≡ 
 c → wp(d, P) ⋀ ⌝c → wp(e, P)

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Core Concept: The predicate transformer wp

➢ Example for a basic program:
 wp(IF a≥0 THEN tm:=1; sum:=1; i:=0 ELSE SKIP, tm=1⋀ sum=1 ⋀ i=0)

≡ a≥0 → wp(tm:==1; sum:==1; i:==0, tm=1⋀ sum=1 ⋀ i=0 ⋀  
 ⌝(a≥0) → wp(SKIP, tm=1⋀ sum=1 ⋀ I=0
≡ a≥0 → (tm=1⋀ sum=1 ⋀ i=0)[tm↦1][sum↦1][i↦0] ⋀ 
 ⌝a≥0 → (tm=1⋀ sum=1 ⋀ i=0)
≡ a≥0 → True ⋀ ⌝a≥0 → (tm=1⋀ sum=1 ⋀ i=0)
≡ a<0 → (tm=1⋀ sum=1 ⋀ i=0)

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Core Concept: The predicate transformer wp

➢ Note:

 a<0 → (tm=1⋀ sum=1 ⋀ I=0)

 is the weakest liberal precondition. If „a > 5“

 the “usual” post-condition

 tm=1⋀ sum=1 ⋀ i=0  

 just remains as a left-over ...

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Core Concept: The predicate transformer wp

 So, for the “basic” fragment of the language,
we have a solution.

But can we extend this to while ?

Solution: We annotate cmd’s with the invariants I

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Basis cmdA: IMP's cmd

➢ the empty command SKIP
➢ the assignment x:== E (x ∈ V)
➢ the sequential composition c1 ; c2

➢ the conditional IF cond THEN c1 ELSE c2

➢ the annotated loop WHILE cond DO c 

So, the only difference between the classic cmd and annotated
cmdA and cmd is the invariant-annotation in the while-construct.

{I}

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Then we can complete the definition for wp by:

 wp(WHILE c DO {I} cmd, Q) = I

❑ ... and introduce a function vcg „verification condition generator“
vcg(WHILE c DO {I} body, P) =  
 ((I ⋀ ⌝c) → P) ⋀ -- exit must establish P 
 ((I ⋀ c) → wp(body, I)) ⋀ -- I must be preserved in body 
 vcg(body, I) -- treating internal WHILE's
vcg(c; d, P) = vcg(c, wp(d,P)) ⋀ vcg(d,P)
vcg(IF b THEN c ELSE d, P) = vcg(c, P) ⋀ vcg(d, P)

vcg(_ ,P) = true catchall other options !

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Technically, Hoare-Logic and vcg and wp are connected by the
following theorem:

Theorem: Correctness of vcg and wp.
Assume the constraints generated by vcg and wp hold:

 vcg(cmd,Q) ∧ P → wp(cmd, Q)

Then there exists a Hoare-Proof for:
 ⊢ {P} cmd {Q}

Proof: By induction over the program structure cmd.

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

... in other words:

Instead of constructing a formal Hoare proof,
we can just run vcg and wp and prove
the resulting formula.

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Example:

⊢ {True} tm:=1;sum:=1; i:=0 {tm=1 ⋀ sum=1 ⋀ i=0}

reduces to (by correctness theorem of vcg/wp)

 vcg (tm:=1;sum:=1; i:=0, tm=1 ⋀ sum=1 ⋀ i=0) ⋀ 
 true → wp(tm:=1; sum:=1; i:=0, tm=1 ⋀ sum=1 ⋀ I=0)
 ≡ tm=1 ⋀ sum=1 ⋀ i=0 [I↦0,sum↦1,tm↦1]

 ≡ 1=1 ⋀ 1=1 ⋀ 0=0 ≡ True

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Example:

⊢ {True} IF x ≦ 0 THEN x:== -x ELSE SKIP {0 ≦ x} 

❑ … reduces to (by correctness theorem of vcg/wp)

 vcg (IF x ≦ 0 ... , 0 ≦ x) ⋀ 
 true → wp(IF x ≦ 0 THEN x:== -x ELSE SKIP, 0 ≦ x)

 ≡ x ≦ 0 → wp(x:== -x, 0 ≦ x) ⋀⌝(x ≦ 0) → wp(SKIP, 0 ≦ x)

 ≡ x ≦ 0 → 0 ≦ -x ⋀ ⌝(x ≦ 0) → 0 ≦ x ≡ True

9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Example:

⊢ {True} WHILE x<2 DO {x ≦ 2} x:== x+1 {2 ≦ x}

❑ is (by correctness theorem of vcg/wp)

 vcg(WHILE x<2 DO{x ≦ 2}..., 2 ≦ x) ⋀ 
 true → wp(WHILE x<2 DO{x ≦ 2}..., 2 ≦ x)

 ≡ (x ≦ 2 ⋀ ⌝x<2) → 2 ≦ x ⋀ 

 (x ≦ 2 ⋀ x<2)) → wp(x:== x+1, x ≦ 2) ⋀  
 vcg(x:== x+1, x ≦ 2)

 ≡ True

9/8/20 B. Wolff - GLA - Deductive Verification

Tools following the vcg-approach

➢ Microsoft Visual-Studio + Spec# + Boogie + Z3
(for a C# like language)

➢ Microsoft Visual-Studio + VCC + Boogie + Z3
(for a realistic subset of C / X86)

➢ gwhy + Why + AltErgo
➢ Frama-C + Why + Z3 / AltErgo (Vanilla C frontend)
➢ Isabelle/HOL + AutoCorres (Vanilla C frontend)

9/8/20 B. Wolff - GLA - Deductive Verification

Tools: gwhy and Squareroot

9/8/20 B. Wolff - GLA - Deductive Verification

Dijkstra's – Calculus: Summary

Verification by Formal Proof

➢ Substantially improved degree of automation !
Both by methodology and by automated
theorem provers ...

➢ Still, you have to provide the invariants,
which is the key work ! A particular nasty part
are framing conditions

➢ Tools and Tool-Chains necessary

 (but, meanwhile, there are quite a few ...)

