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Recall: Hoare – Logic

❑ A means to reason over all input and all states: Is there 
 
 

   

❑ We consider the Hoare-Logic, technically  
an inference system PL + E + A + Hoare 

❑ … and transit to a more automatic variant,  
Dijkstra’s wp calculus.

A Logic for Programs  ???
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Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):    
Proof (bottom up):  
 
 
 

 

We can’t apply the WHILE-rule directly — the only other choice is 
the consequence rule. Instantiating the invariant variable P by a 
fresh variable I allows us to bring the triple into a shape that we 
can apply the WHILE rule later
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Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):    
Proof (bottom up):  
 
 
 

 

Now we can apply the while rule.
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Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):    
Proof (bottom up):  
 
 
 

 

To be sure (entering the while loop) we apply again the 
consequence rule. For the missing bit, we instantiate I’’.
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Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):    
Proof (bottom up):  
 
 
 

 

Now, in order to make the assignment rule “fit”, we must have  
I’’ ≡ I'[x ↦ x+1].
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Hoare – Logic: A Proof System for Programs

Additionally, in order that this constitutes a Hoare-Proof, we must 
have all the implications.

❑ Revision Example (7):    
Proof (bottom up):  
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Hoare – Logic: A Proof System for Programs

❑ Revision Example (7):    
                  
 
So, we have a Hoare Proof iff we have a solution to the 
following list of constraints: 
 
 
 

 

I'' ≡ I'[x ↦ x+1] 

A ≡ true → I       

B ≡ I ∧ ¬(x < 2) → 2 ≤ x 

C ≡ I ∧ x <2 → I'[x ↦ x+1]
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Hoare – Logic: A Proof System for Programs

❑ Revision Example (7): 
Proof: 
 
 
 
 
 
 

➢ I must be true, this solves A, B, D 
➢ we are fairly free for a solution for I'; 

e.g. x ≤ 2 or x ≤ 5 would do the trick !  

I'' ≡ I'[x ↦ x+1] 

A ≡ true → I       

B ≡ I ∧ ¬(x < 2) → 2 ≤ x 

C ≡ I ∧ x <2 → I'[x ↦ x+1]
D = I' → I
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Hoare – Logic: A Proof System for Programs

❑ This proof rises the idea of particular construction  
method of Hoare-Proofs, which  can be automated:  
❑ apply bottom-up all rules following the cmd-syntax; 

introduce fresh variables for the wholes where necessary 
❑ apply the consequence rule only at entry     

points of loops (this is deterministic!) 
❑ extract the implications used in these  consequence rule 
❑ try to find solutions for these implications 

  (worst case: ask the user ...)   
➢ Essence of all: again, we reduced a program verification  

problem to a constraint resolution problem of formulas … 
➢ … provided we have solutions for the invariants.
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Hoare – Logic: A Proof System for Programs

❑ Another Example (8) : The integer square-root 
 
 
 

 

❑ Program and Specification in a Hoare Triple

}≡ prelude

}≡ body

⊢{a ≥ 0} prelude; WHILE sum ≤ a DO body {post}

where   post ≡ i2 ≤ a ∧ a < (i+1)2
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Hoare – Logic: A Proof System for Programs

❑ We cut it into 2 parts (sequence rule): 
❑ first:  

 
 
 
 

❑ and: 

⊢{a ≥ 0} prelude {a≥0 ∧ i=0 ∧ tm=1 ∧ sum=1}

We k
now

 th
at 

alr
ead

y …
.

⊢{a ≥ 0 ∧ A} WHILE sum ≤ a DO body {i2 ≤ a ∧ a < (i+1)2}
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Hoare – Logic: A Proof System for Programs

❑ so, for the body, we derive bottom-up:

⊢{a ≥ 0 ∧ A} WHILE sum ≤ a DO body {post}

a ≥ 0 ∧ A ⟶ I        ⊢{I} WHILE sum ≤ a DO body {a < sum ∧ I}        a < sum ∧ I ⟶  post
          ⊢{I ∧ sum ≤ a} body {I} 

I ∧ sum ≤ a ⟶ I’              ⊢{I’} i := i+1; tm := tm+2; sum:=sum+tm {I}              I ⟶  I

⊢{I’} i := i+1; tm := tm+2{I[sum↦sum+tm]} ⊢{I[sum↦sum+tm]}sum:=sum+tm {I}

⊢{I’} i := i+1{I[sum↦sum+tm][tm↦tm+2]} ⊢{I[sum↦sum+tm][tm↦tm+2]}tm := tm+2{I[sum↦sum+tm]}

I’ ⟶ I’’[i↦i+1]                   ⊢{I’’[i↦i+1] }I := I+1{I’’}              I’’ ⟶  I[sum↦sum+tm][tm↦tm+2]
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Hoare – Logic: A Proof System for Programs

❑ so, for the body, we derive bottom-up:

⊢{a ≥ 0 ∧ A} WHILE sum ≤ a DO body {post}

a ≥ 0 ∧ A ⟶ I        ⊢{I} WHILE sum ≤ a DO body {a < sum ∧ I}        a < sum ∧ I ⟶  post
          ⊢{I ∧ sum ≤ a} body {I} 

I ∧ sum ≤ a ⟶ I’              ⊢{I’} i := i+1; tm := tm+2; sum:=sum+tm {I}              I ⟶  I

⊢{I’} i := i+1; tm := tm+2{I[sum↦sum+tm]} ⊢{I[sum↦sum+tm]}sum:=sum+tm {I}

⊢{I’} i := i+1{I[sum↦sum+tm][tm↦tm+2]} ⊢{I[sum↦sum+tm][tm↦tm+2]}tm := tm+2{I[sum↦sum+tm]}

I’ ⟶ I’’[i↦i+1]                   ⊢{I’’[i↦i+1] }I := I+1{I’’}              I’’ ⟶  I[sum↦sum+tm][tm↦tm+2]
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Hoare – Logic: A Proof System for Programs

❑ Our proof boils down to the constraints:

I’ ⟶ I’’[i↦i+1]

I’’⟶I[sum↦sum+tm][tm↦tm+2]

I ∧ sum ≤ a ⟶ I’

a ≥ 0 ∧ A ⟶ I

a < sum ∧ I ⟶  post

Solution I’’ ≡ I[sum↦sum+tm][tm↦tm+2]
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Hoare – Logic: A Proof System for Programs

❑ Our proof boils down to the constraints:

I’ ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

I ∧ sum ≤ a ⟶ I’

a ≥ 0 ∧ A ⟶ I

a < sum ∧ I ⟶  post

Solution I’ ≡ I[sum↦sum+tm][tm↦tm+2][i↦i+1]
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Hoare – Logic: A Proof System for Programs

❑ Our proof boils down to the constraints:

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

a ≥ 0 ∧ A ⟶ I

a < sum ∧ I ⟶  post

“Invariant is preserved in body”

“Invariant initially holds at loop entry”

“Invariant at loop exit implies post”

Recall: … ≡ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 
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Hoare – Logic: A Proof System for Programs

❑ Our proof boils further down to finding the invariant I

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 ⟶ I

a < sum ∧ I ⟶  i2 ≤ a ∧ a < (i+1)2

i ≥ 0

tm ≥ 1

sum ≥ 1

tm = 2*i + 1

sum = (i+1)2

sum = Σi
k=0

 (2*k + 1)

a ≥ i2

I   ≡   sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1
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Hoare – Logic: A Proof System for Programs

❑ We check our invariant (1)

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 ⟶ I

a < sum ∧ I ⟶  i2 ≤ a ∧ a < (i+1)2

I   ≡   sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1
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Hoare – Logic: A Proof System for Programs

❑ We check our invariant (constraint 1)

I ∧ sum ≤ a ⟶ I[sum↦sum+tm][tm↦tm+2][i↦i+1]

I   ≡   sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

  ≡           sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a  
       ⟶  sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1[sum↦sum+tm][tm↦tm+2][i↦i+1]

  ≡           sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a  
       ⟶   sum+tm+2 = ((i+1)+1)2  ∧ a ≥ (i+1)2 ∧ tm+2 = 2*(i+1) + 1 ∧ tm+2 ≥ 1

  ≡           sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a  
       ⟶   (i+1)2 +2*(i+1)+1 = ((i+1)+1)2  ∧ a ≥ (i+1)2 ∧ (2*i + 1)+2 = 2*(i+1) + 1 

  ≡  True 

  ≡           sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ∧ sum ≤ a  
       ⟶   a ≥ (i+1)2 

Invariant preserved
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Hoare – Logic: A Proof System for Programs

❑ We check our invariant (constraint 2)

a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1 ⟶ I

I   ≡   sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

  ≡           a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1  
       ⟶  sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

  ≡          a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1  
       ⟶  1 = (0+1)2  ∧ a ≥ 02 ∧ 1 = 2*0 + 1 ∧ 1 ≥ 1

  ≡           a ≥ 0 ∧ a ≥ 0 ∧ i=0 ∧ tm=1 ∧ sum=1  
       ⟶  a ≥ 0 ∧ 1 = 1

  ≡  True 

Invariant initially holds
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Hoare – Logic: A Proof System for Programs

❑ We check our invariant (constraint 3)

a < sum ∧ I ⟶  i2 ≤ a ∧ a < (i+1)2

I   ≡   sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1

  ≡          a < sum ∧ sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ⟶  i2 ≤ a ∧ a < (i+1)2

  ≡           a < sum ∧ sum = (i+1)2  ∧ a ≥ i2 ∧ tm = 2*i + 1 ∧ tm ≥ 1 ⟶  a < sum

  ≡         True 

Invariant implies post-condition
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Hoare – Logic: A Proof System for Programs

❑ We check termination: 
❑ We provide a function m that decreases for the 

program state (a, i , tm, sum) for any possible  
loop traversal (i.e. sum ≤ a ∧ I ), i.e. 

                   sum ≤ a ∧ I ⟶  m(a, i , tm, sum) > m(a, i+1 , tm+2, sum+tm)

❑ Iff such a function m (a measure) exists, the 
loop will terminate. 

❑ A candidate for m: m(a, i , tm, sum) ≡ a - i 
which obviously decreases. 
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Hoare – Logic: A Proof System for Programs

❑ Now, can we build a  
 
 
 

  Mechanised Logic for Programs  ??? 
 
 
   Well, yes ! Dijkstra's wp-calculus.  
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Hoare – Logic: A Proof System for Programs

❑ How can we automate the tedious task ? 

➢ can we make the Hoare-calculus more  
deterministic ? 

➢ can we reduce the task of program-verification  
to ordinary, standard logic problems ? 
(like constraint-solving in test generation ?)
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Hoare – Logic: A Proof System for Programs

❑ Hoare revisited (i): 
 
 
 
 
 

❑ ... this part is actually highly deterministic
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Hoare – Logic: A Proof System for Programs

❑ Hoare revisited (ii): 
 
 
 
 
 
 

❑ ... this part needs some work, and some new ideas.
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Hoare – Logic: A Proof System for Programs

❑ Hoare revisited (ii): 
... this part needs some work, and some new ideas. 

➢ Note: the sequence rule is deterministic for „basic programs“: 
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Hoare – Logic: A Proof System for Programs

❑ Hhm, do we actually really need pre- and postconditions? 
 
 
 
 
 

For assignment sequences, if we have the post-condition,  
we can compute a pre-condition from it by proceeding  
from right to left
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The wp calculus

❑ Core Concept: The predicate transformer wp 
❑ It captures our “strategy” to construct Hoare Proofs
❑ It is a recursive function going over elementary cmd’s
❑ It calculates from the post-condition P the  „weakest liberal precondition“

wp(SKIP, P) ≡ P
wp(x:==E, P) ≡ P[x↦E]
wp(c;d , P) ≡ wp(c, wp(d, P))
wp(IF c THEN d ELSE e, P) ≡ 
            c → wp(d, P) ⋀ ⌝c → wp(e, P)
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The wp calculus

❑ Core Concept: The predicate transformer wp 

➢ Example for a basic program: 
   wp(IF a≥0 THEN tm:=1; sum:=1; i:=0 ELSE SKIP, tm=1⋀ sum=1 ⋀ i=0) 

≡   a≥0 → wp(tm:==1; sum:==1; i:==0, tm=1⋀ sum=1 ⋀ i=0 ⋀  
   ⌝(a≥0) →  wp(SKIP, tm=1⋀ sum=1 ⋀ I=0
≡    a≥0   → (tm=1⋀ sum=1 ⋀ i=0)[tm↦1][sum↦1][i↦0] ⋀ 
     ⌝a≥0  → (tm=1⋀ sum=1 ⋀ i=0)
≡ a≥0   → True     ⋀     ⌝a≥0  →  (tm=1⋀ sum=1 ⋀ i=0)
≡ a<0  →  (tm=1⋀ sum=1 ⋀ i=0)
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The wp calculus

❑ Core Concept: The predicate transformer wp 

➢ Note: 

                a<0  →  (tm=1⋀ sum=1 ⋀ I=0)

     is the weakest liberal precondition.  If „a > 5“ 

     the “usual” post-condition 
 
 tm=1⋀ sum=1 ⋀ i=0  

      just remains as a left-over ...
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The wp calculus

❑ Core Concept: The predicate transformer wp 

    So, for the “basic” fragment of the language, 
we have a solution. 
 
But can we extend this to while ? 

Solution: We annotate cmd’s with the invariants I



9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

❑ Basis cmdA: IMP's cmd  

  
➢ the empty command              SKIP 
➢ the assignment           x:== E (x ∈ V)
➢ the sequential composition   c1 ; c2  

➢ the conditional     IF cond THEN c1 ELSE c2

➢ the annotated loop   WHILE cond DO     c 

So, the only difference between the classic cmd and annotated  
cmdA and cmd is the invariant-annotation in the while-construct.

{I}
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The wp calculus

❑ Then we can complete the definition for wp by: 

 wp(WHILE c DO {I} cmd, Q) = I 

❑ ... and introduce a function vcg „verification condition generator“ 
vcg(WHILE c DO {I} body, P) =    
   ((I ⋀ ⌝c) → P) ⋀           -- exit must establish P 
  ((I ⋀ c) → wp(body, I)) ⋀       -- I must be preserved in body 
  vcg(body, I)  -- treating internal WHILE's
vcg(c; d, P) = vcg(c, wp(d,P)) ⋀ vcg(d,P)
vcg(IF b THEN c ELSE d, P) = vcg(c, P) ⋀ vcg(d, P) 

vcg(_ ,P) = true                   catchall other options ! 
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The wp calculus

❑ Technically, Hoare-Logic and vcg and  wp are connected by the  
following theorem: 

Theorem: Correctness of vcg and wp. 
Assume the constraints generated by vcg and wp hold: 

  vcg(cmd,Q)     ∧     P → wp(cmd, Q)  

Then there exists a Hoare-Proof for:  
         ⊢ {P} cmd {Q}                   

 
Proof: By induction over the program structure cmd.



9/8/20 B. Wolff - GLA - Deductive Verification

The wp calculus

... in other words: 
 
Instead of constructing a formal Hoare proof, 
we can just run vcg and wp and prove 
the resulting formula.  
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The wp calculus

❑ Example: 

⊢ {True} tm:=1;sum:=1; i:=0 {tm=1 ⋀ sum=1 ⋀ i=0} 

reduces to (by correctness theorem of vcg/wp) 

    vcg (tm:=1;sum:=1; i:=0,    tm=1 ⋀ sum=1 ⋀ i=0) ⋀ 
     true → wp(tm:=1; sum:=1; i:=0,    tm=1 ⋀ sum=1 ⋀ I=0)
  ≡ tm=1 ⋀ sum=1 ⋀ i=0 [I↦0,sum↦1,tm↦1]

  ≡ 1=1 ⋀ 1=1 ⋀ 0=0 ≡ True
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The wp calculus

❑ Example: 

⊢ {True} IF x ≦ 0 THEN x:== -x ELSE SKIP  {0 ≦ x} 

❑ … reduces to (by correctness theorem of vcg/wp)  

     vcg (IF x ≦ 0 ... , 0 ≦ x) ⋀ 
 true → wp(IF x ≦ 0 THEN x:== -x ELSE SKIP, 0 ≦ x)

  ≡ x ≦ 0 → wp(x:== -x, 0 ≦ x) ⋀⌝(x ≦ 0) → wp(SKIP, 0 ≦ x)

  ≡ x ≦ 0 → 0 ≦ -x ⋀ ⌝(x ≦ 0) → 0 ≦ x ≡ True
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The wp calculus

❑ Example: 

⊢ {True} WHILE x<2 DO {x ≦ 2} x:== x+1  {2 ≦ x}

❑ is (by correctness theorem of vcg/wp)  

     vcg(WHILE x<2 DO{x ≦ 2}..., 2 ≦ x) ⋀ 
       true → wp(WHILE x<2 DO{x ≦ 2}..., 2 ≦ x)

  ≡ (x ≦ 2 ⋀ ⌝x<2) → 2 ≦ x ⋀ 

       (x ≦ 2 ⋀ x<2)) → wp(x:== x+1, x ≦ 2) ⋀  
     vcg(x:== x+1, x ≦ 2)

  ≡ True
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Tools following the vcg-approach

➢ Microsoft Visual-Studio + Spec# + Boogie + Z3 
(for a C# like language) 

➢ Microsoft Visual-Studio + VCC + Boogie + Z3 
(for a realistic subset of C / X86) 

➢ gwhy + Why + AltErgo 
➢ Frama-C + Why + Z3 / AltErgo (Vanilla C frontend) 
➢ Isabelle/HOL +  AutoCorres    (Vanilla C frontend)
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Tools: gwhy and Squareroot
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Dijkstra's – Calculus: Summary

Verification by Formal Proof 

➢ Substantially improved degree of automation ! 
Both by methodology and by automated 
theorem provers ... 

➢ Still, you have to provide the invariants, 
which is the key work ! A particular nasty part 
are framing conditions 

➢ Tools and Tool-Chains necessary 

   (but, meanwhile, there are quite a few ...)


