

Cycle Ingénieur – 2^{ème} année Département Informatique

Verification and Validation

Part IV : An Introduction

to Testing

Burkhart Wolff Département Informatique Université Paris-Saclay / LMF 2021

Validation :

Validation :

- Does the system meet the clients requirements ?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Validation :

- Does the system meet the clients requirements ?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Do we build the right system ?

Validation :

- Does the system meet the clients requirements ?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Do we build the right system ?

Verification:

Validation :

- Does the system meet the clients requirements ?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Do we build the right system ?

Verification:

Does the system meet the specification ?

Validation :

- Does the system meet the clients requirements ?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Do we build the right system ?

Verification:

- Does the system meet the specification ?
- Does it correspond to a (mathematical, formal) model ?

Validation :

- Does the system meet the clients requirements ?
- Will the performance be sufficient ?
- Will the usability be sufficient ?

Do we build the right system ?

Verification:

- Does the system meet the specification ?
- Does it correspond to a (mathematical, formal) model ?

Do we build the system right ? Is it « correct » ?

How to do Validation ?

 Tests and Experiments over Systems (Integrated artefacts consisting of software and hardware ...)

How to do Verification?

Test and Proof on the basis of formal specifications (e.g., à la OCL, MOAL, ACSL, ... !) against programs or systems ...

 \Box costs? 35 - 50 % of the global effort?

- \Box costs? 35 50 % of the global effort?
- all "real" (large) software has remaining bugs ...

- \Box costs? 35 50 % of the global effort?
- all "real" (large) software has remaining bugs ...

- \Box costs? 35 50 % of the global effort?
- all "real" (large) software has remaining bugs ...
- The cost of bug ?

- costs? 35 50 % of the global effort?
- all "real" (large) software has remaining bugs ...
- The cost of bug?
 - the cost to reveal and fix it ...
 - or:
 - the cost of a legal battle it may cause...
 - or the potential damage to the image
 - (difficult to evaluate, but veeeery real)
 - or costs as a result to come later on the market

- costs? 35 50 % of the global effort?
- all "real" (large) software has remaining bugs ...

The cost of bug?

the cost to reveal and fix it ...

or:

the cost of a legal battle it may cause...

or the potential damage to the image

(difficult to evaluate, but veeeery real)

- or costs as a result to come later on the market
- on the other side you can't test infinitely, and verification is again 10 times more costly than thoroughly testing !

Conclusion:

- Conclusion:
 - verification and software quality is vitally important, and also critical in the development

- Conclusion:
 - verification and software quality is vitally important, and also critical in the development
 - to do it cost-effectively, it requires

- Conclusion:
 - verification and software quality is vitally important, and also critical in the development
 - to do it cost-effectively, it requires
 - a lot of expertise on products and process

- Conclusion:
 - verification and software quality is vitally important, and also critical in the development
 - to do it cost-effectively, it requires
 - a lot of expertise on products and process
 - a lot of knowledge over methods, tools, and tool chains ...

WHAT IS TESTING ?

- WHAT IS TESTING?
- A taxonomy on types of tests

- WHAT IS TESTING?
- A taxonomy on types of tests
 - Static Test / Dynamic (Runtime) Test

• WHAT IS TESTING?

- A taxonomy on types of tests
 - Static Test / Dynamic (Runtime) Test
 - Structural Test / Functional Test

• WHAT IS TESTING?

- A taxonomy on types of tests
 - Static Test / Dynamic (Runtime) Test
 - Structural Test / Functional Test
 - Statistic Tests

• WHAT IS TESTING?

- A taxonomy on types of tests
 - Static Test / Dynamic (Runtime) Test
 - Structural Test / Functional Test
 - Statistic Tests
- Functional Test; Link to UML/OCL

• WHAT IS TESTING?

- A taxonomy on types of tests
 - Static Test / Dynamic (Runtime) Test
 - Structural Test / Functional Test
 - Statistic Tests

Functional Test; Link to UML/OCL

> Dynamic Unit Tests, Static Unit Tests,

• WHAT IS TESTING?

A taxonomy on types of tests

- Static Test / Dynamic (Runtime) Test
- Structural Test / Functional Test
- Statistic Tests

- > Dynamic Unit Tests, Static Unit Tests,
- Coverage Criteria

• WHAT IS TESTING?

A taxonomy on types of tests

- Static Test / Dynamic (Runtime) Test
- Structural Test / Functional Test
- Statistic Tests

- > Dynamic Unit Tests, Static Unit Tests,
- Coverage Criteria
- Structural Tests

WHAT IS TESTING ?

A taxonomy on types of tests

- Static Test / Dynamic (Runtime) Test
- Structural Test / Functional Test
- Statistic Tests

- > Dynamic Unit Tests, Static Unit Tests,
- Coverage Criteria
- Structural Tests
 - Control Flow and Data Flow Graphs

WHAT IS TESTING ?

A taxonomy on types of tests

- Static Test / Dynamic (Runtime) Test
- Structural Test / Functional Test
- Statistic Tests

- > Dynamic Unit Tests, Static Unit Tests,
- Coverage Criteria
- Structural Tests
 - Control Flow and Data Flow Graphs
 - > Tests and executed paths. Undecidability.
Overview on the part on « Test »

WHAT IS TESTING ?

A taxonomy on types of tests

- Static Test / Dynamic (Runtime) Test
- Structural Test / Functional Test
- Statistic Tests

Functional Test; Link to UML/OCL

- > Dynamic Unit Tests, Static Unit Tests,
- Coverage Criteria
- Structural Tests
 - Control Flow and Data Flow Graphs
 - > Tests and executed paths. Undecidability.
 - Coverage Criteria

It is an approximation to verification

- It is an approximation to verification
- Main interest: finding bugs early,

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model
 - or in the program

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model
 - or in the program
 - or in both

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model
 - or in the program
 - or in both
- A systematic test is:

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model
 - or in the program
 - or in both
- A systematic test is:
 - process programs and specifications and to compute a set of test-cases under controlled conditions.

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model
 - or in the program
 - or in both
- A systematic test is:
 - process programs and specifications and to compute a set of test-cases under controlled conditions.

- It is an approximation to verification
- Main interest: finding bugs early,
 - either in the model
 - or in the program
 - or in both
- A systematic test is:
 - process programs and specifications and to compute a set of test-cases under controlled conditions.
 - ideally: testing is complete if a certain criteria, the adequacy criteria is reached.

 We said, test is an approximation to verification, usually easier (and less expensive)

- We said, test is an approximation to verification, usually easier (and less expensive)
- Note: Sometimes it is easier to verify than to test. In particular:

- We said, test is an approximation to verification, usually easier (and less expensive)
- Note: Sometimes it is easier to verify than to test. In particular:
 - Iow-level OS implementations: memory allocation, garbage collection memory virtualization, ... crypt-algorithms, ...

- We said, test is an approximation to verification, usually easier (and less expensive)
- Note: Sometimes it is easier to verify than to test. In particular:
 - Iow-level OS implementations: memory allocation, garbage collection memory virtualization, ... crypt-algorithms, ...
 - > non-deterministic programs with no control over the non-determinism.

static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)

- static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)
 - analyse the result on the basis of all components

- static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)
 - analyse the result on the basis of all components
 - working on some classes of executions symbolically
 - = representing infinitely many executions

- static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)
 - analyse the result on the basis of all components
 - working on some classes of executions symbolically
 - = representing infinitely many executions

- static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)
 - analyse the result on the basis of all components
 - working on some classes of executions symbolically
 representing infinitely many executions
- dynamic: running the programme (or component) after deployment, on "real data" as imposed by the application domain

- static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)
 - analyse the result on the basis of all components
 - working on some classes of executions symbolically
 representing infinitely many executions
- dynamic: running the programme (or component) after deployment, on "real data" as imposed by the application domain
 - experiment with the real behaviour

- static: running a program before deployment on data carefully constructed by the analyst (in a testing environment)
 - analyse the result on the basis of all components
 - working on some classes of executions symbolically
 representing infinitely many executions
- dynamic: running the programme (or component) after deployment, on "real data" as imposed by the application domain
 - experiment with the real behaviour
 - essentially used for post-hoc ananalysis and debugging

 unit: testing of a local component (function, module), typically only one step of the underlying state. (In functional programs, thats essentially all what you have to do!)

- unit: testing of a local component (function, module), typically only one step of the underlying state. (In functional programs, thats essentially all what you have to do!)
- sequence: testing of a local component (function, module), but typicallY sequences of executions, which typically depend on internal state

- unit: testing of a local component (function, module), typically only one step of the underlying state. (In functional programs, thats essentially all what you have to do!)
- sequence: testing of a local component (function, module), but typicallY sequences of executions, which typically depend on internal state
- reactive sequence: testing components by sequences of steps, but these sequences represent communication where later parts in the sequence depend on what has been earlier cummunicated

functional: (also: black-box tests). Tests were generated on a specification of the component, the test focusses on input output behaviour.

- functional: (also: black-box tests). Tests were generated on a specification of the component, the test focusses on input output behaviour.
- structural: (also: white-box tests). Tests were generated on the basis of the structure or the program, i.e. using control-flow, data-flow paths or by using symbolic executions.

- functional: (also: black-box tests). Tests were generated on a specification of the component, the test focusses on input output behaviour.
- structural: (also: white-box tests). Tests were generated on the basis of the structure or the program, i.e. using control-flow, data-flow paths or by using symbolic executions.
- **both**: (also: grey-box testing).

We got the spec, but not the program, which is considered as a black box:

We got the spec, but not the program, which is considered as a black box:

We got the spec, but not the program, which is considered as a black box:

we focus on what the program *should* do !!!
The (informal) specification:

The (informal) specification:

Read a "Triangle Object" (with three sides of integral type), and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

The (informal) specification:

Read a "Triangle Object" (with three sides of integral type), and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

Give a specification, and develop a test set ...

Functional Unit Test : An Example

The specification in UML/MOAL:

Functional Unit Test : An Example

Can we use specifications to perform Runtime-Test?

Can we use specifications to perform Runtime-Test?

Can we use specifications to perform Runtime-Test?

Yes! Compile:

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a₁:C₁,...,a_n:C_n)
pre : P(self,a₁,...,a_n)
post : Q(self,a₁,...,a_n, result)

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a₁:C₁,...,a_n:C_n)
pre : P(self,a₁,...,a_n)
post : Q(self,a₁,...,a_n, result)

to some checking code (with "assert" as in Junit, VCC, Boogie, ...)

Can we use specifications to perform Runtime-Test?

Yes! Compile:

```
context C::m(a<sub>1</sub>:C<sub>1</sub>,...,a<sub>n</sub>:C<sub>n</sub>)
pre : P(self,a<sub>1</sub>,...,a<sub>n</sub>)
post : Q(self,a<sub>1</sub>,...,a<sub>n</sub>, result)
```

to some checking code (with "assert" as in Junit, VCC, Boogie, ...)

```
check_C(); check_C<sub>1</sub>(); ...; check_C<sub>n</sub>();
assert(P(self,a<sub>1</sub>,...,a<sub>n</sub>));
result=run_m(self,a<sub>1</sub>,...,a<sub>n</sub>);
assert(Q(self,a<sub>1</sub>,...,a<sub>n</sub>,result));
```

Dynamic (Unit/Sequence/...) Runtime-Tests are:

• ... easy to implement and enforce

- ... easy to implement and enforce
- ... work on real data and are extremely helpful for post-hoc crash-analysis, debugging, and forensics.

- ... easy to implement and enforce
- ... work on real data and are extremely helpful for post-hoc crash-analysis, debugging, and forensics.
- Runtime-tests conflict with efficiency

- ... easy to implement and enforce
- ... work on real data and are extremely helpful for post-hoc crash-analysis, debugging, and forensics.
- Runtime-tests conflict with efficiency
- But: they are NOT particularly useful during development, where we need systematic test-data EARLY.

We need a method that:

- We need a method that:
 - generates the tests from the model ("model-based testing"): if the model changes, the tests follow. This would all simplify the maintenance problem of large test sets.

- We need a method that:
 - generates the tests from the model ("model-based testing"): if the model changes, the tests follow. This would all simplify the maintenance problem of large test sets.
 - ... works for partial programs ...

- We need a method that:
 - generates the tests from the model ("model-based testing"): if the model changes, the tests follow. This would all simplify the maintenance problem of large test sets.
 - ... works for partial programs ...
 - … works in the implementation phase
 (and gives immediate feedback to programmers)

- We need a method that:
 - generates the tests from the model ("model-based testing"): if the model changes, the tests follow. This would all simplify the maintenance problem of large test sets.
 - ... works for partial programs ...
 - … works in the implementation phase
 (and gives immediate feedback to programmers)
 and not at the deployment phase (so: runs very late) ...

- We need a method that:
 - generates the tests from the model ("model-based testing"): if the model changes, the tests follow. This would all simplify the maintenance problem of large test sets.
 - ... works for partial programs ...
 - … works in the implementation phase
 (and gives immediate feedback to programmers)
 and not at the deployment phase (so: runs very late) ...
 - ... gives clear criteria on the question:

- We need a method that:
 - generates the tests from the model ("model-based testing"): if the model changes, the tests follow. This would all simplify the maintenance problem of large test sets.
 - ... works for partial programs ...
 - … works in the implementation phase
 (and gives immediate feedback to programmers)
 and not at the deployment phase (so: runs very late) ...
 - ... gives clear criteria on the question: "did we test enough"?

Consider the test specification (the "Test Case"):

mk(x,y,z).isTriangle() = X

Consider the test specification (the "Test Case"):

mk(x,y,z).isTriangle() = X

i.e. for which input (x,y,z) should an implementation of our contract yield which X ?

Consider the test specification (the "Test Case"):

mk(x,y,z).isTriangle() = X

i.e. for which input (x,y,z) should an implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid, as well as all other invalid triangles ...

an arbitrary valid triangle: (3, 4, 5)

- an arbitrary valid triangle: (3, 4, 5)
- an equilateral triangle: (5, 5, 5)

- an arbitrary valid triangle: (3, 4, 5)
- an equilateral triangle: (5, 5, 5)
- an isoscele triangle and its permutations :
 (6, 6, 7), (7, 6, 6), (6, 7, 6)

- an arbitrary valid triangle: (3, 4, 5)
- an equilateral triangle: (5, 5, 5)
- an isoscele triangle and its permutations :
 (6, 6, 7), (7, 6, 6), (6, 7, 6)
- impossible triangles and their permutations :
 (1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z
 (1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)
- an arbitrary valid triangle: (3, 4, 5)
- an equilateral triangle: (5, 5, 5)
- an isoscele triangle and its permutations :
 (6, 6, 7), (7, 6, 6), (6, 7, 6)
- impossible triangles and their permutations :
 (1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z
 (1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)
- a zero length : (0, 5, 4), (4, 0, 5),

- an arbitrary valid triangle: (3, 4, 5)
- an equilateral triangle: (5, 5, 5)
- an isoscele triangle and its permutations :
 (6, 6, 7), (7, 6, 6), (6, 7, 6)
- impossible triangles and their permutations :
 (1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z
 (1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)
- a zero length : (0, 5, 4), (4, 0, 5),

. . .

- an arbitrary valid triangle: (3, 4, 5)
- an equilateral triangle: (5, 5, 5)
- an isoscele triangle and its permutations :
 (6, 6, 7), (7, 6, 6), (6, 7, 6)
- impossible triangles and their permutations :
 (1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z
 (1, 2, 2), (2, 4, 2), (5, 2, 2)
 - (1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)
- a zero length : (0, 5, 4), (4, 0, 5),
- • •
- Would we have to consider negative values?

Ouf, is there a systematic and automatic way to compute all these tests ?

- Ouf, is there a systematic and automatic way to compute all these tests ?
- Can we avoid hand-written test-scripts ? Avoid the task to maintain them ?

- Ouf, is there a systematic and automatic way to compute all these tests ?
- Can we avoid hand-written test-scripts ? Avoid the task to maintain them ?
- And the question remains:

When did we test "enough"?

Recall the test specification: mk(x,y,z).isTriangle() = r

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge$

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

- Recall the test specification: mk(x,y,z).isTriangle() = r
- $= inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

(* see semantics of MOAL in Part III *)

Some Facts:

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

(* see semantics of MOAL in Part III *)

Some Facts:

From modifiesOnly({}) follows $\sigma = \sigma'$ hence

 $inv_{Triangle}(\sigma) = inv_{Triangle}(\sigma')$

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

(* see semantics of MOAL in Part III *)

Some Facts:

- From modifiesOnly({}) follows σ = σ' hence inv_{Triangle}(σ) = inv_{Triangle}(σ')
- ► From $mk(x,y,z) \neq null$ (see $pre_{isTriangle}$) and from $inv_{Triangle}(\sigma)$ and $mk(x,y,z) \in Triangle (\sigma)$ follows that:

 $0 < x \land 0 < y \land 0 < z \land x \le y + z \land y \le x + z \land z \le x + y \qquad (= inv)$

Revision: Boolean Logic + Some Basic Rules

Revision: Boolean Logic + Some Basic Rules

- □ ¬(a ∧ b)=¬ a ∨ ¬ b (* deMorgan1 *)
- □ ¬(a ∨ b)=¬ a ∧ ¬ b (* deMorgan2 *)
- $\Box \quad a \land (b \lor c) = (a \land b) \lor (a \land c)$
- □ ¬(¬ a) = a , a ∨ ¬a = T, , a ∧ ¬a = F,
- □ a ∧ b = b ∧ a; a ∨ b = b ∨ a
- $\Box \quad a \land (b \land c) = (a \land b) \land c$
- a v (b v c) = (a v b) v c
- □ a → b = (¬ a) ∨ b
- (a=b ^ P(a)) = P(b)
 (* one point rule *)
- let x = E in C(x) = C(E) (* let elimination *)
- □ if c then C else D = $(c \land C) \lor (\neg c \land D) = (c \longrightarrow C) \land (\neg c \longrightarrow D)$ 9/8/20 B. Wolff - GLA - Black-Box Tests

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge$

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$
 - (* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

≻ arb≠equ≠iso

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

> arb≠equ≠iso
 > post_{isTriangle}(mk(x,y,z),r)(σ,σ) can be simplified to:
 (x=y Λ y=z → r=equ) Λ
 ((x≠y V y≠z) Λ (x=y V y=z V x=z) → r=iso) Λ

- Recall the test specification: mk(x,y,z).isTriangle() = r
- = $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

arb≠equ≠iso
 post_{isTriangle}(mk(x,y,z),r)(σ,σ) can be simplified to:
 (x=y ∧ y=z → r=equ) ∧
 ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z) → r=iso) ∧
 ((x≠y ∧ y≠z ∧ x≠z) → r=arb)

Summing up:

```
mk(x,y,z).isTriangle() = r
```

Summing up:

mk(x,y,z).isTriangle() = r

= $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

Summing up:

mk(x,y,z).isTriangle() = r

 $= inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

\implies (* the discussed facts *)

Summing up:

mk(x,y,z).isTriangle() = r

= $inv_{Triangle}(\sigma) \wedge pre_{isTriangle}(mk(x,y,z))(\sigma) \wedge inv_{Triangle}(\sigma') \wedge post_{isTriangle}(mk(x,y,z),r)(\sigma,\sigma')$

$$\implies$$
 (* the discussed facts *)

inv
$$\Lambda$$

(x=y Λ y=z \longrightarrow r=equ) Λ
((x≠y V y≠z) Λ (x=y V y=z V x=z) \longrightarrow r=iso) Λ
(x≠y Λ y≠z Λ x≠z \longrightarrow r=arb)

Recall the test specification:
 inv Λ (x=y Λ y=z \longrightarrow r=equ) Λ ((x≠y V y≠z) Λ (x=y V y=z V x=z) \longrightarrow r=iso) Λ (x≠y Λ y≠z Λ x≠z \longrightarrow r=arb)

= (* elimination \rightarrow , deMorgan*)

inv
$$\Lambda$$

(x \neq y V y \neq z V r=equ) Λ
((x=y Λ y=z) V (x \neq y Λ y \neq z Λ x \neq z) V r=iso) Λ
(x=y V y=z V x=z V r=arb)

□ This first part of the calculation could be called

PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp and reduce it to the pure logical core ...

This first part of the calculation could be called

PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp and reduce it to the pure logical core ...

Now, under which precise conditions do we have

This first part of the calculation could be called

PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp and reduce it to the pure logical core ...

Now, under which precise conditions do we have

- ≻ r = iso
- r = arb
- r = equ ???

This first part of the calculation could be called

```
PURIFICATION
```

We eliminate UML, object-orientation, MOAL etcpp and reduce it to the pure logical core ...

Can we transform the spec into the form

>
$$A_1 \wedge \dots \wedge A_i \wedge r = iso$$

> $C_1 \wedge \dots \wedge C_1 \wedge r = equ$???

This first part of the calculation could be called

PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp and reduce it to the pure logical core ...

Can we transform the spec into a

Disjunctive Normal Form (DNF) ?

$$(\mathsf{A}_1 \lor \mathsf{A}_2) \land (\mathsf{B}_1 \lor \mathsf{B}_2) = (\mathsf{A}_1 \land (\mathsf{B}_1 \lor \mathsf{B}_2)) \lor (\mathsf{A}_2 \land (\mathsf{B}_1 \lor \mathsf{B}_2))$$

$$(A_{1} \lor A_{2}) \land (B_{1} \lor B_{2}) = (A_{1} \land (B_{1} \lor B_{2})) \lor (A_{2} \land (B_{1} \lor B_{2}))$$
$$= (A_{1} \land B_{1}) \lor (A_{2} \land B_{1}) \lor (A_{1} \land B_{2}) \lor (A_{2} \land B_{2})$$

$$(A_{1} \lor A_{2}) \land (B_{1} \lor B_{2}) = (A_{1} \land (B_{1} \lor B_{2})) \lor (A_{2} \land (B_{1} \lor B_{2}))$$
$$= (A_{1} \land B_{1}) \lor (A_{2} \land B_{1}) \lor (A_{1} \land B_{2}) \lor (A_{2} \land B_{2})$$

$$(\mathsf{A}_1 \lor \mathsf{A}_2 \lor \mathsf{A}_3) \land (\mathsf{B}_1 \lor \mathsf{B}_2 \lor \mathsf{B}_3) \land (\mathsf{C}_1 \lor \mathsf{C}_2 \lor \mathsf{C}_3)$$

$$(A_{1} \lor A_{2}) \land (B_{1} \lor B_{2}) = (A_{1} \land (B_{1} \lor B_{2})) \lor (A_{2} \land (B_{1} \lor B_{2}))$$
$$= (A_{1} \land B_{1}) \lor (A_{2} \land B_{1}) \lor (A_{1} \land B_{2}) \lor (A_{2} \land B_{2})$$

$$(\mathsf{A}_1 \lor \mathsf{A}_2 \lor \mathsf{A}_3) \land (\mathsf{B}_1 \lor \mathsf{B}_2 \lor \mathsf{B}_3) \land (\mathsf{C}_1 \lor \mathsf{C}_2 \lor \mathsf{C}_3)$$
$$= \dots$$

Generalized Distribution Laws:

$$(A_{1} \lor A_{2}) \land (B_{1} \lor B_{2}) = (A_{1} \land (B_{1} \lor B_{2})) \lor (A_{2} \land (B_{1} \lor B_{2}))$$
$$= (A_{1} \land B_{1}) \lor (A_{2} \land B_{1}) \lor (A_{1} \land B_{2}) \lor (A_{2} \land B_{2})$$

$$(\mathsf{A}_1 \lor \mathsf{A}_2 \lor \mathsf{A}_3) \land (\mathsf{B}_1 \lor \mathsf{B}_2 \lor \mathsf{B}_3) \land (\mathsf{C}_1 \lor \mathsf{C}_2 \lor \mathsf{C}_3)$$
$$= \dots$$

$$= (A_1 \land B_1 \land C_1) \lor (A_1 \land B_1 \land C_2) \lor (A_1 \land B_1 \land C_3) \lor (A_2 \land B_1 \land C_1) \lor (A_2 \land B_1 \land C_2) \lor (A_2 \land B_1 \land C_3) \lor$$

•••

$$(\mathsf{A}_1 \land \mathsf{B}_3 \land \mathsf{C}_3) \lor (\mathsf{A}_2 \land \mathsf{B}_3 \land \mathsf{C}_3) \lor (\mathsf{A}_3 \land \mathsf{B}_3 \land \mathsf{C}_3)$$

Recall the test specification:

= inv
$$\Lambda$$

 $(x \neq y \lor y \neq z \lor r = equ) \land$
 $(x = y \lor y = z \lor x = z \lor r = arb) \land$
 $((x = y \land y = z) \lor (x \neq y \land y \neq z \land x \neq z) \lor r = iso)$

≡

■ Recall the test specification: ≡ inv ∧ (x≠y V y≠z V r=equ) ∧ (x=y V y=z V x=z V r=arb) ∧ ((x=y ∧ y=z) V (x≠y ∧ y≠z ∧ x≠z) V r=iso)

 \equiv

Recall the test specification:
 distrib

indication

(x = y V y = z V r = equ) A
 (x = y V y = z V x = z V r = arb) A
 ((x = y A y = z) V (x = y A y = z A x = z) V r = iso)

Ξ

inv \Lambda

$$\begin{pmatrix} (x \neq y \land x = y) \lor (x \neq y \land y = z) \lor (x \neq y \land x = z) \lor (x \neq y \land r = arb) \end{pmatrix} \lor \\ ((y \neq z \land x = y) \lor (y \neq z \land y = z) \lor (y \neq z \land x = z) \lor (y \neq z \land r = arb) \end{pmatrix} \lor \\ ((r = equ \land x = y) \lor (r = equ \land y = z) \lor (r = equ \land x = z) \lor (r = equ \land r = arb) \end{pmatrix} \lor \\ ((x = y \land y = z) \lor (x \neq y \land y \neq z \land x \neq z) \lor r = iso)$$

Recall the test specification:

Recall the test specification:

$$= inv \Lambda$$

$$(x \neq y V y \neq z V r = equ) \Lambda$$

$$(x = y V y = z V x = z V r = arb) \Lambda$$

$$((x = y \Lambda y = z) V (x \neq y \Lambda y \neq z \Lambda x \neq z) V r = iso)$$

Recall the test specification:

$$= inv \Lambda$$

$$(x \neq y V y \neq z V r = equ) \Lambda$$

$$(x = y V y = z V x = z V r = arb) \Lambda$$

$$((x = y \Lambda y = z) V (x \neq y \Lambda y \neq z \Lambda x \neq z) V r = iso)$$

. . .

Recall the test specification:

= inv
$$\Lambda$$

 $(x \neq y \lor y \neq z \lor r = equ) \land$
 $(x = y \lor y = z \lor x = z \lor r = arb) \land$
 $((x = y \land y = z) \lor (x \neq y \land y \neq z \land x \neq z) \lor r = iso)$

. . .

Recall the test specification:

$$= inv \Lambda$$

$$(x \neq y V y \neq z V r = equ) \Lambda$$

$$(x = y V y = z V x = z V r = arb) \Lambda$$

$$((x = y \Lambda y = z) V (x \neq y \Lambda y \neq z \Lambda x \neq z) V r = iso)$$

= (* elimination contradictions *)
inv
$$\Lambda$$

($(x \neq y \land x = y) \lor (x \neq y \land y = z) \lor (x \neq y \land x = z) \lor (x \neq y \land r = arb) \lor$
 $(y \neq z \land x = y) \lor (y \neq z \land y = z) \lor (y \neq z \land x = z) \lor (y \neq z \land r = arb) \lor$
($r = equ \land x = y) \lor (r = equ \land y = z) \lor (r = equ \land x = z) \lor (r = equ \land r = arb)$) \lor
($(x = y \land y = z) \lor (x \neq y \land y \neq z \land x \neq z) \lor r = iso$)

Recall the test specification:

$$= (* \text{ elimination contradictions })$$

inv \land
 $((x \neq y \land y = z) \lor (x \neq y \land x = z) \lor (x \neq y \land r = arb) \lor$
 $(y \neq z \land x = y) \lor (y \neq z \land x = z) \lor (y \neq z \land r = arb) \lor$
 $(r = equ \land x = y) \lor (r = equ \land y = z) \lor (r = equ \land x = z)) \land$
 $((x = y \land y = z) \lor (x \neq y \land y \neq z \land x \neq z) \lor r = iso)$

 $\Box = (* \text{ generalized distribution 2nd/3rd } ((9 * 3 = 27 \text{ cases }))))$ inv A

$$(x \neq y \land y = z \land x = y \land y = z) \lor (x \neq y \land x = z \land$$

x=y Λ y=z)V(x \neq y Λ r=arb Λ x=y Λ y=z)V

$$(y \neq z \Lambda x = y \Lambda x = y \Lambda y = z) V (y \neq z \Lambda x = z \Lambda$$

$$x=y\Lambda y=z) V (y\neq z\Lambda r=arb\Lambda x=y\Lambda y=z) V$$

 $(r=equ\Lambda x=y\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda x=z)V(r=equ\Lambda x=y\Lambda x=z)V(r=equ\Lambda x=z)V(r=eq\mu\Lambda x=z)V(r=eq\mu\Lambda x=z)V(r=eq\mu\Lambda x=z)$

 $y=z\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=z\Lambda x=y\Lambda y=z))V$

 $\begin{pmatrix} (x \neq y \land y = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land x = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land r = arb \land x \neq y \land y \neq z \land x \neq z) \lor (y \neq z \land x = y \land x \neq y \land y \neq z \land x \neq z) \lor (y \neq z \land x = z \land x \neq y \land y \neq z \land x \neq z) \lor (y \neq z \land r = arb \land x \neq y \land y \neq z \land x \neq z) \lor (r = equ \land x = y \land x \neq y \land y \neq z \land x \neq z) \lor (r = equ \land x = z \land x \neq y \land y \neq z \land x \neq z) \lor (r = equ \land x = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land y = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land y = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land y = z \land x = iso) \lor (x \neq y \land x = z \land r = iso) \lor (x \neq y \land r = arb \land r = iso) \lor (r = equ \land x = y \land r = iso) \lor (r = equ \land x = z \land r = iso) \land (r = equ \land x = z \land r = iso) \land (r = equ \land x = z \land r = iso) \lor (r = equ \land x = z \land r = iso) \lor (r = equ \land x = z \land r = iso) \land (r = equ \land x = z \land r = iso) \lor (r = equ \land x = z \land r = iso) \land (r = equ \land x = iso) \land (r = equ \land x = iso) \land$

= (* elimination of the contradictions and redundancies *) inv ∧ $(x \neq y \Lambda y = z \Lambda x = y \Lambda y = z) V (x \neq y \Lambda x = z \Lambda$ $x=y\Lambda y=z$) V ($x\neq y\Lambda r=arb\Lambda x=y\Lambda y=z$) V $(y \neq z \Lambda x = y \Lambda x = y \Lambda y = z) V (y \neq z \Lambda x = z \Lambda$ $x=y\Lambda y=z) V (y\neq z\Lambda r=arb\Lambda x=y\Lambda y=z) V$ $(r=equ\Lambda x=y\Lambda x=y\Lambda y=z)V(r=equ\Lambda x=y\Lambda x=y\Lambda x=z)V(r=equ\Lambda x=y\Lambda x=z)V(r=equ\Lambda x=y\Lambda x=z)V(r=equ\Lambda x=z)V(r=eq\mu x=z)V(r$ $\underline{y=z\Lambda x=y\Lambda y=z}$ V (r=equAx=z\Lambda x=y\Lambda y=z)) V $(x \neq y \land y = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land x = z \land x \neq y \land y \neq z \land x \neq z) \lor (x \neq y \land r = arb$ $\Lambda \quad x \neq y \Lambda y \neq z \Lambda x \neq z) V (y \neq z \Lambda x = y \Lambda x \neq y \Lambda y \neq z \Lambda x \neq z) V (y \neq z \Lambda x = z \Lambda x \neq y \Lambda y \neq z \Lambda$ $x \neq z$) V ($y \neq z \Lambda r = arb \Lambda x \neq y \Lambda y \neq z \Lambda x \neq z$) V ($r = equ \Lambda x = y \Lambda x \neq y \Lambda y \neq z \Lambda x \neq z$) V ($r=equ\Lambda y=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y\neq z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y=z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y=z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq y\Lambda y=z\Lambda x\neq z) V (r=equ\Lambda x=z\Lambda x\neq z) V (r=eq\mu\Lambda x=z\Lambda x\neq z) V (r=eq\mu\Lambda x=z\Lambda x\neq z) V (r=eq\mu\Lambda x=z\Lambda x\neq z) V (r=eq$ $(x \neq y \land y = z \land r = iso) \lor (x \neq y \land x = z \land r = iso) \lor (x \neq y \land r = arb \land r = iso)$ $V(y \neq z \Lambda x = y \Lambda r = iso) V(y \neq z \Lambda x = z \Lambda r = iso) V(y \neq z \Lambda r = arb \Lambda r = iso) V$ $(r=equ\Lambda x=y\Lambda r=iso) V (r=equ\Lambda y=z\Lambda r=iso) V (r=equ\Lambda x=z\Lambda r=iso))$

$\Box \equiv$ (* cleanup, distribution *)

- (inv Λ x=y Λ x=y Λ y=z Λ r=equ) V (1)
- (inv $\Lambda x \neq y \Lambda y \neq z \Lambda x \neq z \Lambda r = arb$) V (2)

(inv
$$\Lambda x \neq y \Lambda y = z \Lambda r = iso) V$$
 (3)

(inv
$$\Lambda x \neq y \Lambda x = z \Lambda r = iso) V$$
 (4)

(inv
$$\Lambda$$
 y \neq z Λ x=y Λ r=iso) V (5)

(inv Λ y \neq z Λ x=z Λ r=iso) (6)

\Box = (* cleanup, distribution *)

- (inv Λ x=y Λ x=y Λ y=z Λ r=equ) V (1)
- (inv $\Lambda x \neq y \Lambda y \neq z \Lambda x \neq z \Lambda r = arb$) V (2)
- (inv $\Lambda x \neq y \Lambda y = z \Lambda r = iso) V$ (3)
- (inv $\Lambda x \neq y \Lambda x = z \Lambda r = iso) V$ (4)
- (inv Λ y \neq z Λ x=y Λ r=iso) V (5)
- (inv Λ y \neq z Λ x=z Λ r=iso) (6)

Test-Case-Construction by DNF Method

\Box = (* cleanup, distribution *)

- (inv Λ x=y Λ x=y Λ y=z Λ r=equ) V (1)
- (inv $\Lambda x \neq y \Lambda y \neq z \Lambda x \neq z \Lambda r = arb$) V (2)
- (inv $\Lambda x \neq y \Lambda y = z \Lambda r = iso) V$ (3)
- (inv $\Lambda x \neq y \Lambda x = z \Lambda r = iso) V$ (4)
- (inv Λ y \neq z Λ x=y Λ r=iso) V (5)
- (inv Λ y \neq z Λ x=z Λ r=iso) (6)

Test-Case-Construction by DNF Method

yields six abstract test cases relating input x y z to output r

$\Box \equiv$ (* cleanup, distribution *)

- (inv Λ x=y Λ x=y Λ y=z Λ r=equ) V (1)
- (inv $\Lambda x \neq y \Lambda y \neq z \Lambda x \neq z \Lambda r = arb$) V (2)
- (inv $\Lambda x \neq y \Lambda y = z \Lambda r = iso) V$ (3)
- (inv $\Lambda x \neq y \Lambda x = z \Lambda r = iso) V$ (4)
- (inv Λ y \neq z Λ x=y Λ r=iso) V (5)
- (inv Λ y \neq z Λ x=z Λ r=iso) (6)
- Test-Case-Construction by DNF Method

yields six abstract test cases relating input x y z to output r

Note: In general, output r is not necessarily uniquely defined as in our example ...

The spec can be non-deterministic admitting several results.

Test-Data-Selection: For each abstract test-case, we construct one concrete test, by choosing values that make the abstract test case true (« that satisfies the abstract test case »)

Test-Data-Selection:

For each abstract test-case, we construct one concrete test, by choosing values that make the abstract test case true (« that satisfies the abstract test case »)

case	X	у	Z	result
(1)	3	3	3	equ
(2)	3	4	6	arb
(3)	4	5	5	iso
(4)	5	4	5	iso
(5)	5	5	4	iso
(6)	4	3	4	iso

Intuitively, what does it mean that we "covered" the DNF by tests

- Intuitively, what does it mean that we "covered" the DNF by tests
 - Any basic predicate ("literal") has been used at least one time

- Intuitively, what does it mean that we "covered" the DNF by tests
 - Any basic predicate ("literal") has been used at least one time
 - Image: Image:

- Intuitively, what does it mean that we "covered" the DNF by tests
 - Any basic predicate ("literal") has been used at least one time
 - Image: Image:
 - In provided that it is not redundant ("A=True")

- Intuitively, what does it mean that we "covered" the DNF by tests
 - Any basic predicate ("literal") has been used at least one time
 - In provided it is not contradictory ("A=False")
 - In provided that it is not redundant ("A=True")
 - ... provided it is not implied by another literal, i.e. it is subsumed ("B \longrightarrow A")
• A First Summary on the Test-Generation Method:

- A First Summary on the Test-Generation Method:
 - PHASE I: Stripping the Domain-Language (UML-MOAL) away, "purification"

- A First Summary on the Test-Generation Method:
 - PHASE I: Stripping the Domain-Language (UML-MOAL) away, "purification"
 - PHASE II: Abstract Test Case Construction by "DNF computation"

- A First Summary on the Test-Generation Method:
 - PHASE I: Stripping the Domain-Language (UML-MOAL) away, "purification"
 - PHASE II: Abstract Test Case Construction by "DNF computation"
 - PHASE III: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection"

- A First Summary on the Test-Generation Method:
 - PHASE I: Stripping the Domain-Language (UML-MOAL) away, "purification"
 - PHASE II: Abstract Test Case Construction by "DNF computation"
 - PHASE III: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection"
 - COVERAGE CRITERION:

DNF - coverage of the Spec; for each abstract test-case

one concrete test-input is constructed.

(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)

- A First Summary on the Test-Generation Method:
 - PHASE I: Stripping the Domain-Language (UML-MOAL) away, "purification"
 - PHASE II: Abstract Test Case Construction by "DNF computation"
 - PHASE III: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection"
 - COVERAGE CRITERION:

DNF - coverage of the Spec; for each abstract test-case
one concrete test-input is constructed.
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)

Remark: During Codiung phase, when the Spec does not change, the test-data-selection can be repeated easily creating always different test sets ...

Variants:

Alternative to PHASE II (DNF construction):
 Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

inv
$$\Lambda$$

 $(x=y \ \Lambda \ y=z \longrightarrow r=equ) \ \Lambda$
 $(x\neq y \ V \ y\neq z) \ \Lambda \ (x=y \ V \ y=z \ V \ x=z) \longrightarrow r=iso) \ \Lambda$
 $(x\neq y \ \Lambda \ y\neq z \ \Lambda \ x\neq z \longrightarrow r=arb)$

It is possible to abstract this spec to a fairly small number of "base predicates" ... They should be logically independent and not contain the output variable...

- Variants:
 - Alternative to PHASE II (DNF construction):
 Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

inv
$$\Lambda$$

(A Λ B \longrightarrow r=equ) Λ
((\neg A V \neg B) Λ (A V B V C) \longrightarrow r=iso) Λ
(\neg A Λ \neg B Λ \neg C \longrightarrow r=arb)

where $A \mapsto x=y$, $B \mapsto y=z$, $C \mapsto x=z$

(actually: A and B imply C)

Variants:

> ... Now we can construct a tableau and get by simplification:

case	А	В	С	spec reduces to
(1)	Т	Т	Т	• r=equ
(2)	Т	Т	F	• r=equ (!!!)
(3)	Т	F	Т	• r=iso
(4)	Т	F	F	• r=iso
(5)	F	Т	Т	• r=iso
(6)	F	Т	F	• r=iso
(7)	F	F	Т	• r=iso
(8)	F	F	F	• r=arb

- Variants:
 - PHASE III: Borderline analysis. Principle: we replace in our DNF inequalities by "the closest values that make the spec true"

 $x \neq y$ \mapsto x = y + 1 V x = y - 1

$$x \leq y \quad \mapsto \quad x = y \quad V \quad x < y$$

 $x < y \rightarrow x = y - 1$ etc.

... and recompute the DNF. In general, this gives a much finer mesh ...

- Variants:
 - > PHASE I: Test for exceptional behaviour.

We negate the precondition and to DNF generation on the precondition only.

Test objectives could be:

- should raise an exception if public
- should not diverge

How to handle Recursion ?

 How to handle Recursion ?
 In UML/MOAL, recursion occurs (at least) at two points:

- How to handle Recursion ?
 In UML/MOAL, recursion occurs (at least) at two points:
 - at the level
 - of data

- How to handle Recursion ?
 In UML/MOAL, recursion occurs (at least) at two points:
 - at the level of data

- How to handle Recursion ?
 In UML/MOAL, recursion occurs (at least) at two points:
 0..1
 - at the level
 - of data

How to handle Recursion? In UML/MOAL, recursion occurs (at least) at two points: 0..1 next at the level LList lqth:Integer 1 sum():Integer of data invariant: $inv_{LList} \equiv \forall node \in LList.$ node.lgth =if node.next = null Note that this excludes then 1 else next.lgth + 1 cyclic lists !!!

How to handle Recursion ?

In UML/MOAL, recursion occurs (at least) at two points:

 at the level of operations (post-conds may contain calls ...)

How to handle Recursion ?

In UML/MOAL, recursion occurs (at least) at two points:

 at the level of operations (post-conds may contain calls ...)

	0.1	
	next	
LList		
lgth:Int	eger	
sum():In	iteger	

How to handle Recursion ?

How to handle Recursion ?

Prerequisite: We present the invariant as recursive predicate.

```
definition inv<sub>LList_Core</sub> n \sigma \equiv (n.lgth(\sigma) = if n.next(\sigma)=null then 1 else n.next.lgth(\sigma) + 1)
```

we have:

$$nv_{LList}$$
 (o) = $\forall n \in LList(o)$. $inv_{LList_{Core}} n \sigma$

and

$$inv_{LList_Core}(n)(\sigma) = (if n.next(\sigma)=null then n.lgth(\sigma) = 1)$$

$$else n.lgth(\sigma) = n.next.lgth(\sigma) + 1$$

$$\land n.next(\sigma) \in LList(\sigma)$$

$$\land inv_{LList\ Core}(n.next)(\sigma))$$

Furthermore we have:

 $sum(l) (\sigma', \sigma) = if l.next(\sigma) = null then l.lgth(\sigma)$ $else l.lgth(\sigma) + sum(l.next)(\sigma', \sigma)$

We have $\sigma' = \sigma$ (why?). We will again apply (σ', σ) - convention.

Consider the test specification:

X.sum() = Y (for some X \in LList, i.e. X \neq null)

≡ inv_{LList}(X) ∧ pre_{sum}(X) ∧ post_{sum}(X,Y)

where

DNF computation yields already the test cases:

```
X.sum() \equiv Y (for some X \in LList, i.e. X\neqnull)
```

V (X.next≠null ∧ X.lgth =X.next.lgth+1

∧ X.next€LList ∧ inv_{LList Core}(X.next)

^Y = X.lgth+sum(X.next))

DNF computation yields already the test cases:

```
X.sum() \equiv Y (for some X \in LList, i.e. X \neq null)
```

∧ X.next€LList ∧ inV_{LList_Core}(X.next)

 $\wedge Y = X.lgth+sum(X.next))$

Intermediate Summary: test-cases known so far ?

Intermediate Summary: test-cases known so far ?

Intermediate Summary: test-cases known so far ?

Prerequisite: We present the invariant as recursive predicate.

```
sum(l) = if l.next=null then l.lgth
else l.lgth + sum(l.next)
```

DNF computation yields already the test cases:

X.sum() \equiv Y (for some X \in LList, i.e. X \neq null)

⇒ ... ≡ ...

 \equiv (unfolding sum and inv_{LList Core})

- DNF computation yields already the test cases:
 - X.sum() \equiv Y (for some X \in LList, i.e. X \neq null)

⇒ ... ≡ ...

≡ (DNF partial)

- DNF computation yields already the test cases:
 - X.sum() \equiv Y (for some X \in LList, i.e. X \neq null)

⇒ ... ≡ ...

≡ (DNF partial)

(X.next=null \land X.lgth=1 \land Y = X.lgth)

v (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next€LList

^ X.next.next=null ^ X.next.lgth=1 ^ Y = X.lgth+X.next.lgth))

v (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next€LList

∧ X.next.next≠null ∧ X.next.lgth=X.next.next.lgth+1

 $\Lambda \text{ X.next.next} \in \text{LList } \Lambda \text{ inv}_{\text{LList Core}} (\text{X.next.next})$

\Lambda Y = X.lgth+ X.next.lgth + sum(X.next.next))
DNF computation yields already the test cases:

... and we could continue forever

- ... and we could continue forever
 - compile to semantics

(-> convert in mathematical, logical notation)

- ... and we could continue forever
 - compile to semantics
 - (-> convert in mathematical, logical notation)
 - use recursive predicates, recursive contracts

- ... and we could continue forever
 - compile to semantics

(-> convert in mathematical, logical notation)

- use recursive predicates, recursive contracts
- enter loop:

- ... and we could continue forever
 - compile to semantics

(-> convert in mathematical, logical notation)

- use recursive predicates, recursive contracts
- enter loop:
- unfold predicates one step

- ... and we could continue forever
 - compile to semantics

(-> convert in mathematical, logical notation)

- use recursive predicates, recursive contracts
- enter loop:
- unfold predicates one step
- compute DNF

- ... and we could continue forever
 - compile to semantics
 - (-> convert in mathematical, logical notation)
 - use recursive predicates, recursive contracts
 - enter loop:
- unfold predicates one step
- compute DNF
- simplify DNF

- ... and we could continue forever
 - compile to semantics
 - (-> convert in mathematical, logical notation)
 - use recursive predicates, recursive contracts
 - enter loop:
- unfold predicates one step
- compute DNF
- simplify DNF
- extract test-cases

- ... and we could continue forever
 - compile to semantics
 - (-> convert in mathematical, logical notation)
 - use recursive predicates, recursive contracts
 - enter loop:
- unfold predicates one step
- compute DNF
- simplify DNF
- extract test-cases

until we are satisfied, i.e. have "enough" test cases ...

- ... and we could continue forever
 - compile to semantics
 - (-> convert in mathematical, logical notation)
 - use recursive predicates, recursive contracts
 - enter loop:
- unfold predicates one step
- compute DNF
- simplify DNF
- extract test-cases

until we are satisfied, i.e. have "enough" test cases ...

Select test-data: constraint resolution of test cases.

 Observation: "all other cases" ... were represented by the clauses still containing recursive predicates.

- Observation: "all other cases" ... were represented by the clauses still containing recursive predicates.
- Logically: we used a regularity hypothesis, i.e ...

 $(\forall X. |X| < k \Rightarrow X.sum() = Y) \\ \Rightarrow (\forall X. X.sum() = Y)$

 Observation: "all other cases" ... were represented by the clauses still containing recursive predicates.

Logically: we used a regularity hypothesis, i.e ...

$$(\forall X. |X| < k \Rightarrow X.sum() \equiv Y) \\ \Rightarrow (\forall X. X.sum() \equiv Y)$$

where we choose as "complexity mesure" |X| just X.lgth and k (the number of unfoldings) was 2 ...

Coverage Criterion for recursive specification:

DNFk

For all data up to complexity k, we constructed abstract

test-cases and generated a test.

In our example, the "complexity measure" is just the length

of the LLists.

What are the alternatives to symbolic test-case generation ?

Must this really be so complicated ???

Well, think about the probability to "guess" input with a complex invariant or precondition, if you use "blind" random-generation of input...

Summary

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications
 - It takes into account:

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications
 - It takes into account:
 - object orientation

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications
 - It takes into account:
 - object orientation
 - data invariants (recursive predicates)

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications
 - It takes into account:
 - object orientation
 - data invariants (recursive predicates)
 - recursive functions (via unfolding)

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications
 - It takes into account:
 - object orientation
 - data invariants (recursive predicates)
 - recursive functions (via unfolding)
 - The process can be tool-supported (HOL-TestGen)

- Summary
 - We have (sketched) a symbolic Test-Case Generation Procedure for UML/MOAL Specifications
 - It takes into account:
 - object orientation
 - data invariants (recursive predicates)
 - recursive functions (via unfolding)
 - The process can be tool-supported (HOL-TestGen)
 - The process is intended for automation.

Summary

Key-Ingredients are:

Summary

Key-Ingredients are:

Unfolding predicates up to a given depth k

Summary

Key-Ingredients are:

- Unfolding predicates up to a given depth k
- \succ computing the Disjunctive Normal Form (DNF_k)
Test-Data Generation

Summary

Key-Ingredients are:

- Unfolding predicates up to a given depth k
- \succ computing the Disjunctive Normal Form (DNF_k)
- > Adequacy:

Pick for each test-case (a conjoint in the DNF_{μ})

one test, i.e. one substitution for the free variables satisfying the test-case !