
10/24/16 B. Wolff - SystemX PizzaTalk 1

Formally Verifying
a Micro-Kernel:

Experiences from
the seL4 Project

Université Paris-Saclay

Burkhart Wolff

http://www.lri.fr/ ̃wolff

10/24/16 B. Wolff - SystemX PizzaTalk 2

Abstract
I will give (as a close follower, Phd Examiner and member of a rival project) an
overview of the "seL4 project" done by NICTA, Australia. The aim of the project
was the development and comprehensive machine-checked formal verification
of an general-purpose operating system microkernel.

The talk will cover development methodology, the kernel design used to make
the verification tractable and the relevant refinement steps under-taken which
link an abstract, powerful access-control-oriented security model down to an
implementation model, which is again linked to assembly code running on
COTS ARM processors.

A particularity of the project is that a variety of experimental data isavailable
over the development costs of their approach, including modeling, coding,
code-verification and model-maintenance over meanwhile a decade.

My talk will essentially follow the article which appeared in “ACM Trans. Comp.
Sys, Vol 32, No 1, 2014, (same title) and contrast it by own experiences gained
in the EUROMILS Hypervisor project.

10/24/16 B. Wolff - SystemX PizzaTalk 3

Overview

! Context: Security-Critical Systems
! What is seL4 ?
! Abstract Model:
Concepts and Functionality

! Verification Methodology
! Experimental Evaluation of the
Development Process

! seL4 is free - what does this mean ?

10/24/16 B. Wolff - SystemX PizzaTalk 4

10/24/16 B. Wolff - SystemX PizzaTalk 5

by
 co

urt
es

y o
f G

en
era

l D
yn

am
ics

/NICTA

10/24/16 B. Wolff - SystemX PizzaTalk 6

Microkernels
! ... are a critical component in Embedded Systems
! ... sitting directly on (often relatively simple) hardware (ARM)
! ... enforce separation of critical and non-critical components

! they are complex, concurrent, but fairly small
! ... and an ideal target for verification by formal proof

10/24/16 B. Wolff - SystemX PizzaTalk 7

Microkernels
! Applications:

• Critical Embedded Systems
(Medical, Railways, Avionics, ...)

• Critical Common Infrastructure
(secure network switches,
 security co-processors of iOS devices ...)

• Systems with particularly high demands on
integrity and confidentiality (military, “Merkel-phone”)

10/24/16 B. Wolff - SystemX PizzaTalk 8

What is L4 ?

! Core Microkernel Design Principle:

Minimality

 A concept is tolerated inside the
microkernel only if moving outside
the kernel, i.e. permitting compe-
ting implementations, would prevent
the systems required functionality
[Liedtke, SOSP ‘95]

10/24/16 B. Wolff - SystemX PizzaTalk 9

What is L4 ?

! Core Microkernel Design Principle:

Minimality

 ⇒ atomic actions
 (locked code region, usually system mode)

 ⇒ system API calls contain
 atomic actions

 file-systems, IP-Stacks, drivers⇒
 are in user-land.

10/24/16 B. Wolff - SystemX PizzaTalk 10

What is L4 ?

! Mikro-Kernel Design was quite
 popular in the 80-ies (MACH, OS2)

 ⇒ atomic actions
 (locked code region, usually system mode)

 ⇒ system API calls contain
 atomic actions

 file-systems, IP-Stacks, drivers⇒
 are in user-land.

10/24/16 B. Wolff - SystemX PizzaTalk 11

What is L4 ?

! ... but ran into the “100-micro-seconds
desaster” for Inter-Process Com. (IPC)

10/24/16 B. Wolff - SystemX PizzaTalk 12

What is L4 ?

! ... for which Liedke proposed a solution
based on shared physical-memory.

10/24/16 B. Wolff - SystemX PizzaTalk 13

What is L4 ?

! ... for which Liedtke proposed a solution
based on shared physical-memory.

10/24/16 B. Wolff - SystemX PizzaTalk 14

What is seL4 ?

! seL4: secured L4
 (initiated by Gernot Heiser & Gerwin Klein)

• OS Kernel in the L4 tradition
• advanced Security (Access-Control) Model

“Take-Grant Capabilities”
• virtual memory, dyn. thread creation,

IPC, Fast-Track-IPC, support of AnoCom.
• designed to be formally verifiable (in Isabelle/HOL)
• designed to be performant

10/24/16 B. Wolff - SystemX PizzaTalk 15

Models and Methodology

Abstract Model
(Security Mod. and Functional Mod.)

C Implementation

Binary Code
(verified for ARM 11)

10/24/16 B. Wolff - SystemX PizzaTalk 16

Models and Methodology

Abstract Model
(Security Mod. and Functional Mod.)

C Implementation

Binary Code
(verified for ARM 11)

proof

proof

Functional
Correctness
[SOSP 09]

Translation
Correctness

[PLDI 13]

10/24/16 B. Wolff - SystemX PizzaTalk 17

Models and Methodology

Abstract Model
(Security Mod. and Functional Mod.)

C Implementation

Binary Code
(verified for ARM 11)

proof

proof

Timeliness
[RTSS11,EuroSys12]

Confiden-
tiality

Availability Integrity
pro

of

Integrity
[ITP 11]

Timeliness
[RTSS11,EuroSys12]

Non-Interference
[S&P 13]

10/24/16 B. Wolff - SystemX PizzaTalk 18

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management
• virtual address space management
• thread management
• inter-process communication (IPC)
• device I/O management

10/24/16 B. Wolff - SystemX PizzaTalk 19

Abstract Model:
Concepts and Functionalities
! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management

capability objects belong to a

 thread or a thread-pool representing
permissions for executing kernel operations on them.
Can refer to other capabilities in a
dag.

10/24/16 B. Wolff - SystemX PizzaTalk 20

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management
• virtual address space management

The VSpace belongs to a thread and is
 composed of objects controlling the virtualization
 of virtual memory.

This is architecture-specific.
IA86 : Page-Directories, Page-Tables, Frames...

10/24/16 B. Wolff - SystemX PizzaTalk 21

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• capability management
• virtual address space management

The VSpace belongs to a thread and is
 composed of objects controlling the virtualization
 of virtual memory.

This is architecture-specific.
IA86 : Page-Directories, Page-Tables, Frames...

10/24/16 B. Wolff - SystemX PizzaTalk 22

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• thread management

represented by a Thread Control Block (TCB object)
with VSpace and CSpace (capabilities)

10/24/16 B. Wolff - SystemX PizzaTalk 23

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

10/24/16 B. Wolff - SystemX PizzaTalk 24

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• inter-process-communication (IPC)

based on „Endpoints“ (kind of mail-boxes)
IPC_send and IPC_receive refer to
synchronous (SEP) and asynchronous endpoints (AEP)

10/24/16 B. Wolff - SystemX PizzaTalk 25

10/24/16 B. Wolff - SystemX PizzaTalk 26

IPC - Send - Receive Scenarios

10/24/16 B. Wolff - SystemX PizzaTalk 27

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• device I/O management

Device drivers run outside the kernel.
To support this, seL4 implements I/O specific
objects that provide access to I/O ports,
interrupts, and I/O address spaces for
DMA-based memory spaces.

10/24/16 B. Wolff - SystemX PizzaTalk 28

Abstract Model:
Concepts and Functionalities

! seL4 kernel operations can be devided
into 6 groups (see Ref. Man.):

• untyped memory and (kernel-) object management
• inter-process-communication (IPC)

based on „Endpoints“ (kind of mail-boxes)
IPC_send and IPC_receive refer to
synchronous (SEP) and asynchronous endpoints (AEP)

10/24/16 B. Wolff - SystemX PizzaTalk 29

Security Model (SM)
The seL4-security model (SM) is based on access
control (AC) kernel objects. Key features:

! take-grant protection model
(Jones et al al 76, Snyder 77, Bishop and Snyder 79)

can entity x ever gain access to entity y ?

! addition of shared capability storage
! „active and passive entities“ (vulgo: subjects and objects)
! entity destruction and identifier reuse
! perm hierarchies avoided by delegatable AC model

10/24/16 B. Wolff - SystemX PizzaTalk 30

Security Model (SM)

! Take

10/24/16 B. Wolff - SystemX PizzaTalk 31

Security Model (SM)

! Grant

10/24/16 B. Wolff - SystemX PizzaTalk 32

Security Model (SM)

! Create

10/24/16 B. Wolff - SystemX PizzaTalk 33

Security Model (SM)

! Remove (with id-recup.)

10/24/16 B. Wolff - SystemX PizzaTalk 34

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolff - SystemX PizzaTalk 35

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolff - SystemX PizzaTalk 36

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolff - SystemX PizzaTalk 37

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolff - SystemX PizzaTalk 38

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

for any action to prove:

pre a σ Inv σ ∧ ⟶
 (let (r, σ') = action a σ
 in post a σ σ' Inv σ')∧

10/24/16 B. Wolff - SystemX PizzaTalk 39

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolff - SystemX PizzaTalk 40

Verification Methodology

! Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolff - SystemX PizzaTalk 41

Verification Methodology

! Prefinal step :
 Eliminate Haskell proto-type.

• hand-written C-Code
• compiled over
C - 2 - Isabelle/HOL/Simp compiler

• define memory abstractions
• link to former invariant proofs ...
[Trust depends on this compiler]

10/24/16 B. Wolff - SystemX PizzaTalk 42

Verification Methodology

! Supported C this way:

10/24/16 B. Wolff - SystemX PizzaTalk 43

Verification Methodology

! Final step :
 Eliminate C - 2 - Isabelle/HOL/Simpl

• generated optimized ARM assembly
(conventionally via gcc -o4 ...)

• re-use an ARM operational semantics
model(going back to A. Fox)

• use smt technology to verify that
action contracts are still valid on machine level ...

10/24/16 B. Wolff - SystemX PizzaTalk 44

 Evaluation

! A Revision of the Development Process

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

10/24/16 B. Wolff - SystemX PizzaTalk 45

 Evaluation

! A Revision of the Development Process

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

compiler

10/24/16 B. Wolff - SystemX PizzaTalk 46

 Evaluation

! A Revision of the Development Process

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

compiler Haskell
Prototype

Handcoded
Transition

C-2-Simpl
compiler

10/24/16 B. Wolff - SystemX PizzaTalk 47

 Evaluation

! A Revision of the Development Process

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell
PrototypeIsabelle Model of

C Implement
Handwritten
C Implem.

compiler Haskell
Prototype

Handcoded
Transition

C-2-Simpl
compiler

Refinement
proof

(abandoned)
(abandoned)

10/24/16 B. Wolff - SystemX PizzaTalk 48

 Evaluation

! A Revision of the Development Process

Infra, Security Mod. and
 Functional Model

C Implement

Binary Code
(verified for ARM 11)

Haskell
PrototypeIsabelle Model of

C Implement
optim. handwritten

C Implem.

compiler Haskell
Prototype

Handcoded
Transition

C-2-Simpl
compiler

Refinement
proof

(abandoned)
(abandoned)

gcc -o4

Validation
proof
(against ARM model)

(abandoned)

10/24/16 B. Wolff - SystemX PizzaTalk 49

 Evaluation

!

⇒ Ratio 1 to 20 between code and proof !

10/24/16 B. Wolff - SystemX PizzaTalk 50

Experimental Evaluation

! in more
 detail:

10/24/16 B. Wolff - SystemX PizzaTalk 51

Experimental Evaluation

! implem
 errors
 covered
 in more
 detail:

10/24/16 B. Wolff - SystemX PizzaTalk 52

 Evaluation

! cost analysis

10/24/16 B. Wolff - SystemX PizzaTalk 53

 Evaluation
! cost analysis

10/24/16 B. Wolff - SystemX PizzaTalk 54

 Evaluation
! cost analysis

• overall : 25 py
investment, mostly
for the refinement
proof

• about 10 py
infrastructure
(reusable?)

• arguably cost

effective:

10/24/16 B. Wolff - SystemX PizzaTalk 55

 Evaluation
! what is missing

• well, seL4 is a kernel, not an OS with, say,
an POSIX interface.

• Components such as filesystems
TCP/IP stacks, firewalls and
posix-libraries are missing.

• proof methodology for applications using

take-grant security model.

10/24/16 B. Wolff - SystemX PizzaTalk 56

 seL4 is free -
what does this mean to you ?
! seL4 became an open source project

(see video https://www.youtube.com/watch?v=lRndE7rSXiI)

10/24/16 B. Wolff - SystemX PizzaTalk 57

 seL4 is free -
what does this mean to you ?
! seL4 became an open source project

(see video https://www.youtube.com/watch?v=lRndE7rSXiI)

10/24/16 B. Wolff - SystemX PizzaTalk 58

 seL4 is free -
what does this mean to you ?

! anybody can
contribute
(and chances of
acceptance are
high if proof provided)

! consistency
can be maintained
even in distributed
collaboration
(easy impact
analysis in Isabelle)

10/24/16 B. Wolff - SystemX PizzaTalk 59

 seL4 is free -
what does this mean to you ?

! anybody can
contribute
(and chances of
acceptance are
high if proof provided)

! consistency
can be maintained
even in distributed
collaboration
(easy impact
analysis in Isabelle)

10/24/16 B. Wolff - SystemX PizzaTalk 60

 seL4 is free -
what does this mean to you ?
! further increases of cost-effectiveness

10/24/16 B. Wolff - SystemX PizzaTalk 61

 seL4 is free -
what does this mean to you ?

10/24/16 B. Wolff - SystemX PizzaTalk 62

 seL4 is free -
what does this mean to you ?

10/24/16 B. Wolff - SystemX PizzaTalk 63

Conclusion
! Formal Development based on ITP technology

is feasible for critical systems of 10 k size C...
! ... and can be cost-effective for high-

quality, complex code in a certification process.
! collaborative and open-source development

is strong point of FM developments;
impact analysis is easy for changes

! seL4 is reusable, but so far not much trusted
code for libraries exists ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

