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Abstract
I will give (as a close follower, Phd Examiner and member of a rival project) an 
overview of the "seL4 project" done by NICTA, Australia. The aim of the project 
was the development and comprehensive machine-checked formal  verification 
of an general-purpose operating system microkernel.

The talk will cover development methodology, the kernel design used to make 
the verification tractable and  the relevant refinement steps under-taken which 
link an abstract, powerful access-control-oriented security model down to an 
implementation model, which is again linked to assembly code running on 
COTS ARM processors.

A particularity of the project is that a variety of experimental data isavailable 
over the development costs of their approach, including modeling, coding, 
code-verification and model-maintenance over meanwhile a decade.

My talk will essentially follow the article which appeared in  “ACM Trans. Comp. 
Sys, Vol 32, No 1, 2014, (same title) and contrast it by own experiences gained 
in the EUROMILS Hypervisor project.
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Overview
 

! Context: Security-Critical Systems
! What is seL4 ?
! Abstract Model: 
Concepts and Functionality 

! Verification Methodology
! Experimental Evaluation of the 
Development Process 

! seL4 is free - what does this mean ? 
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Microkernels
! ... are a critical component in Embedded Systems
! ... sitting directly on (often relatively simple) hardware (ARM)
! ... enforce separation of critical and non-critical components 

! they are complex, concurrent, but fairly small 
! ... and an ideal target for verification by formal proof
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Microkernels
! Applications:

• Critical Embedded Systems
(Medical, Railways, Avionics, ...)

• Critical Common Infrastructure
(secure network switches, 
 security co-processors of iOS devices ...)

• Systems with particularly high demands on
integrity and confidentiality (military, “Merkel-phone”)
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What is L4 ?
 

!  Core Microkernel Design Principle:

Minimality

 A concept is tolerated inside the 
microkernel only if moving outside 
the kernel, i.e. permitting compe-
ting implementations, would prevent 
the  systems required functionality 
[Liedtke, SOSP ‘95]
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What is L4 ?
 

!  Core Microkernel Design Principle:

Minimality

  ⇒ atomic actions 
     (locked code region,  usually system mode)

 ⇒ system API calls contain 
     atomic actions  

 file-systems, IP-Stacks, drivers⇒
     are in user-land. 
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What is L4 ?
 

!  Mikro-Kernel Design was quite
 popular in the 80-ies (MACH, OS2)

 

 ⇒ atomic actions 
     (locked code region,  usually system mode)

 ⇒ system API calls contain 
     atomic actions  

 file-systems, IP-Stacks, drivers⇒
     are in user-land. 
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What is L4 ?
 

!  ... but ran into the “100-micro-seconds 
desaster” for Inter-Process Com. (IPC)
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What is L4 ?
 

!  ... for which Liedke proposed a solution 
based on shared physical-memory.
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What is L4 ?
 

!  ... for which Liedtke proposed a solution 
based on shared physical-memory.
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What is seL4 ?
 

!  seL4: secured L4 
 (initiated by Gernot Heiser & Gerwin Klein)

• OS Kernel in the L4 tradition
• advanced Security (Access-Control) Model 

“Take-Grant Capabilities”
• virtual memory, dyn. thread creation, 

IPC, Fast-Track-IPC, support of AnoCom.
• designed to be formally verifiable (in Isabelle/HOL)
• designed to be performant
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Models and Methodology

Abstract Model
(Security Mod. and Functional Mod.)

C Implementation

Binary Code
(verified for ARM 11)
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Models and Methodology

Abstract Model
(Security Mod. and Functional Mod.)

C Implementation

Binary Code
(verified for ARM 11)

proof

proof

Functional
Correctness
[SOSP 09]

Translation
Correctness

[PLDI 13]
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Models and Methodology

Abstract Model
(Security Mod. and Functional Mod.)

C Implementation

Binary Code
(verified for ARM 11)

proof

proof

Timeliness
[RTSS11,EuroSys12]

Confiden-
tiality

Availability Integrity
pro

of

Integrity
[ITP 11]

Timeliness
[RTSS11,EuroSys12]

Non-Interference
[S&P 13]
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Abstract Model: 
Concepts and Functionalities  

! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management 
• virtual address space management
• thread management
• inter-process communication (IPC)
• device I/O management
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Abstract Model: 
Concepts and Functionalities  
! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management 

 
capability objects belong to a 

         thread or a thread-pool representing 
permissions for executing kernel operations on them.
Can refer to other capabilities in a 
dag.
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Abstract Model: 
Concepts and Functionalities  

! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management 
• virtual address space management

The VSpace belongs to a thread and is 
 composed of objects controlling the virtualization
 of virtual memory. 

This is architecture-specific. 
IA86 : Page-Directories, Page-Tables, Frames...
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Abstract Model: 
Concepts and Functionalities  

! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):

• thread management

represented by a Thread Control Block (TCB object)
with VSpace and CSpace (capabilities) 
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Abstract Model: 
Concepts and Functionalities  

! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):
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Abstract Model: 
Concepts and Functionalities  

! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):

• inter-process-communication (IPC)

based on „Endpoints“ (kind of mail-boxes)
IPC_send and IPC_receive refer to
synchronous (SEP) and asynchronous endpoints (AEP)
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IPC - Send - Receive Scenarios
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Abstract Model: 
Concepts and Functionalities  

! seL4 kernel operations can be devided 
into 6 groups (see Ref. Man.):

• device I/O management

Device drivers run outside the kernel.
To support this, seL4 implements I/O specific 
objects that provide access to I/O ports,
interrupts, and I/O address spaces  for
DMA-based memory spaces.
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Abstract Model: 
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Security Model (SM)
The seL4-security model (SM) is based on access 
control (AC) kernel objects. Key features:

! take-grant protection model 
(Jones et al al 76, Snyder 77, Bishop and Snyder 79)

can entity x ever gain access to entity y ?

! addition of shared capability storage
! „active and passive entities“ (vulgo: subjects and objects)
! entity destruction and identifier reuse
! perm hierarchies avoided by delegatable AC model
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Security Model (SM)
 

!  Take
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Security Model (SM)
 

!  Grant
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Security Model (SM)
 

!  Create
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Security Model (SM)
 

!  Remove (with id-recup. )
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Verification Methodology
 

!  Modeling in Isabelle/HOL and in Haskell
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Verification Methodology
 

!  Modeling in Isabelle/HOL and in Haskell
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Verification Methodology
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Verification Methodology
 

!  Modeling in Isabelle/HOL and in Haskell



10/24/16 B. Wolff - SystemX PizzaTalk 38

Verification Methodology
 

!  Modeling in Isabelle/HOL and in Haskell

for any action to prove:

pre a σ  Inv σ  ∧ ⟶
      (let (r, σ') = action a σ 
       in post a σ σ'  Inv σ')∧
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Verification Methodology
 

!  Modeling in Isabelle/HOL and in Haskell
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Verification Methodology
 

!  Modeling in Isabelle/HOL and in Haskell
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Verification Methodology
 

!  Prefinal step : 
 Eliminate Haskell proto-type.

•  hand-written C-Code 
•  compiled over  
C - 2 - Isabelle/HOL/Simp compiler 

• define memory abstractions 
• link to former invariant proofs ...
[Trust depends on this compiler]



10/24/16 B. Wolff - SystemX PizzaTalk 42

Verification Methodology
 

!  Supported C this way:
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Verification Methodology
 

!  Final step : 
 Eliminate C - 2 - Isabelle/HOL/Simpl  
 

• generated optimized ARM assembly
(conventionally via gcc -o4 ... )

• re-use an ARM operational semantics
model(going back to A. Fox)

• use smt technology to verify that
action contracts are still valid on machine level ... 
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 Evaluation
 

! A Revision of the Development Process 

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell 
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.
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 Evaluation
 

! A Revision of the Development Process 

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell 
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

compiler
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 Evaluation
 

! A Revision of the Development Process 

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell 
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

compiler Haskell 
Prototype

Handcoded 
Transition

C-2-Simpl
compiler
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 Evaluation
 

! A Revision of the Development Process 

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell 
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

compiler Haskell 
Prototype

Handcoded 
Transition

C-2-Simpl
compiler

Refinement
proof

(abandoned)
(abandoned)
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 Evaluation
 

! A Revision of the Development Process 

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell 
PrototypeIsabelle Model of

C Implement
optim. handwritten

C Implem.

compiler Haskell 
Prototype

Handcoded 
Transition

C-2-Simpl
compiler

Refinement
proof

(abandoned)
(abandoned)

gcc -o4

Validation
proof
(against ARM model) 

(abandoned)
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 Evaluation
 

!  

⇒ Ratio 1 to 20 between code and proof !
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Experimental Evaluation
 

!  in more 
  detail:



10/24/16 B. Wolff - SystemX PizzaTalk 51

Experimental Evaluation
 

!  implem
 errors
 covered
 in more 
  detail:
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 Evaluation
 

!  cost analysis
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 Evaluation 
!  cost analysis
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 Evaluation 
!  cost analysis

• overall : 25 py 
investment, mostly 
for the refinement
proof

• about 10 py 
infrastructure
(reusable?) 

• arguably cost

effective: 
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 Evaluation 
! what is missing

• well, seL4 is a kernel, not an OS with, say,
an POSIX interface.

• Components such as filesystems
TCP/IP stacks, firewalls and 
posix-libraries are missing.

• proof methodology for applications using 

take-grant security model. 
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 seL4 is free - 
what does this mean to you ? 
! seL4 became an open source project

(see video https://www.youtube.com/watch?v=lRndE7rSXiI) 
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 seL4 is free - 
what does this mean to you ? 
! seL4 became an open source project

(see video https://www.youtube.com/watch?v=lRndE7rSXiI) 
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 seL4 is free - 
what does this mean to you ? 

! anybody can 
contribute
(and chances of 
acceptance are 
high if proof provided) 

! consistency 
can be maintained
even in distributed
collaboration
(easy impact 
analysis in Isabelle)
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 seL4 is free - 
what does this mean to you ? 

! anybody can 
contribute
(and chances of 
acceptance are 
high if proof provided) 

! consistency 
can be maintained
even in distributed
collaboration
(easy impact 
analysis in Isabelle)
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 seL4 is free - 
what does this mean to you ? 
! further increases of cost-effectiveness
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 seL4 is free - 
what does this mean to you ?
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 seL4 is free - 
what does this mean to you ?
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Conclusion
! Formal Development based on ITP technology

is feasible for critical systems of 10 k size C...
! ... and can be cost-effective for high-

quality, complex code in a certification process.
! collaborative and open-source development

is strong point of FM developments;
impact analysis is easy for changes

! seL4 is reusable, but so far not much trusted 
code for libraries exists ...
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