
 2021

Cycle Ingénieur – 2ème année
Département Informatique

Verification and Validation
Part III : Formal Specification with

UML/MOAL

Burkhart Wolff
Département Informatique

Université Paris-Saclay / LMF

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

2

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Syntax & Semantics of our own language

2

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Syntax & Semantics of our own language

2

MOAL

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Syntax & Semantics of our own language

❑ mathematical

2

MOAL

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Syntax & Semantics of our own language

❑ mathematical
➢ object-oriented

2

MOAL

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Syntax & Semantics of our own language

❑ mathematical
➢ object-oriented
➢ UML-annotation

2

MOAL

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Syntax & Semantics of our own language

❑ mathematical
➢ object-oriented
➢ UML-annotation
➢ language

(conceived as the „essence“ of annotation
 languages like OCL, JML, Spec#, ACSL, ...)

2

MOAL

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists
➢ Object Types from UML

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists
➢ Object Types from UML
➢ Navigation along UML attributes and associations

 (Idea from OCL and JML)

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists
➢ Object Types from UML
➢ Navigation along UML attributes and associations

 (Idea from OCL and JML)
❑ Purpose :

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists
➢ Object Types from UML
➢ Navigation along UML attributes and associations

 (Idea from OCL and JML)
❑ Purpose :

➢ Class Invariants

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists
➢ Object Types from UML
➢ Navigation along UML attributes and associations

 (Idea from OCL and JML)
❑ Purpose :

➢ Class Invariants
➢ Method Contracts with Pre- and Post-Conditions

3

VnV: Modelling in UML/MOALPolyTech 2021

Plan of the Chapter

❑ Concepts of MOAL
➢ Basis: Logic and Set-theory
➢ MOAL is a Typed Language
➢ Basic Types, Sets, Pairs and Lists
➢ Object Types from UML
➢ Navigation along UML attributes and associations

 (Idea from OCL and JML)
❑ Purpose :

➢ Class Invariants
➢ Method Contracts with Pre- and Post-Conditions
➢ Annotated Sequence Diagrams for Scenarios, . . .

3

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

4

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

4

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

 x.id must be larger 0
(for any object x of Class Compteur)

4

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

 ∀x ∈ Compteur(σ). x.id(σ) > 0

5

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

... by abbreviation convention if no confusion arises.

Compteur

id:Integer

 ∀x ∈ Compteur. x.id > 0

6

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

definition invCompteur(σ)≡ ∀x ∈ Compteur(σ).
 x.id(σ) > 0

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer ... or by convention

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

Compteur

id:Integer

definition invCompteur ≡ ∀x ∈ Compteur. x.id > 0

... or by convention

7

VnV: Modelling in UML/MOALPolyTech 2021

Motivation: Why Logical Annotations

❑ More precision needed
(like JML, VCC) that constrains an underlying state σ

... or as mathematical definition in a separate document

Compteur

id:Integer

definition invCompteur ≡ ∀x ∈ Compteur. x.id > 0

... or by convention

7

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A first Glance to an Example: Bank

Opening a bank account. Constraints:
❑ there is a blacklist
❑ no more overdraft than 200 EUR
❑ there is a present of 15 euros in the initial account
❑ account numbers must be distinct.

8

VnV: Modelling in UML/MOALPolyTech 2021

A first Glance to an Example: Bank (2)

definition unique ≡ isUnique(.no)(Compte)
definition noOverdraft ≡ ∀c ∈ Compte. c.id ≥ -200

definition pre
ouvrirCompte

(b:Banque, nomC:String)≡
 ∀p ∈ Personne. p.nom ≠ nomC

definition post
ouvrirCompte

(b:Banque,nomC:String,r::Int)≡
 |{p ∈ Personne | p.nom = nomC ∧ isNew(p)}| = 1

∧ |{c∈Compte | c.titulaire.nom = nomC}| = 1
∧ ∀c∈Compte. c.titulaire.nom = nomC
 ⟶ c.solde = 15 ∧ isNew(c)

9

VnV: Modelling in UML/MOALPolyTech 2021

MOAL: a specification langage?

❑ In the following, we will discuss the

MOAL Language in more detail ...

10

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False
➢ negation : ¬ E,

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False
➢ negation : ¬ E,
➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False
➢ negation : ¬ E,
➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'
➢ E = E', E ≠ E',

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False
➢ negation : ¬ E,
➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'
➢ E = E', E ≠ E',
➢ if C then E else E' endif

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False
➢ negation : ¬ E,
➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'
➢ E = E', E ≠ E',
➢ if C then E else E' endif
➢ let x = E in E’

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The usual logical language:

➢ True, False
➢ negation : ¬ E,
➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'
➢ E = E', E ≠ E',
➢ if C then E else E' endif
➢ let x = E in E’

➢ Quantifiers on sets and lists:

∀x ∈ Set. P(x) ∃x ∈ Set. P(x)

11

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

12

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.

12

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.

➢ Basic Types:
 Boolean, Integer, Real, String

12

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.

➢ Basic Types:
 Boolean, Integer, Real, String

➢ Pairs:
 X × Y

12

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.

➢ Basic Types:
 Boolean, Integer, Real, String

➢ Pairs:
 X × Y

➢ Lists:
 List(X)

12

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.

➢ Basic Types:
 Boolean, Integer, Real, String

➢ Pairs:
 X × Y

➢ Lists:
 List(X)

➢ Sets:
 Set(X)

12

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

13

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.
expressions of type Integer or Real:

13

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.
expressions of type Integer or Real:

➢ 1,2,3 ... resp. 1.0, 2.3, pi.

13

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.
expressions of type Integer or Real:

➢ 1,2,3 ... resp. 1.0, 2.3, pi.

➢ - E, E + E',

13

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.
expressions of type Integer or Real:

➢ 1,2,3 ... resp. 1.0, 2.3, pi.

➢ - E, E + E',

➢ E * E', E / E',

13

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.
expressions of type Integer or Real:

➢ 1,2,3 ... resp. 1.0, 2.3, pi.

➢ - E, E + E',

➢ E * E', E / E',

➢ abs(E), E div E’, E mod E’...

13

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

14

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String:

14

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String:

➢ S concat S’

14

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String:

➢ S concat S’

➢ size(S)

14

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String:

➢ S concat S’

➢ size(S)

➢ substring(i,j,S)

14

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String:

➢ S concat S’

➢ size(S)

➢ substring(i,j,S)

➢ 'Hello'

14

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y
➢ {}, {a,b,c} empty and finite sets

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y
➢ {}, {a,b,c} empty and finite sets
➢ e∈S, e∉S is element, not element

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y
➢ {}, {a,b,c} empty and finite sets
➢ e∈S, e∉S is element, not element
➢ S⊆ S’ is subset

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y
➢ {}, {a,b,c} empty and finite sets
➢ e∈S, e∉S is element, not element
➢ S⊆ S’ is subset
➢ {x ∈ S | P(S)} filter

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y
➢ {}, {a,b,c} empty and finite sets
➢ e∈S, e∉S is element, not element
➢ S⊆ S’ is subset
➢ {x ∈ S | P(S)} filter
➢ S ∪ S’,S ∩ S’ union , intersect

 between sets of same type

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Sets

➢ | S | size as Integer
➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y
➢ {}, {a,b,c} empty and finite sets
➢ e∈S, e∉S is element, not element
➢ S⊆ S’ is subset
➢ {x ∈ S | P(S)} filter
➢ S ∪ S’,S ∩ S’ union , intersect

 between sets of same type
➢ Integer, Real, String ...

 are symbols for the set
 of all Integers, Reals,

15

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Pairs

16

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Pairs

➢ (X,Y) pairing

16

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Pairs

➢ (X,Y) pairing
➢ fst(X,Y) = X projection

16

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Pairs

➢ (X,Y) pairing
➢ fst(X,Y) = X projection
➢ snd(X,Y) = Y projection

16

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)
➢ nth(L,i) -- for i between 0 et |S|-1

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)
➢ nth(L,i) -- for i between 0 et |S|-1
➢ L@L’ -- concatenate

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)
➢ nth(L,i) -- for i between 0 et |S|-1
➢ L@L’ -- concatenate
➢ e#S -- append at the beginning

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)
➢ nth(L,i) -- for i between 0 et |S|-1
➢ L@L’ -- concatenate
➢ e#S -- append at the beginning
➢ ∀x∈List. P(x) -- quantifiers :

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)
➢ nth(L,i) -- for i between 0 et |S|-1
➢ L@L’ -- concatenate
➢ e#S -- append at the beginning
➢ ∀x∈List. P(x) -- quantifiers :
➢ [x∈L | P(x)] -- filter

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Lists

Lists S have the following operations:
➢ x ∈ L -- is element (overload!)
➢ |S| -- length as Integer
➢ head(L),last(L)
➢ nth(L,i) -- for i between 0 et |S|-1
➢ L@L’ -- concatenate
➢ e#S -- append at the beginning
➢ ∀x∈List. P(x) -- quantifiers :
➢ [x∈L | P(x)] -- filter
➢ [1,2,3] -- denotations of lists

17

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Objects and Classes follow
the semantics of UML
➢ inheritance / subtyping
➢ casting
➢ objects have an id
➢ NULL is a possible

value in each class-type
➢ for any class A, we assume a function:

 A(σ)
which returns the set of instances of
class A in state σ

 A

 B

C

D

 F

18

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Objects and Classes follow
the semantics of UML

Recall that we will drop
the index (σ) whenever
it is clear from the context

 A

 B

C

D

 F

19

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages
casting allows for converting objects.

 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages
casting allows for converting objects.

❑ Objects have two types:
 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages
casting allows for converting objects.

❑ Objects have two types:
➢ the « apparent type »

(also called static type)

 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages
casting allows for converting objects.

❑ Objects have two types:
➢ the « apparent type »

(also called static type)
➢ the « actual type »

 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages
casting allows for converting objects.

❑ Objects have two types:
➢ the « apparent type »

(also called static type)
➢ the « actual type »

 (the type at creation)

 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages
casting allows for converting objects.

❑ Objects have two types:
➢ the « apparent type »

(also called static type)
➢ the « actual type »

 (the type at creation)
➢ casting changes the apparent type

along the class hierarchy, but
not the actual type

 A

 B

C

D

 F

20

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

 A

 B

C

D

 F

21

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

➢ Assume the creation of objects
 a in class A,b in class B,
 c in class C,d in class D,

 A

 B

C

D

 F

21

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

➢ Assume the creation of objects
 a in class A,b in class B,
 c in class C,d in class D,

➢ Then casting:

⟨F⟩b is illtyped

⟨A⟩b has apparent type A,
 but actual type B

⟨A⟩d has apparent type A,
 but actual type D

 A

 B

C

D

 F

21

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of OCL / UML

 A

 B

C

D

 F

22

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of OCL / UML

 A

 B

C

D

 F

22

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of OCL / UML

➢ We will also apply cast-operators
to an entire set: So A

 B

C

D

 F

22

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of OCL / UML

➢ We will also apply cast-operators
to an entire set: So

⟨A⟩B(σ) (or just: ⟨A⟩B)

 A

 B

C

D

 F

22

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of OCL / UML

➢ We will also apply cast-operators
to an entire set: So

⟨A⟩B(σ) (or just: ⟨A⟩B)

➢ is the set of instances
of B casted to A.

 A

 B

C

D

 F

22

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of OCL / UML

➢ We will also apply cast-operators
to an entire set: So

⟨A⟩B(σ) (or just: ⟨A⟩B)

➢ is the set of instances
of B casted to A.

➢ We have:
 ⟨A⟩B ∪ ⟨A⟩C ⊆ A
but:
 ⟨A⟩B ∩ ⟨A⟩C = {}
and also: ⟨A⟩D ⊆ A (for all states σ)

 A

 B

C

D

 F

22

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Instance sets can be used
to determine the actual type
of an object:

 b ∈ B

corresponds to Java’s instanceof
or OCL’s isKindOf. Note that
casting does NOT change the actual type:

 ⟨A⟩b ∈ B, and ⟨B⟩⟨A⟩b = b !!!

 A

 B

C

D

 F

23

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former
➢ type casts influence the latter,

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former
➢ type casts influence the latter,

 but not the former

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former
➢ type casts influence the latter,

 but not the former
➢ up-casts possible

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former
➢ type casts influence the latter,

 but not the former
➢ up-casts possible
➢ down-casts invalid

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Objects

❑ Summary:
➢ there is the concept of actual and apparent type

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former
➢ type casts influence the latter,

 but not the former
➢ up-casts possible
➢ down-casts invalid
➢ consequence:

up-down casts are identities.

24

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B
 i : Integer
 d: C

C

a : B

 B
 i :Integer

C

1
a

1
d

25

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Objects represent
structured, typed memory
in a state σ. They have
attributes.

Attributes can have class types.

 B
 i : Integer
 d: C

C

a : B

 B
 i :Integer

C

1
a

1
d

25

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Objects represent
structured, typed memory
in a state σ. They have
attributes.

Attributes can have class types.

❑ Reminder: In class diagrams,
this situation is represented
traditionally by Associations
(equivalent)

 B
 i : Integer
 d: C

C

a : B

 B
 i :Integer

C

1
a

1
d

25

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Example:
attributes of class type in states σ' and σ.

 σ

 σ'

b1
i=1;
d=c1

b2
i=4;
d=c1

 c1
 a=NULL

b1:B
i=1;
d=c1

b2:B
i=4;
d=c

 c1:C
 a=b1

 c2:C
 a=b2

26

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B
 i : Integer
 d: C

C

a : B

27

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ each attribute is represen-
ted by a function in MOAL.
The class diagram right
corresponds to delaration
of accessor functions:
 .i(σ) :: B -> Integer
 .a(σ) :: C -> B
 .d(σ) :: B -> C

 B
 i : Integer
 d: C

C

a : B

27

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ each attribute is represen-
ted by a function in MOAL.
The class diagram right
corresponds to delaration
of accessor functions:
 .i(σ) :: B -> Integer
 .a(σ) :: C -> B
 .d(σ) :: B -> C

❑ Applying the σ−convention, this makes
navigation expressions possible:

 B
 i : Integer
 d: C

C

a : B

27

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ each attribute is represen-
ted by a function in MOAL.
The class diagram right
corresponds to delaration
of accessor functions:
 .i(σ) :: B -> Integer
 .a(σ) :: C -> B
 .d(σ) :: B -> C

❑ Applying the σ−convention, this makes
navigation expressions possible:
➢ b1.d :: C

c1.a :: B b1.d.a.d.a ...

 B
 i : Integer
 d: C

C

a : B

27

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

28

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

28

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are
strict wrt. NULL.

28

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are
strict wrt. NULL.
➢ NULL.d = NULL

NULL.a = NULL

28

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are
strict wrt. NULL.
➢ NULL.d = NULL

NULL.a = NULL

➢ Note that navigation expressions depend
on their underlying state:
 b1.d(σ) .a(σ) .d(σ) .a(σ) = NULL
 b1.d(σ’).a(σ’).d(σ’).a(σ’) = b1 !!!
 (cf. Object Diagram pp 27)

28

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Note that associations
are meant to be « relations »

 in the mathematical sense.

Thus, states (object-graphs)

 of this form do not repre-
sent the 1:1 association:

 B

i :Integ
er

 C

1
a

1
d

 σ

b1
i=1;
d=c1

b2
i=4;
d=NULL

 c1
 a=b2

29

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ This is reflected by 2
« association integrity
constraints ».
For the 1-1-case, they are:

➢ definition ass
B.d.a

≡ ∀x∈B. x.d.a = x

➢ definition ass
C.a.d

≡ ∀x∈C. x.a.d = x

 B
 i :Integer

C

1
a

1
d

30

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

31

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

31

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are
strict wrt. NULL.

31

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are
strict wrt. NULL.
➢ NULL.d = NULL

NULL.a = NULL

31

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Object assessor functions are
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are
strict wrt. NULL.
➢ NULL.d = NULL

NULL.a = NULL

➢ Note that navigation expressions depend
on their underlying state:
 b1.d(σ) .a(σ) .d(σ) .a(σ) = NULL
 b1.d(σ’).a(σ’).d(σ’).a(σ’) = b1 !!!
 (cf. Object Diagram pp 28)

31

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

B
i: Integer
d: Set(C)

C
a : List(B)

 B
 i :Integer

C

{List}
a

{Set}
 d

32

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Attibutes can be List or
Sets of class types:

B
i: Integer
d: Set(C)

C
a : List(B)

 B
 i :Integer

C

{List}
a

{Set}
 d

32

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Attibutes can be List or
Sets of class types:

❑ Reminder: In class diagrams,
this situation is represented
traditionally by Associations
(equivalent)

B
i: Integer
d: Set(C)

C
a : List(B)

 B
 i :Integer

C

{List}
a

{Set}
 d

32

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Attibutes can be List or
Sets of class types:

❑ Reminder: In class diagrams,
this situation is represented
traditionally by Associations
(equivalent)

❑ In analysis-level Class Diagrams, the
type information is still omitted; due
to overloading of ∀x∈X. P(x) etc.
this will not hamper us to specify ...

B
i: Integer
d: Set(C)

C
a : List(B)

 B
 i :Integer

C

{List}
a

{Set}
 d

32

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

33

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

33

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

33

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

33

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

33

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B

i :Integ
er

 C

{List}
a

{Set}
 d

34

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Accessor functions are
defined as follows for
the case of NULL:

 B

i :Integ
er

 C

{List}
a

{Set}
 d

34

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Accessor functions are
defined as follows for
the case of NULL:

➢ NULL.d = {} -- mapping to the neutral element

 B

i :Integ
er

 C

{List}
a

{Set}
 d

34

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Accessor functions are
defined as follows for
the case of NULL:

➢ NULL.d = {} -- mapping to the neutral element
➢ NULL.a = [] -- mapping to the neural element.

 B

i :Integ
er

 C

{List}
a

{Set}
 d

34

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B
 i :Integer

C

1..5{List}
a

{Set}10
 d

35

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

 B
 i :Integer

C

1..5{List}
a

{Set}10
 d

35

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

 B
 i :Integer

C

1..5{List}
a

{Set}10
 d

35

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10

 B
 i :Integer

C

1..5{List}
a

{Set}10
 d

35

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5

 B
 i :Integer

C

1..5{List}
a

{Set}10
 d

35

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

36

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ The corresponding
association integri-
ty constraints for
the *-*-case are:

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

36

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ The corresponding
association integri-
ty constraints for
the *-*-case are:

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

36

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ The corresponding
association integri-
ty constraints for
the *-*-case are:

➢ definition assB.d.a ≡ ∀x∈B. x ∈ x.d.a

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

36

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ The corresponding
association integri-
ty constraints for
the *-*-case are:

➢ definition assB.d.a ≡ ∀x∈B. x ∈ x.d.a

➢ definition assC.a.d ≡ ∀x∈C. x ∈ x.a.d

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

36

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

 B
 i : Integer

 m(k:Integer) : Integer

37

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Many UML diagrams talk over a sequence
of states (not just individual global states)

 B
 i : Integer

 m(k:Integer) : Integer

37

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Many UML diagrams talk over a sequence
of states (not just individual global states)

❑ This appears for the first
time in so-called contracts
for (Class-model) methods:

 B
 i : Integer

 m(k:Integer) : Integer

37

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Many UML diagrams talk over a sequence
of states (not just individual global states)

❑ This appears for the first
time in so-called contracts
for (Class-model) methods:

❑ The « method » m can be seen as a « transaction »

of a B object transforming the underlying pre-state
σpre in the state « after » m yielding a post-state σ.

 m

 B
 i : Integer

 m(k:Integer) : Integer

37

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Many UML diagrams talk over a sequence
of states (not just individual global states)

❑ This appears for the first
time in so-called contracts
for (Class-model) methods:

❑ The « method » m can be seen as a « transaction »

of a B object transforming the underlying pre-state
σpre in the state « after » m yielding a post-state σ.

 m

 B
 i : Integer

 m(k:Integer) : Integer

 σpre σ

37

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

38

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

38

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

38

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

38

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of Object Attributes

❑ Cardinalities in
Associations can
be translated
canonically into
MOCL invariants:

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5

 B
 i :Integer

 C

1..5{List}
a

{Set}10
 d

38

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Syntactically, contracts are
annotated like this (JML-ish):

 Client
 solde : Integer

 withdraw(k:Integer) : Integer

39

withdraw operation:
 pre: old(b.solde) - k >= 0
 post: b.i = old(b.solde) - k

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ ... or like this (OCL-ish):

 Client
 solde : Integer

 withdraw(k:Integer) : Integer

context c.withdraw(k):
 pre: c.solde@pre - k >= 0
 post: c.solde = c.solde@pre - k

40

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL Contracts

❑ This appears for the first
time in so-called contracts
for (Class-model) methods:

❑ The « method » add can be seen as a « transaction »
of a B object transforming the underlying pre-state
σpre in the state « after » add yielding a post-state σ.

 B
 i : Integer
 add(k:Integer) : Integer

41

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Again: This is the view of a transaction (like in a data-
base), it completely abstracts away intermediate
states or time. (This possible in other models/calculi,
like the Hoare-calculus, though).

 σpre
 σ

b1:B
i=2
d=c1

 b2:B

i=4;
d=c1

c1:C
a=NULL

b1:B
i=1;
d=c1

b2:B
i=4;
d=c

c1:C
 a=b1

c2:C
a=b2

42

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The pre-condition is a formula referring to the σpre and the

method arguments b1, a1, ..., an only.

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The pre-condition is a formula referring to the σpre and the

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The pre-condition is a formula referring to the σpre and the

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied
➢ otherwise the method

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The pre-condition is a formula referring to the σpre and the

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied
➢ otherwise the method

□ ...may do anything on the state and the result,
may even behave correctly , may non-terminate !

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The pre-condition is a formula referring to the σpre and the

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied
➢ otherwise the method

□ ...may do anything on the state and the result,
may even behave correctly , may non-terminate !

□ raise an exception
(recommended in Java Programmer Guides
 for public methods to increase robustness)

43

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

44

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:

44

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The post-condition is a formula referring to both

σpre and σ, the method arguments b1, a1, ..., an and

the return value captured by the variable result.

44

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The post-condition is a formula referring to both

σpre and σ, the method arguments b1, a1, ..., an and

the return value captured by the variable result.

➢ any transition is permitted that satisfies the post-
condition (provided that the pre-condition
is true)

44

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

45

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:

45

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The semantics of a method call:

 b1.m(a1, ..., an)

is thus:

 pre

m
(b1,a

1
, ..., a

n
) (σ

pre
)

 ⟶

 post
m
(b1,a

1
, ..., a

n
,result)(σ

pre
,σ)

45

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The semantics of a method call:

 b1.m(a1, ..., an)

is thus:

 pre

m
(b1,a

1
, ..., a

n
) (σ

pre
)

 ⟶

 post
m
(b1,a

1
, ..., a

n
,result)(σ

pre
,σ)

➢ Note that moreover all global class invarants have
to be added for both pre-state σ

pre
 and post-state σ !

45

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Consequence:
➢ The semantics of a method call:

 b1.m(a1, ..., an)

is thus:

 pre

m
(b1,a

1
, ..., a

n
) (σ

pre
)

 ⟶

 post
m
(b1,a

1
, ..., a

n
,result)(σ

pre
,σ)

➢ Note that moreover all global class invarants have
to be added for both pre-state σ

pre
 and post-state σ !

For an entire transition, the following must hold:

 Inv(σ

pre
) ∧ pre

m
... (σ

pre
) ∧ post

... (σ

pre
,σ) ∧ Inv(σ)

45

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

class invariant:
c.solde >= 0 for all clients c.

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0

post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0

post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

➢ definition inv
Client

(σ) ≡

 ∀c∈Client(σ). 0≤c.solde(σ)

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0

post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

➢ definition inv
Client

(σ) ≡

 ∀c∈Client(σ). 0≤c.solde(σ)
➢ definition pre

withdraw
(c, k)(σ) ≡

 c∈Client(σ) ∧ 0≤k ∧ 0≤c.solde(σ)-k

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0

post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example:

➢ definition inv
Client

(σ) ≡

 ∀c∈Client(σ). 0≤c.solde(σ)
➢ definition pre

withdraw
(c, k)(σ) ≡

 c∈Client(σ) ∧ 0≤k ∧ 0≤c.solde(σ)-k
➢ definition post

withdraw
(c, k,result)(σpre,σ) ≡

 c∈Client(σpre) ∧ c.solde(σ)=c.solde(σpre)-k ∧
 result = ok

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0

post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

46

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

47

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Notation:

47

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Notation:
➢ In order to relax notation, we will use for

applications to σpre the old-notation:

47

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Notation:
➢ In order to relax notation, we will use for

applications to σpre the old-notation:

Client(σpre) becomes old(Client)

47

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Notation:
➢ In order to relax notation, we will use for

applications to σpre the old-notation:

Client(σpre) becomes old(Client)

c.solde(σpre) becomes old(c.solde)

47

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Notation:
➢ In order to relax notation, we will use for

applications to σpre the old-notation:

Client(σpre) becomes old(Client)

c.solde(σpre) becomes old(c.solde)

etc.

47

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0
 post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0
 post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0
 post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

➢ definition inv
Client ≡ ∀c∈Client. 0≤c.solde

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0
 post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

➢ definition inv
Client ≡ ∀c∈Client. 0≤c.solde

➢ definition pre
withdraw

(c, k) ≡

 c∈Client ∧ 0≤k ∧ 0 ≤ c.solde -k

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0
 post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

➢ definition inv
Client ≡ ∀c∈Client. 0≤c.solde

➢ definition pre
withdraw

(c, k) ≡

 c∈Client ∧ 0≤k ∧ 0 ≤ c.solde -k
➢ definition post

withdraw
(c, k,result) ≡

 c∈old(Client)∧ c.solde=old(c.solde)- k ∧
 result = ok

 Client
 solde : Integer
 withdraw(k:Integer) : {ok,nok}

operation c.withdraw(k) :
 pre: k >= 0 ∧ old(c.solde) - k>=0
 post: c.solde = old(c.solde) - k

class invariant:
c.solde >= 0 for all clients c.

48

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C
 does not exist in σpre but exists in σ

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C
 does not exist in σpre but exists in σ

➢ modifiesOnly(S)(σpre,σ) is only true iff

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C
 does not exist in σpre but exists in σ

➢ modifiesOnly(S)(σpre,σ) is only true iff
□ all objects in σpre are except those in S identical in σ

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C
 does not exist in σpre but exists in σ

➢ modifiesOnly(S)(σpre,σ) is only true iff
□ all objects in σpre are except those in S identical in σ
□ all objects in σ exist either in are or are contained in S

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C
 does not exist in σpre but exists in σ

➢ modifiesOnly(S)(σpre,σ) is only true iff
□ all objects in σpre are except those in S identical in σ
□ all objects in σ exist either in are or are contained in S

With this predicate, one can express : „and nothing else
changes“. It is also called «framing condition».

49

VnV: Modelling in UML/MOALPolyTech 2021

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C
 does not exist in σpre but exists in σ

➢ modifiesOnly(S)(σpre,σ) is only true iff
□ all objects in σpre are except those in S identical in σ
□ all objects in σ exist either in are or are contained in S

With this predicate, one can express : „and nothing else
changes“. It is also called «framing condition».

49

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

50

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:

50

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:

50

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:
❑ there is a blacklist

50

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:
❑ there is a blacklist
❑ no more overdraft than 200 EUR

50

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:
❑ there is a blacklist
❑ no more overdraft than 200 EUR
❑ there is a present of 15 euros in the initial account

50

VnV: Modelling in UML/MOALPolyTech 2021
B. Wolff - Ingé. 2 - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:
❑ there is a blacklist
❑ no more overdraft than 200 EUR
❑ there is a present of 15 euros in the initial account
❑ account numbers must be distinct.

50

VnV: Modelling in UML/MOALPolyTech 2021

A Revision of the Example: Bank (2)

definition pre
ouvrirCompte

(b:Banque, nomC:String)≡

 ∀p ∈ Personne. p.nom ≠ nomC

definition post

ouvrirCompte
(b:Banque,nomC:String,r:Integer)≡

 |{p ∈ Personne | p.nom = nomC| = 1
 ∧ ∀p ∈ Personne. p.nom = nomC ⟶ isNew(p)
 ∧ |{c∈Compte | c.titulaire.nom = nomC}| = 1

∧ ∀c∈Compte. c.titulaire.nom = nomC ⟶ c.solde = 15
 ∧ isNew(c)
∧ b.lesComptes=old(b.lesComptes)∪
 {c∈Compte | c.titulaire.nom = nomC}

 ∧ b.interdits=old(b.interdits)∪
 {c∈Compte | c.titulaire.nom = nomC}
∧ modifiesOnly({b}∪{c∈Compte c.titulaire.nom = nomC}
 ∪ {p ∈ Personne | p.nom = nomC})

51

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Example:

 Client
 solde : Integer
 deposit(k:Integer) : {ok,nok}
 withdraw(k:Integer) : {ok,nok}
 solde() : Integer

withdraw operation:
pre: old(b.solde) - k >= 0

 post: b.solde = old(b.solde) - k
post: result = ok

deposit operation:
pre: k >= 0
post: b.solde = old(b.solde) + k

solde query:
post: result = old(b.solde)

52

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Abstract Concurrent Test Scenario:

c1 c2 bank

solde()
result=d1

withdraw(b1)

result=ok
withdraw(b2)

result=ok
deposit(c)
result=ok

solde()
result=a1

solde()

result=a2
σ1

σ3

σ4

σ2

assert c1.solde(σ4)=a2-b1 ∧ b1 ≥ 0 ∧ a2 ≥ b1

53

VnV: Modelling in UML/MOALPolyTech 2021

Operations in UML and MOAL

❑ Abstract Concurrent Test Scenario:

c1 c2 bank

solde()
result=d1

withdraw(b1)

result=ok
withdraw(b2)

result=ok
deposit(c)
result=ok

solde()
result=a1

solde()

result=a2
σ1

σ3

σ4

σ2

54

Any instance of b1 and a1 is a test ! This is a „Test Schema“ !
Note: b1 can be chosen dynamically during the test !

VnV: Modelling in UML/MOALPolyTech 2021

Summary

55

VnV: Modelling in UML/MOALPolyTech 2021

Summary

❑ MOAL makes the UML to a real, formal specification
language

55

VnV: Modelling in UML/MOALPolyTech 2021

Summary

❑ MOAL makes the UML to a real, formal specification
language

❑ MOAL can be used to annotate Class Models,
Sequence Diagrams and State Machines

55

VnV: Modelling in UML/MOALPolyTech 2021

Summary

❑ MOAL makes the UML to a real, formal specification
language

❑ MOAL can be used to annotate Class Models,
Sequence Diagrams and State Machines

❑ Working out, making explicit the constraints of
these Diagrams is an important technique in the
transition from Analysis documents to Designs.

55

