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❑ mathematical
➢ object-oriented
➢ UML-annotation 
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(conceived as the „essence“ of annotation  
 languages like OCL, JML, Spec#, ACSL, ...)
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... by abbreviation convention if no confusion arises.
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Motivation: Why Logical Annotations 

❑ More precision needed 
(like JML, VCC) that constrains an underlying state σ  

 
 
 
 
 
 
 
... or as mathematical definition in a separate  document 

Compteur 

id:Integer

definition invCompteur  ≡ ∀x ∈ Compteur. x.id > 0

... or by convention
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B. Wolff - Ingé. 2 - UML/MOAL

A first Glance to an Example: Bank

Opening a bank account. Constraints: 
❑ there is a blacklist 
❑ no more overdraft than 200 EUR 
❑ there is a present of 15 euros in the initial account 
❑ account numbers must be distinct.
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A first Glance to an Example: Bank (2)

definition unique ≡ isUnique(.no)(Compte) 
definition noOverdraft ≡ ∀c ∈ Compte. c.id ≥ -200 

definition pre
ouvrirCompte

(b:Banque, nomC:String)≡ 
         ∀p ∈ Personne. p.nom ≠ nomC  
  

definition post
ouvrirCompte

(b:Banque,nomC:String,r::Int)≡ 
         |{p ∈ Personne | p.nom = nomC ∧ isNew(p)}| = 1  

∧ |{c∈Compte | c.titulaire.nom = nomC}| = 1 
∧ ∀c∈Compte. c.titulaire.nom = nomC   
       ⟶ c.solde = 15 ∧ isNew(c) 
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❑ In the following, we will discuss the  
 
MOAL Language in more detail ...
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Syntax and Semantics of MOAL

❑ The usual logical language:  
 
➢ True, False
➢ negation : ¬ E, 
➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'
➢ E = E', E ≠ E',
➢ if C then E else E' endif
➢ let x = E in E’ 

➢ Quantifiers on sets and lists: 
 
∀x ∈ Set. P(x)    ∃x ∈ Set. P(x)

11



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

12



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.  

12



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.  

➢ Basic Types: 
                              Boolean, Integer, Real, String

12



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.  

➢ Basic Types: 
                              Boolean, Integer, Real, String

➢ Pairs:   
                              X × Y  

12



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.  

➢ Basic Types: 
                              Boolean, Integer, Real, String

➢ Pairs:   
                              X × Y  

➢ Lists:    
                              List(X)   

12



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.  

➢ Basic Types: 
                              Boolean, Integer, Real, String

➢ Pairs:   
                              X × Y  

➢ Lists:    
                              List(X)   

➢ Sets:   
                              Set(X)

12



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

13



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.  
expressions of type Integer or Real: 

13



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.  
expressions of type Integer or Real: 

➢ 1,2,3 ...   resp. 1.0, 2.3, pi. 

13



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.  
expressions of type Integer or Real: 

➢ 1,2,3 ...   resp. 1.0, 2.3, pi. 

➢ - E, E + E',  

13



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.  
expressions of type Integer or Real: 

➢ 1,2,3 ...   resp. 1.0, 2.3, pi. 

➢ - E, E + E',  

➢ E * E', E / E', 

13



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The arithmetic core language.  
expressions of type Integer or Real: 

➢ 1,2,3 ...   resp. 1.0, 2.3, pi. 

➢ - E, E + E',  

➢ E * E', E / E', 

➢ abs(E), E div E’, E mod E’...

13



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

14



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String: 
 

14



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String: 
 
➢ S concat S’  

14



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String: 
 
➢ S concat S’  

➢ size(S) 

14



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String: 
 
➢ S concat S’  

➢ size(S) 

➢ substring(i,j,S) 

14



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL

❑ The expressions of type String: 
 
➢ S concat S’  

➢ size(S) 

➢ substring(i,j,S) 

➢ 'Hello'
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➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y 
➢ {}, {a,b,c}       empty and finite sets
➢ e∈S, e∉S       is element, not element
➢ S⊆ S’        is subset
➢ {x ∈ S | P(S)}   filter
➢ S ∪ S’,S ∩ S’   union , intersect 

                between sets of same type
➢ Integer, Real, String ... 

     are symbols for the set  
    of all Integers, Reals, 
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Syntax and Semantics of Objects

❑ Objects and Classes follow 
the semantics of UML 
➢ inheritance / subtyping 
➢ casting 
➢ objects have an id 
➢ NULL is a possible  

value in each class-type 
➢ for any class A, we assume a function:  

           A(σ)  
which returns the set of instances of  
class A in state σ

     A 
                       

   B 
                       

C 
                       

D 
                       

   F 
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❑ Objects and Classes follow 
the semantics of UML 
 

Recall that we will drop 
the index (σ) whenever 
it is clear from the context 

     A 
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C 
                       

D 
                       

   F 
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Syntax and Semantics of Objects

❑ As in all typed object-oriented languages 
casting allows for converting objects.

❑ Objects have two types:
➢ the « apparent type » 

(also called static type)
➢ the « actual type »

      (the type at creation)
➢ casting changes the apparent type 
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to an entire set: So

 
⟨A⟩B(σ) (or just: ⟨A⟩B) 

➢ is the set of instances 
of B casted to A. 

➢ We have: 
       ⟨A⟩B ∪ ⟨A⟩C ⊆ A  
but: 
        ⟨A⟩B ∩ ⟨A⟩C = {}  
and also: ⟨A⟩D ⊆ A    (for all states σ)
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❑ Instance sets can be used 
to determine the actual type 
of an object: 
 
 b ∈ B 

corresponds to Java’s instanceof  
or OCL’s  isKindOf. Note that 
casting does NOT change the  actual type: 

 
 ⟨A⟩b ∈ B, and ⟨B⟩⟨A⟩b = b !!!
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➢ there is the concept of actual and apparent type 

(anywhere outside of Java: dynamic and static type)
➢ type tests check the former
➢ type casts influence the latter,

     but not the former
➢ up-casts possible
➢ down-casts invalid
➢ consequence: 

up-down casts are identities.
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❑ Reminder: In class diagrams, 
this situation is represented 
traditionally by Associations 
(equivalent) 
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❑ Example:  
attributes of class type in states σ' and σ. 

 σ    

 σ'

b1 
i=1;  
d=c1

b2 
i=4;  
d=c1

 c1 
 a=NULL  
 

b1:B 
i=1;  
d=c1

b2:B 
i=4;  
d=c

 c1:C 
 a=b1  
 

 c2:C 
 a=b2  
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corresponds to delaration 
of accessor functions: 
     .i(σ)  ::  B -> Integer 
     .a(σ) :: C -> B 
     .d(σ) :: B -> C

❑ Applying the σ−convention, this makes  
navigation expressions possible:     
➢ b1.d :: C 

c1.a :: B            b1.d.a.d.a ...
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❑ Object assessor functions are 
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are  
strict wrt. NULL. 
➢ NULL.d = NULL 

NULL.a = NULL 
 

➢ Note that navigation expressions depend  
on their underlying state: 
    b1.d(σ) .a(σ) .d(σ) .a(σ)  = NULL 
     b1.d(σ’).a(σ’).d(σ’).a(σ’) = b1     !!! 
     (cf. Object Diagram pp 27)
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❑ Note that associations 
are meant to be « relations » 

     in the mathematical sense. 

 
Thus, states (object-graphs)  

      of this form do not repre- 
sent the 1:1 association:  
 

 B 
 

i :Integ
er  

    C 
                       

1 
a

1 
d

 σ    

b1 
i=1;  
d=c1

b2 
i=4;  
d=NULL

 c1 
 a=b2  
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❑ This is reflected by 2 
« association integrity  
constraints ».  
For the 1-1-case, they are: 
 

➢ definition ass
B.d.a 

≡ ∀x∈B. x.d.a = x  

➢ definition ass
C.a.d 

≡ ∀x∈C. x.a.d = x 
 

 B 
 i :Integer  

C 
                       

1 
a

1 
d
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i: Integer  
d: Set(C)
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 B 
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C 
                       

{List} 
a

{Set} 
      d
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❑ Attibutes can be List or  
Sets of class types: 

❑ Reminder: In class diagrams, 
this situation is represented 
traditionally by Associations 
(equivalent) 

❑ In analysis-level Class Diagrams, the  
type information is still omitted; due  
to overloading of ∀x∈X. P(x) etc.  
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❑ Accessor functions are  
defined as follows for 
the case of NULL: 

➢ NULL.d = {}       -- mapping to the neutral element
➢ NULL.a = []    -- mapping to the neural element.
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❑ Syntactically, contracts are 
annotated like this (JML-ish):  

 Client 
 solde : Integer 

 withdraw(k:Integer) : Integer 

39

withdraw operation:                         
  pre: old(b.solde) - k >= 0                     
  post: b.i = old(b.solde) - k                     
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❑ ... or like this   (OCL-ish): 
 
  

 Client 
 solde : Integer 

 withdraw(k:Integer) : Integer 

context c.withdraw(k):                     
  pre: c.solde@pre - k >= 0                   
  post: c.solde = c.solde@pre - k                     
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❑ This appears for the first  
time in so-called contracts  
for (Class-model) methods: 
 

❑ The « method » add can be seen as a « transaction » 
of a B object transforming the underlying pre-state 
σpre in the state « after » add yielding a post-state σ.  

  

 B 
 i : Integer 
 add(k:Integer) : Integer 
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❑ Again: This is the view of a transaction (like in a data-
base), it completely abstracts away intermediate 
states or time. (This possible in other models/calculi, 
like the Hoare-calculus, though).  

 
 

 σpre         
 σ        

 
 
 
b1:B 
i=2 
d=c1 
 
 b2:B 

i=4; 
d=c1

 
c1:C 
a=NULL  
 

b1:B 
i=1; 
d=c1

b2:B 
i=4; 
d=c

c1:C 
 a=b1 
 

c2:C 
a=b2  
 

42



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

43



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

❑ Consequence: 

43



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

❑ Consequence: 
➢ The pre-condition is a formula referring to the  σpre and the 

method arguments b1, a1, ..., an only.

43



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

❑ Consequence: 
➢ The pre-condition is a formula referring to the  σpre and the 

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied

43



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

❑ Consequence: 
➢ The pre-condition is a formula referring to the  σpre and the 

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied
➢ otherwise the method 

43



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

❑ Consequence: 
➢ The pre-condition is a formula referring to the  σpre and the 

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied
➢ otherwise the method 

□ ...may do anything on the state and the result, 
may even behave correctly , may non-terminate ! 

43



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of  MOAL Contracts

❑ Consequence: 
➢ The pre-condition is a formula referring to the  σpre and the 

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is satisfied
➢ otherwise the method 

□ ...may do anything on the state and the result, 
may even behave correctly , may non-terminate ! 

□ raise an exception 
(recommended in Java Programmer Guides 
 for public methods to increase robustness)
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❑ Consequence: 
➢ The post-condition is a formula referring to both  

σpre and σ, the method arguments b1, a1, ..., an and 

the return value captured by the variable result. 

➢ any transition is permitted that satisfies the post-
condition (provided that the pre-condition  
is true)
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                 ⟶   

                       post
m
(b1,a

1
, ..., a

n
,result)(σ

pre
,σ) 

➢ Note that moreover all global class invarants have  
to be added for both pre-state σ

pre
  and post-state σ ! 

For an entire transition, the following must hold: 
 
  
                       Inv(σ

pre
) ∧ pre

m 
... (σ

pre
) ∧ post

 
... (σ

pre
,σ) ∧  Inv(σ)

45



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 

class invariant:                           
c.solde >= 0  for all clients c.

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 

operation c.withdraw(k) :        
    pre: k >= 0 ∧ old(c.solde) - k>=0      

post: c.solde = old(c.solde) - k 

class invariant:                           
c.solde >= 0  for all clients c.

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 

operation c.withdraw(k) :        
    pre: k >= 0 ∧ old(c.solde) - k>=0      

post: c.solde = old(c.solde) - k 

class invariant:                           
c.solde >= 0  for all clients c.

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

➢ definition inv
Client

(σ) ≡ 

    ∀c∈Client(σ). 0≤c.solde(σ)

 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 

operation c.withdraw(k) :        
    pre: k >= 0 ∧ old(c.solde) - k>=0      

post: c.solde = old(c.solde) - k 

class invariant:                           
c.solde >= 0  for all clients c.

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

➢ definition inv
Client

(σ) ≡ 

    ∀c∈Client(σ). 0≤c.solde(σ)
➢ definition pre

withdraw
(c, k)(σ) ≡  

    c∈Client(σ) ∧ 0≤k ∧  0≤c.solde(σ)-k 

 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 

operation c.withdraw(k) :        
    pre: k >= 0 ∧ old(c.solde) - k>=0      

post: c.solde = old(c.solde) - k 

class invariant:                           
c.solde >= 0  for all clients c.

46



VnV: Modelling in UML/MOALPolyTech 2021

Syntax and Semantics of MOAL Contracts

❑ Example: 

 
 
 

➢ definition inv
Client

(σ) ≡ 

    ∀c∈Client(σ). 0≤c.solde(σ)
➢ definition pre

withdraw
(c, k)(σ) ≡  
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withdraw
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 Client 
 solde : Integer 
 withdraw(k:Integer) : {ok,nok} 
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A Revision of the Example: Bank

Opening a bank account. Constraints:
❑ there is a blacklist
❑ no more overdraft than 200 EUR
❑ there is a present of 15 euros in the initial account
❑ account numbers must be distinct.
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A Revision of the Example: Bank (2)

definition pre
ouvrirCompte

(b:Banque, nomC:String)≡ 

                    ∀p ∈ Personne. p.nom ≠ nomC  
  
definition post

ouvrirCompte
(b:Banque,nomC:String,r:Integer)≡ 

    |{p ∈ Personne | p.nom = nomC| = 1  
   ∧  ∀p ∈ Personne. p.nom = nomC ⟶ isNew(p) 
    ∧ |{c∈Compte | c.titulaire.nom = nomC}| = 1 

∧ ∀c∈Compte. c.titulaire.nom = nomC ⟶ c.solde = 15 
                                        ∧ isNew(c) 
∧ b.lesComptes=old(b.lesComptes)∪ 
               {c∈Compte | c.titulaire.nom = nomC} 

     ∧ b.interdits=old(b.interdits)∪ 
               {c∈Compte | c.titulaire.nom = nomC} 
∧ modifiesOnly({b}∪{c∈Compte c.titulaire.nom = nomC} 
               ∪ {p ∈ Personne | p.nom = nomC})     
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❑ Example: 
 
  

 Client 
 solde : Integer 
 deposit(k:Integer) : {ok,nok} 
 withdraw(k:Integer) : {ok,nok} 
 solde() : Integer 

withdraw operation:                         
pre: old(b.solde) - k >= 0                

 post: b.solde = old(b.solde) - k         
post: result = ok                                  

deposit operation:    
pre:  k >= 0            
post: b.solde = old(b.solde) + k                     

solde query:                                     
post: result = old(b.solde)                                 
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❑ Abstract Concurrent Test Scenario: 
 
  

c1 c2 bank

solde()
result=d1

withdraw(b1)

result=ok
withdraw(b2)

result=ok
deposit(c)
result=ok

solde()
result=a1

solde()

result=a2
σ1

σ3

σ4

σ2

assert c1.solde(σ4)=a2-b1 ∧ b1 ≥ 0 ∧ a2 ≥ b1
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❑ Abstract Concurrent Test Scenario: 
 
  

c1 c2 bank

solde()
result=d1

withdraw(b1)

result=ok
withdraw(b2)

result=ok
deposit(c)
result=ok

solde()
result=a1

solde()

result=a2
σ1

σ3

σ4

σ2

54

Any instance of b1 and a1 is a test ! This is a „Test Schema“ ! 
Note: b1 can be chosen dynamically during the test !
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Summary

❑ MOAL makes the UML to a real, formal specification 
language

❑ MOAL can be used to annotate Class Models, 
Sequence Diagrams and State Machines

❑ Working out, making explicit the constraints of  
these Diagrams is an important technique in the 
transition from Analysis documents to Designs.
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