Formally Verifying
a Micro-Kernel:
Experiences from
the seL4 Project

Burkhart Wol ff

http://www.lri.fr/ “wolff

Universite Paris-Saclay

10/24/16 B. Wolft - SystemX PizzaTalk

Abstract

| will give (as a close follower, Phd Examiner and member of a rival project) an
overview of the "selL4 project" done by NICTA, Australia. The aim of the project
was the development and comprehensive machine-checked formal verification
of an general-purpose operating system microkernel.

The talk will cover development methodology, the kernel design used to make
the verification tractable and the relevant refinement steps under-taken which
link an abstract, powerful access-control-oriented security model down to an
implementation model, which is again linked to assembly code running on
COTS ARM processors.

A particularity of the project is that a variety of experimental data isavailable
over the development costs of their approach, including modeling, coding,
code-verification and model-maintenance over meanwhile a decade.

My talk will essentially follow the article which appeared in “ACM Trans. Comp.
Sys, Vol 32, No 1, 2014, (same title) and contrast it by own experiences gained
in the EUROMILS Hypervisor project.

10/24/16 B. Wolft - SystemX PizzaTalk 2

Overview

* Context: Security-Critical Systems

*What is selL.4 ?

* Abstract Model:
Concepts and Functionality

* Verification Methodology

* Experimental Evaluation of the
Development Process

*selL4 is free - what does this mean ?

10/24/16 B. Wolft - SystemX PizzaTalk

GENERAL DYNAMICS
C4 Systems

Developing dependable systems requires built-in security and safety at all levels of the
system, including in the lowest-level system software: the operating system and device
access software.

For truly dependable systems, the software must be trustworthy: we must be able to
provide the guarantee that it behaves correctly and has the required security and safety
properties. These guarantees can be provided through testing, certification, and formal
verification.

lllll

10/24/16 B. Wolft - SystemX PizzaTalk

GENERAL DYNAMICS

C4 Systems
e
N
Developing dependable systems requires built-in security and safety | levels of the

system, including in the lowest-level system software: the Uperatiig‘@ystem and device
access software. Q(b'

For truly dependable systems, the software must be trustu(sahy: we must be able to
provide the guarantee that it behaves correctly and ha tﬂé required security and safety
properties. These guarantees can be provided thrm@& esting, certification, and formal
verification.

10/24/16 B. Wolft - SystemX PizzaTalk

Microkernels

* ... are a critical component in Embedded Systems
* ... sitting directly on (often relatively simple) hardware (ARM)
* ... enforce separation of critical and non-critical components

* they are complex, concurrent, but fairly small
* ... and an ideal target for verification by formal proof

critical component

untrusted, complex g, ated and protected

user interface

hardware L

10/24/16 B. Wolft - SystemX PizzaTalk

Microkernels

* Applications:

* Critical Embedded Systems
(Medical, Railways, Avionics, ...)

* Critical Common Infrastructure
(secure network switches,

security co-processors of iOS devices ...)

* Systems with particularly high demands on
integrity and confidentiality (military, “Merkel-phone”)

10/24/16 B. Wolft - SystemX PizzaTalk

What is L4 ?

* Core Microkernel Design Principle:
Minimality

A concept is tolerated inside the
microkernel only if moving outside
the kernel, i.e. permitting compe-
ting implementations, would prevent

the systems required functionality -
[Liedtke, SOSP ‘95] P i

10/24/16 B. Wolft - SystemX PizzaTalk

What is L4 ?

* Core Microkernel Design Principle:
Minimality

= atomic actions
(locked code region, usually system mode)

=> system AP calls contain
atomic actions

= file-systems, |IP-Stacks, drivers
are in user-land.

10/24/16 B. Wolft - SystemX PizzaTalk

What is L4 ?

* Mikro-Kernel Design was quite
popular in the 80-ies (MACH, OS2)

= atomic actions
(locked code region, usually system mode)

=> system AP calls contain
atomic actions

= file-systems, |IP-Stacks, drivers _
are in user-land. b AT

10/24/16 B. Wolft - SystemX PizzaTalk 10

What is L4 ?

* ... but ran into the “100-micro-seconds
desaster” for Inter-Process Com. (IPC)

1993 IPC Performance @
(us]
400 + Mach
486 @
50 MHz
300 +

200 T
115 !.ls g e
H\““ﬁ._
100 + e |
gt
raw copy 1 l J.....l-
0 + + 4
0 2000 4000 6000 11

Message Length [B]

What is L4 ?

* ... for which Liedke proposed a solution
based on shared physical-memory.

1993 IPC Performance 2

[us]

400 T Mach
486 @
50 MHz

300 A

200

1MMSus —
100 1 L4
Sus \ raw copy
0 = = 4

0 2000 4000 6000
Message Length [B]

What is L4 ?

* ... for which Liedtke proposed a solution
based on shared physical-memory.

IPC Performance over 20 Years @

Name Year Processor MHz
Original 1993 486 50
Original 1997 Pentium 160
L4/MIPS 1997 R4700 100
L4/Alpha 1997 21064 433
Hazelnut 2002 Pentium4 1,400
Pistachio 2005 Itanium 1,500
OKL4 2007 XScale 255 400
NOVA 2010 i7 Bloomfield (32-bit) 2,660
selL4 2013 i7 Haswell (32-bit) 3,400
selL4 2013 ARM11 532

selL4 2013 Cortex A9 1,000

©2013 Gernot Heiser, NICTA 4 S0OS5P'13

What is selL4 ?

* selL4: secured L4
(initiated by Gernot Heiser & Gerwin Klein)

* OS Kernel in the L4 tradition
* advanced Security (Access-Control) Model
“Take-Grant Capabilities”
* virtual memory, dyn. thread creation,
IPC, Fast-Track-IPC, support of AnoCom.
* designed to be formally verifiable (in Isabelle/HOL)
* designed to be performant

10/24/16 B. Wolft - SystemX PizzaTalk 14

10/24/16

Models and Methodology

Abstract Model

(Security Mod. and Functional Mod.)

C Implementation

Binary Code

(verified for ARM 11)

15

10/24/16

Models and Methodology

Abstract Model

of

-

(Security Mod. and Functional Mod.) ional
rectness
ISOSP 09]

C Implementation

>

of

lation
rectness
[PLDI 13]

Binary Code

(verified for ARM 11)

16

Models and Methodology

proof

Abstract Model

(Security Mod. and Functional Mod.)

pro
C Implementation

>

Binary Code

(verified for ARM 11)

of

of

10/24/16

a 17
uroSysi2]

Abstract Model:

Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* untyped memory and (kernel-) object management

* capability management

* virtual address space management

* thread management

* inter-process communication (IPC)

* device I/0 management

10/24/16

B. Wolff - SystemX PizzaTalk 18

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* untyped memory and (kernel-) object management
* capability management

capability objects belong to a

thread or a thread-pool representing

permissions for executing kernel operations on them.
Can refer to other capabilities in a

dag.

10/24/16 B. Wolft - SystemX PizzaTalk 19

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* untyped memory and (kernel-) object management
* capability management
* virtual address space management

The VSpace belongs to a thread and is
composed of objects controlling the virtualization
of virtual memory.
This is architecture-specific.
10724716 |A86 : Page-DifettbriesmPagé&iTables, Frames... 20

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* untyped memory and (kernel-) object management
* capability management
* virtual address space management

The VSpace belongs to a thread and is
composed of objects controlling the virtualization
of virtual memory.
This is architecture-specific.
10724716 |A86 : Page-DifettbriesmPagé&iTables, Frames... 21

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* thread management

represented by a Thread Control Block (TCB object)
with VSpace and CSpace (capabilities)

10/24/16 B. Wolft - SystemX PizzaTalk 22

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

TCB

CAP | CAP |
CSpace VSpace
v S P 4
CNODE CNODE ! ; PD
CAP ; | PDE
<+« | | . » PT
CAP i PTE
CNODE . — <. » FRAME
«~——» FRAME PTE
CAP o | | » FRAME
10/24/16 e = e - 23

P Other Kernel Objects

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* inter-process-communication (IPC)

based on ,Endpoints® (kind of mail-boxes)
IPC_send and IPC_receive refer to
synchronous (SEP) and asynchronous endpoints (AEP)

10/24/16 B. Wolft - SystemX PizzaTalk 24

Endpoints

Client Server

2 IPC)222

0x01 Async EP

2 0x10

10/24/16

Client Sync EP Server

» Sync EP queues senders/receivers
* Does not buffer messages

« Async EP accumulates bits

B. Wolff - SystemX PizzaTalk

25

IPC - Send - Receive Scenarios

Thread A
o~ CNODE,, |
Wopaca — IPC Butine
.y Shared
}E_ CNODE,, ~ Endpoint
= 4 b Write - Read
(] 2 KIiE EFI
v 5128 (9 =
PD4 58]
- + T F‘E—:L:I_. Write
and Granl
o " FTH v 4 KB As e
2" alots | » | FRAME | ' Read)i
6KkB| |, |, ,l:;'l'r'flic_ Endpoint
27 noln 5 dHlH wll -
1KiB | > FRAME |= AEP]
_1ﬁH|
: :_:h Resad
L 2 KiB y .ill'-:i
WwWrite
IRQ objects r /
L i 4‘
RQTable [, [, [, [, [, I,T -~ T, 1,011
atodes BEEELIEY . AL
\ v
10/24/16

B. Wolff - SystemX PizzaTalk

Thread B
rd
(- TCBE
CNODEg * wome| |
| I |n; E-u"{g-: — "
k|
u
-
[=]
S 5128
Y
T TvIMIB
P IZ]B
FRAME
Ll [SECTION)
e 212 sioes
16 KB |
LY

Extra capabilities

CNODEgy1Ra

2% slgis

B4 B

26

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* device I/0 management

Device drivers run outside the kernel.

To support this, seL4 implements I/O specific
objects that provide access to I/0O ports,
interrupts, and I/O address spaces for
DMA-based memory spaces.

10/24/16 B. Wolft - SystemX PizzaTalk 27

Abstract Model:
Concepts and Functionalities

* selL4 kernel operations can be devided
iInto 6 groups (see Ref. Man.):

* untyped memory and (kernel-) object management
* inter-process-communication (IPC)

based on ,Endpoints® (kind of mail-boxes)
IPC_send and IPC_receive refer to
synchronous (SEP) and asynchronous endpoints (AEP)

10/24/16 B. Wolft - SystemX PizzaTalk 28

Security Model (SM)

The selL4-security model (SM) is based on access
control (AC) kernel objects. Key features:

* take-grant protection model
(Jones et al al 76, Snyder 77, Bishop and Snyder 79)

can entity x ever gain access to entity y ?

* addition of shared capability storage

* ,active and passive entities” (vulgo: subjects and objects)
* entity destruction and identifier reuse

* perm hierarchies avoided by delegatable AC model

10/24/16 B. Wolft - SystemX PizzaTalk 29

Security Model (SM

* Take

Take An entity e, with a capability with a Take access right to another entity

e, can take a copy of one of that entity’s capabilities @?, as illustrated in

Figure 4.2.

Take

C—— Take — P
N

Take

Figure 4.2: The take operation

10/24/16 B. Wolft - SystemX PizzaTalk

30

Security Model (SM

* Grant

Grant An entity e, with a capability with a Grant access right to another entity

e, is able to grant a copy of one of its capabilities @ to that entity, as

Grant

— e =
x

Figure 4.3: The grant operation

illustrated in Figure 4.3.

y

oo
Y

z

10/24/16 B. Wolft - SystemX PizzaTalk

31

Security Model (SM
* Create

Create Any entity e, can create a new entity e,, to which it has full access

rights, as illustrated in Figure 4.4.

C——— Create —p» a ——r-
All

rights

Figure 4.4: The create operation

10/24/16 B. Wolft - SystemX PizzaTalk

32

Security Model (SM

* Remove (with id-recup.)

Remove An entity e, can remove one of its capabilities a, as illustrated in Fig-

ure 4.5.

o
= e =

Figure 4.5: The remove operation

10/24/16 B. Wolft - SystemX PizzaTalk

33

Verification Methodology
* Modeling in Isabelle/HOL and in Haskell

10/24/16 B. Wolft - SystemX PizzaTalk

34

Verification Methodology

* Modeling in Isabelle/HOL and in Haskell
- SN

35

Verification Methodology

* Modeling in Isabelle/HOL and in Haskell
R o A —

Specification

!

Desian Haskell
g Prototype

I

S :

Verification Methodology

* Modeling in Isabelle/HOL and in Haskell
- =S

definition
schedule :: unit s_monad where
schedule = do

threads « allActiveTCBs;
Speclflcatlon thread «— select threads;
switch_to_thread thread

od
l OR switch_to_idle_thread

Desian Haskell
g9 Prototype

|

37

Verification Methodology

* Modeling in Isabelle/HOL and in Haskell
—

definit

sche f . .
scne 10T @Ny action to prove:

th
Specification th

Lipreac Alnve —
Ok s (let (r, o') =actionac
in postac c' A Inv ')
Desi Haskell
Prototype

|

38

Verification Methodology
—

Specification
schedule :: Kernel ()

schedule = do
action <- getSchedulerAction
case action of
ResumeCurrentThread -> return ()
ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
SwitchToThread t -> do

switchToThread t
setSchedulerAction ResumeCurrentThread

chooseThread :: Kernel ()
chooseThread = do
r <- findM chooseThread' (reverse [minBound ..

when [

Verification Methodology
“ Confinement

Specification

|

© NICTA 2003

void
schedule(void) {
switch ((word t)ksSchedulerAction) {
case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ChooseNewThread:
chooseThread();
ksschedulerAction = SchedulerAction ResumeCurrentThread;
break;

default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

}
}
void

chooseThread(void) {

mrie F mrise

Verification Methodology

* Prefinal step :
Eliminate Haskell proto-type.

* hand-written C-Code

* compiled over
C - 2 - Isabelle/HOL/Simp compiler

* define memory abstractions

* link to former invariant proofs ...
[Trust depends on this compiler]

10/24/16 B. Wolft - SystemX PizzaTalk 41

Verification Methodology
* Supported C this way:

) A
switch ((word t)ksSchedulerAction) ({
(word_t)SchedulerAction_ResumeCurrentThread:

Everything from C standard bresky

(word_t)SchedulerAction_ChooseNewThread:
();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
S 2
JLEr

1t

* including: .. ® minus:
- pointers, casts, pointer arithmetic Fe - goto, switch fall-through
- data types - reference to local variable
- structs, padding - side-effects in expressions
- pointers into structs : - function pointers (restricted)
- precise finite integer arithmetic - unions

* plus compiler assumptions on:

- data layout, encoding, endianess
10/24/16

Verification Methodology

* Final step :
Eliminate C - 2 - Isabelle/HOL/Simpl

* generated optimized ARM assembly
(conventionally via gcc -04 ...)

* re-use an ARM operational semantics
model(going back to A. Fox)

* use smt technology to verity that
action contracts are still valid on machine level ...

10/24/16 B. Wolft - SystemX PizzaTalk 43

* A Revision of the Development Process

10/24/16

Evaluation

Infra, Security Mod. and
Functional Model

Haskell
Prototype

|Isabelle Model of
C Implement

Binary Code

Handwritten
C Implem.

(verified for ARM 11)

B. Wolff - SystemX PizzaTalk

44

Evaluation

* A Revision of the Development Process

Infra, Security Mod. and

Functional Model
V%%%\ Haskell

Isabelle Model of Prototype
C Implement
Handwritten
Binary Code C Implem.
(verified for ARM 11)

10/24/16 B. Wolft - SystemX PizzaTalk

Evaluation

* A Revision of the Development Process

Infra, Security Mod. and

Functional Model
V%%%\ Haskell

Isabelle Model of Prototype
C Implement ¥ @Handqqded
Cop, Xy y Transition
P Handwritten
Binary Code C Implem.
(verified for ARM 11)

10/24/16 B. Wolft - SystemX PizzaTalk

Evaluation

* A Revision of the Development Process

Infra, Security Mod. and
Functional Model

(abandoned)

Refinement bandoned)
proof
Isabelle Model o
C Implement ~Co @Hand?qded
' Cop, S, / Transition
P, Handwritten
Binary Code C Implem.
(verified for ARM 11)

10/24/16 B. Wolft - SystemX PizzaTalk 47

Evaluation

* A Revision of the Development Process

Infra, Security Mod. and
Functional Model

(abandoned)

bandoned)

Refinement
proof
|Isabelle Model o
C |mDJement QJ@ ndoned) @Hand(}o.ded
Validation | Cofbp) Transition
proof “e,~0ptim. handwrltteTn

(against ARM model)

10/24/16

Binary Code o C Implem.

(verified for ARM 11)

B. Wolff - SystemX PizzaTalk 48

10/24/16

Evaluation

Formal proof all the way from spec to C.

200kloc handwritten, machine-checked proof

~460 bugs (160 in C)

Verification on code, design, and spec

Hard in the proof == Hard in the implementation

— Ratio 1 to 20 between code and proof !

B. Wolff - SystemX PizzaTalk

49

Experimental Evaluation

_ Bugs found
°* 1IN More

detail:
during testing: 16

during verification:
e inC: 160
* indesign: ~150
e inspec: ~150

460 bugs

10/24/16

50

Experimental Evaluation

° implem Execution always defined:

errors :
covered °
in more)
detail: '

no null pointer de-reference

no buffer overflows

no code injection

no memory leaks/out of kernel memory
no div by zero, no undefined shift

no undefined execution

no infinite loops/recursion

10/24/16 B. Wolft - SystemX PizzaTalk 51

10

Evaluation

* cost analysis

Devel Total Effort Artefacts Effort
evelopment
Effort 2.2 py Haskell 2 py
C implementation 0.2 py (2 pm)
(a) Overall Effort for seL.4 Development
Total Effort Artefacts Effort
Generic framework & tools 9 py
Correctness seL4 formal | Abstract Spec 0.3 py (4 pm)
Proof Effort 20.5 py models Exec. Spec 0.2 py (3 pm)
sel.4 formal Refinement 1 8 py
proofs Refinement 2 3 py
(b) Correctness Proof Effort
Optimisation| Total Effort Artefacts Effort
Proof Effort 0.4py * Fast Path 0.4 py (5 pm) *

(c) Optimisation Proof Effort

52

10/24/16

Evaluation
* cost analysis

Total Effort Artefacts Effort
Integrity 0.6py (7.4pm) *
Scheduler *
Update 0.2 py (1.8 pm)
Security o *
Proof Effort 4.1py * Determinising
Confid. Spec and 1.5 py (18.5 pm)
Updating Proofs
Confidentiality *
Proofs 1.7 py (20.4 pm)
(d) Security Proof Effort
Binary Total Effort Artefacts Effort
Verif. Effort 2 py Binary Verification 2 py
(e) Binary Verification Effort
Total Effort Artefacts Effort
CapDL capDL Spec 0.6py (7.2pm) *
Effort 2py * capDL-to-Abstract Spec 1.4py (17.2pm) *

refinement proof

(f) capDL Effort

53

Evaluaton

* cost analysis ~ Effort

* overall : 25 py Haskell design 2 py
Investment, mostly

_ First C impl. 2 weeks
for the refinement _ _
oroof Debugging/Testing 2 months
* about 10 py Kernel verification 12 py
infrastructure Formal frameworks 10 py
(reusable?) Total 25 py
Cost

* arguably cost o
Common Criteria EALG: $87M

effective: L4 .verified: $6M

10/24/16

Evaluation

*what is missing

* well, seL4 is a kernel, not an OS with, say,
an POSIX interface.

* Components such as filesystems
TCP/IP stacks, firewalls and
posix-libraries are missing.

* proof methodology for applications using

take-grant security model.

10/24/16 B. Wolft - SystemX PizzaTalk

55

selL4 is free -
what does this mean to you ?

*sel.4 became an open source project
(see video https://www.youtube.com/watch?v=IRndE7rSXil)

The selL4 Microkernel ° I4

Security is no excuse for poor performance!

The world's first operating-system kemel with an end-to-end proof of implementation correctness and security
enforcement is available as open source.

Sign up to sel4-announce Sign up to sel4-devel

10/24/16 B. Wolft - SystemX PizzaTalk 56

selL4 is free -
what does this mean to you ?

*sel.4 became an open source project
(see video https://www.youtube.com/watch?v=IRndE7rSXil)

Current NICTA Work on selL4 -

= High-performance multicore support
* Full support for virtualisation extensions

= 64-bit support

10/24/ 57

el
-~
’

selL4 is free -
what does this mean to you ?

* anybody can

contribute

(and chances of
acceptance are

high if proof provided)

* consistency
can be maintained
even in distributed

collaboration
(easy impact
analysis in Isabelle)

10/24/16

@ SourceTree

=3 : = = — [P— . |
@e [14v (Git)
() ON O Y oI £ [&] &
Commit Pull Push Fetch Branch Merge Stash Show in Finder Terminal Settings
Q WORKSPACE | All Branches % | | Show Remote Branches < | | Ancestor Order | Jump to: |)
File status Graph Description Commit Author Date
. % Allow use of previous enum values in enums. 2515fBc Thomas Sewell <T... 2 Sep 2016, 05:58
2Dy I Regression: re-applying [094fb48623d] to fix run_tests.py 0c29567 Alejandro Gomez-.. 29 Aug 2016, 09:..
Search l Read extra_tests as relative to dir it is in. 8b2B182 Thomas Sewell <T.. 26 Aug 2016, 08:...
l Have run_tests see an extra_tests special file. 37efbB3 Thomas Sewell <T.. 26 Aug 2016, 08:...
Ij’ BRI ES L. Merge pull reguest #1071 in SEL4/14v from ~TSEWELL/l4v:crunch-refac to master 1449102 Thomas Sewell <T... 25 Aug 2016, 09:...
O master HI :tor of crunch. Thomas S 24 Aug 2016, O
I Haskell translator: can keep type constructors. 4023410 Thomas Sewell <T... 25 Aug 2018, 07:...
Q’ TAGS l Regression: Added RUMN_TESTS_DEFAULT for overwriting the default test set ef88748 Alejandro Gomez-.. 24 Aug 2018, D5:...
l-— Munge test: updates test_munge.sh to support sorted output from c-parser el10f42 Alejandre Gomez-... 17 Aug 2016, 05:59
> REMOTES - trivial: remove debug tracing code 034232a Matthew Brecknell.. 2 Sep 2016, 15:38
» origin ; CParser multi_arch_refactor: build standalone parser in dir named after arch 945ee81 Matthew Brecknell... 2 Sep 2016, 15:38
| Sorted by path ~ | [= | Q & v
[STASHES —_—

o
a

Retactor of crunch. lib/BCorres_UL.thy

)
B

7]

c

m

=

S

=

m

W

o
X

3
i
I

Substantial adjustments to crunch. Main user changes are:

\ . Reverse hunk
- 'lift" and 'unfold' mechanisms replaced by more general

Hunk 1: Lines 254-256

rule’, 254 254 type extra = term;
- some more 'ignores' standardised. 255+ wal eq_extra = ae_conv;
- crunch has a more principled overall design: 255 1256 val name = “bcorres";
+ discover crunch rule
" provided or by definition extraction Hunk 2 : Lines 259-261 Reverse hunk
+ recurse according to rule
+ prove goal based on rule, recursive discoveries, standard 258 259 (Syntax.parse_term @{context} "bcorres_underlying”) § extra % body $ body;
tactic 259 - fun get_precond {(Const (@{const_name "bcorres_underlying"}, _)} % _ &% _ % _)} = Var |(
* wplsimp adjustments tweak tactic 268+ fun get_precond (Const (@{const_name "bcorres_underlying"}, _)} % _ % _ % _ } = Term.
260 261 | get_precond _ = error "get_precond: not an bcorres term";
Commit: 9alec?1a2d53656f4c7eblc3abbB8c323bb38ib3. ..
Parents: e110f421d1 Hunk 3 : Lines 264-268 it DL
Author: Thomas Sewell <Thomas.Sewell@nicta.com.au> 263 264 | put_precond _ _ = error "put_precond: not an bcorres term";
265 + fun dest_term (Const (@{const_name “bcorres_underlying"}, _) % extra % body % _)
Date: 23 August 2016 at 14:31:49 GMT+2 266 | + = SOME (Term.dummy, body, extra)
Commit Date: 24 August 2016 at 07:53:53 GMT+2 267 [+ | dest_term _ = HOME
764 268 val pre_thms = [];

59

10/24/16 B. Wolft - SystemX PizzaTalk

selL4 is free -
what does this mean to you ?

*further increases of cost-effectiveness

What Else Is Cooking?

« Aim: Cost reduction by automation and abstraction

selL4 is free -
what does this mean to you ?

How Can YOU Contribute? ®

« Libraries presently extremely rudimentary

* Platform ports

* Network stacks and file systems
« Tools

« Languages

selL4 is free -
what does this mean to you ?

10/24/16 B. Wolft - SystemX PizzaTalk 62

Conclusion

* Formal Development based on ITP technology
is feasible for critical systems of 10 k size C...

* ... and can be cost-effective for high-
guality, complex code in a certification process.

* collaborative and open-source development
IS strong point of FM developments;
impact analysis is easy for changes

* selL4 is reusable, but so far not much trusted
code for libraries exists ...

10/24/16 B. Wolft - SystemX PizzaTalk

63

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

