
 2021

Cycle Ingénieur – 2ème année
Département Informatique

Verification and Validation
Part IV : An Introduction

to Testing

Burkhart Wolff
Département Informatique

Université Paris-Saclay / LMF

Recall: Validation and Verification

2

Recall: Validation and Verification

❑ Validation :

2

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

2

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

2

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification:

2

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification:
➢ Does the system meet the specification ?

2

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification:
➢ Does the system meet the specification ?
➢ Does it correspond to a (mathematical, formal) model ?

2

Recall: Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification:
➢ Does the system meet the specification ?
➢ Does it correspond to a (mathematical, formal) model ?

Do we build the system right ? Is it « correct » ?

2

VnV: TestingPolyTech 2021

How to do Validation ?

❑ Tests and Experiments over Systems
 (Integrated artefacts consisting of
 software and hardware …)

3

VnV: TestingPolyTech 2021

How to do Verification ?

❑ Test and Proof on the basis of formal
specifications (e.g., à la OCL, MOAL, ACSL, ... !)
against programs or systems ...

4

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

5

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

❑ costs ? 35 - 50 % of the global effort ?

5

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

❑ costs ? 35 - 50 % of the global effort ?

❑ all “real” (large) software has remaining bugs …

5

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

❑ costs ? 35 - 50 % of the global effort ?

❑ all “real” (large) software has remaining bugs …

5

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

❑ costs ? 35 - 50 % of the global effort ?

❑ all “real” (large) software has remaining bugs …

❑ The cost of bug ?

5

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

❑ costs ? 35 - 50 % of the global effort ?

❑ all “real” (large) software has remaining bugs …

❑ The cost of bug ?
➢ the cost to reveal and fix it …

or:
 the cost of a legal battle it may cause...
or the potential damage to the image
 (difficult to evaluate, but veeeery real)
or costs as a result to come later on the market

5

VnV: TestingPolyTech 2021

Recall: Verification Costs in an SE Process

❑ costs ? 35 - 50 % of the global effort ?

❑ all “real” (large) software has remaining bugs …

❑ The cost of bug ?
➢ the cost to reveal and fix it …

or:
 the cost of a legal battle it may cause...
or the potential damage to the image
 (difficult to evaluate, but veeeery real)
or costs as a result to come later on the market

➢ on the other side – you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !

5

VnV: TestingPolyTech 2021

Verification Costs

6

VnV: TestingPolyTech 2021

Verification Costs

❑ Conclusion:

6

VnV: TestingPolyTech 2021

Verification Costs

❑ Conclusion:
➢ verification and software quality is vitally

important, and also critical in the development

6

VnV: TestingPolyTech 2021

Verification Costs

❑ Conclusion:
➢ verification and software quality is vitally

important, and also critical in the development

➢ to do it cost-effectively, it requires

6

VnV: TestingPolyTech 2021

Verification Costs

❑ Conclusion:
➢ verification and software quality is vitally

important, and also critical in the development

➢ to do it cost-effectively, it requires
□ a lot of expertise on products and process

6

VnV: TestingPolyTech 2021

Verification Costs

❑ Conclusion:
➢ verification and software quality is vitally

important, and also critical in the development

➢ to do it cost-effectively, it requires
□ a lot of expertise on products and process
□ a lot of knowledge over methods,

tools, and tool chains ...

6

VnV: TestingPolyTech 2021

Overview on the part on « Test »

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,
➢ Coverage Criteria

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,
➢ Coverage Criteria

❑ Structural Tests

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,
➢ Coverage Criteria

❑ Structural Tests
➢ Control Flow and Data Flow Graphs

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,
➢ Coverage Criteria

❑ Structural Tests
➢ Control Flow and Data Flow Graphs
➢ Tests and executed paths. Undecidability.

7

VnV: TestingPolyTech 2021

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,
➢ Coverage Criteria

❑ Structural Tests
➢ Control Flow and Data Flow Graphs
➢ Tests and executed paths. Undecidability.
➢ Coverage Criteria

7

VnV: TestingPolyTech 2021

What is testing ?

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model
➢ or in the program

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model
➢ or in the program
➢ or in both

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model
➢ or in the program
➢ or in both

❑ A systematic test is:

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model
➢ or in the program
➢ or in both

❑ A systematic test is:
➢ process programs and specifications

and to compute a set of test-cases
under controlled conditions.

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model
➢ or in the program
➢ or in both

❑ A systematic test is:
➢ process programs and specifications

and to compute a set of test-cases
under controlled conditions.

8

VnV: TestingPolyTech 2021

What is testing ?

❑ It is an approximation to verification
❑ Main interest: finding bugs early,

➢ either in the model
➢ or in the program
➢ or in both

❑ A systematic test is:
➢ process programs and specifications

and to compute a set of test-cases
under controlled conditions.

➢ ideally: testing is complete if a certain criteria,
the adequacy criteria is reached.

8

VnV: TestingPolyTech 2021

Limits of testing ?

9

VnV: TestingPolyTech 2021

Limits of testing ?

❑ We said, test is an approximation to verification,
usually easier (and less expensive)

9

VnV: TestingPolyTech 2021

Limits of testing ?

❑ We said, test is an approximation to verification,
usually easier (and less expensive)

❑ Note: Sometimes it is easier to verify than
to test. In particular:

9

VnV: TestingPolyTech 2021

Limits of testing ?

❑ We said, test is an approximation to verification,
usually easier (and less expensive)

❑ Note: Sometimes it is easier to verify than
to test. In particular:

➢ low-level OS implementations: memory allocation, garbage collection
memory virtualization, … crypt-algorithms, ...

9

VnV: TestingPolyTech 2021

Limits of testing ?

❑ We said, test is an approximation to verification,
usually easier (and less expensive)

❑ Note: Sometimes it is easier to verify than
to test. In particular:

➢ low-level OS implementations: memory allocation, garbage collection
memory virtualization, … crypt-algorithms, ...

➢ non-deterministic programs with no control over the non-determinism.

9

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

➢ analyse the result on the basis of all components

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

➢ analyse the result on the basis of all components
➢ working on some classes of executions symbolically

= representing infinitely many executions

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

➢ analyse the result on the basis of all components
➢ working on some classes of executions symbolically

= representing infinitely many executions

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

➢ analyse the result on the basis of all components
➢ working on some classes of executions symbolically

= representing infinitely many executions

❑ dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

➢ analyse the result on the basis of all components
➢ working on some classes of executions symbolically

= representing infinitely many executions

❑ dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain

➢ experiment with the real behaviour

10

VnV: TestingPolyTech 2021

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

➢ analyse the result on the basis of all components
➢ working on some classes of executions symbolically

= representing infinitely many executions

❑ dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain

➢ experiment with the real behaviour
➢ essentially used for post-hoc ananalysis and debugging

10

VnV: TestingPolyTech 2021

Taxonomy: Unit / Sequence / Reactive Tests

11

VnV: TestingPolyTech 2021

Taxonomy: Unit / Sequence / Reactive Tests

❑ unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

11

VnV: TestingPolyTech 2021

Taxonomy: Unit / Sequence / Reactive Tests

❑ unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

❑ sequence: testing of a local component (function,
module), but typicallY sequences of executions,
which typically depend on internal state

11

VnV: TestingPolyTech 2021

Taxonomy: Unit / Sequence / Reactive Tests

❑ unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

❑ sequence: testing of a local component (function,
module), but typicallY sequences of executions,
which typically depend on internal state

❑ reactive sequence: testing components by sequences
of steps, but these sequences represent communication
where later parts in the seqience depend on what has
been earlier cummunicated

11

VnV: TestingPolyTech 2021

Taxonomy: Functional / Structural Test

12

VnV: TestingPolyTech 2021

Taxonomy: Functional / Structural Test

❑ functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

12

VnV: TestingPolyTech 2021

Taxonomy: Functional / Structural Test

❑ functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

❑ structural: (also: white-box tests). Tests were
generated on the basis of the structure or the
program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

12

VnV: TestingPolyTech 2021

Taxonomy: Functional / Structural Test

❑ functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

❑ structural: (also: white-box tests). Tests were
generated on the basis of the structure or the
program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

❑ both: (also: grey-box testing).

12

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test

Ce que le programme devrait faire…

13

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test

❑ We got the spec, but not the program, which is
considered as a black box:

Ce que le programme devrait faire…

13

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test

❑ We got the spec, but not the program, which is
considered as a black box:

input output???

Ce que le programme devrait faire…

13

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test

❑ We got the spec, but not the program, which is
considered as a black box:

input output???

Ce que le programme devrait faire…
we focus on what the program should do !!!

13

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

14

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

The (informal) specification:

14

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

The (informal) specification:

 Read a “Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

14

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

The (informal) specification:

 Read a “Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

Give a specification, and develop a test set ...

14

VnV: TestingPolyTech 2021

Functional Unit Test : An Example

The specification in UML/MOAL:

 Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle
- is_Triangle(): {equ (*equilateral*),
 iso (*isosceles*),
 arb (*arbitrary*)}

15

VnV: TestingPolyTech 2021

Functional Unit Test : An Example

We add the constraints of
the analysis:

Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle
- is_Triangle(): {equ (*equilateral*),
 iso (*isosceles*),
 arb (*arbitrary*)}

inv 0<a ∧ 0<b ∧ 0<c
inv c≤a+b ∧ a≤b+c ∧ b≤c+a

operation t.is_Triangle():
post t.a=t.b ∧ t.b=t.c ⟶ result=equ
post (t.a≠t.b ∨ t.b≠t.c) ∧
 (t.a=t.b ∨ t.b=t.c ∨ t.a=t.c))⟶ result=iso
post (t.a≠t.b ∨ t.b≠t.c ∨ t.a≠t.c))⟶ result=arb

16

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a
1
:C

1
,...,a

n
:C

n
)

pre : P(self,a
1
,...,a

n
)

post : Q(self,a
1
,...,a

n
,result)

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a
1
:C

1
,...,a

n
:C

n
)

pre : P(self,a
1
,...,a

n
)

post : Q(self,a
1
,...,a

n
,result)

to some checking code (with “assert” as in Junit, VCC, Boogie, ...)

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a
1
:C

1
,...,a

n
:C

n
)

pre : P(self,a
1
,...,a

n
)

post : Q(self,a
1
,...,a

n
,result)

to some checking code (with “assert” as in Junit, VCC, Boogie, ...)

check_C(); check_C
1
(); ... ; check_C

n
();

assert(P(self,a
1
,...,a

n
));

result=run_m(self,a
1
,...,a

n
);

assert(Q(self,a
1
,...,a

n
,result));

17

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

18

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/…) Runtime-Tests are:

18

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/…) Runtime-Tests are:
• … easy to implement and enforce

18

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/…) Runtime-Tests are:
• … easy to implement and enforce
• … work on real data and are extremely

helpful for post-hoc crash-analysis,
debugging, and forensics.

18

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/…) Runtime-Tests are:
• … easy to implement and enforce
• … work on real data and are extremely

helpful for post-hoc crash-analysis,
debugging, and forensics.

• Runtime-tests conflict with efficiency

18

VnV: TestingPolyTech 2021

Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/…) Runtime-Tests are:
• … easy to implement and enforce
• … work on real data and are extremely

helpful for post-hoc crash-analysis,
debugging, and forensics.

• Runtime-tests conflict with efficiency
• But: they are NOT particularly useful

during development, where we need
systematic test-data EARLY.

18

VnV: TestingPolyTech 2021

Can we do better ?

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:
➢ generates the tests from the model („model-based testing“):

if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:
➢ generates the tests from the model („model-based testing“):

if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

➢ ... works for partial programs ...

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:
➢ generates the tests from the model („model-based testing“):

if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

➢ ... works for partial programs ...
➢ ... works in the implementation phase

(and gives immediate feedback to programmers)

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:
➢ generates the tests from the model („model-based testing“):

if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

➢ ... works for partial programs ...
➢ ... works in the implementation phase

(and gives immediate feedback to programmers)

 and not at the deployment phase (so: runs very late) ...

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:
➢ generates the tests from the model („model-based testing“):

if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

➢ ... works for partial programs ...
➢ ... works in the implementation phase

(and gives immediate feedback to programmers)

 and not at the deployment phase (so: runs very late) ...
➢ ... gives clear criteria on the question:

19

VnV: TestingPolyTech 2021

Can we do better ?

❑ We need a method that:
➢ generates the tests from the model („model-based testing“):

if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

➢ ... works for partial programs ...
➢ ... works in the implementation phase

(and gives immediate feedback to programmers)

 and not at the deployment phase (so: runs very late) ...
➢ ... gives clear criteria on the question:

 „did we test enough“ ?

19

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

20

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ Consider the test specification (the “Test Case”):

 mk(x,y,z).isTriangle() ≡ X

20

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ Consider the test specification (the “Test Case”):

 mk(x,y,z).isTriangle() ≡ X

i.e. for which input (x,y,z) should an
implementation of our contract yield which X ?

20

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ Consider the test specification (the “Test Case”):

 mk(x,y,z).isTriangle() ≡ X

i.e. for which input (x,y,z) should an
implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid,
as well as all other invalid triangles ...

20

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations :

(6, 6, 7), (7, 6, 6), (6, 7, 6)

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations :

(6, 6, 7), (7, 6, 6), (6, 7, 6)

❑ impossible triangles and their permutations :

(1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z

(1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations :

(6, 6, 7), (7, 6, 6), (6, 7, 6)

❑ impossible triangles and their permutations :

(1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z

(1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)

❑ a zero length : (0, 5, 4), (4, 0, 5),

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations :

(6, 6, 7), (7, 6, 6), (6, 7, 6)

❑ impossible triangles and their permutations :

(1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z

(1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)

❑ a zero length : (0, 5, 4), (4, 0, 5),

❑ . . .

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations :

(6, 6, 7), (7, 6, 6), (6, 7, 6)

❑ impossible triangles and their permutations :

(1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z

(1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)

❑ a zero length : (0, 5, 4), (4, 0, 5),

❑ . . .

❑ Would we have to consider negative values?

21

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

22

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ Ouf, is there a systematic and automatic
way to compute all these tests ?

22

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ Ouf, is there a systematic and automatic
way to compute all these tests ?

❑ Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

22

VnV: TestingPolyTech 2021

Intuitive Test-Data Generation

❑ Ouf, is there a systematic and automatic
way to compute all these tests ?

❑ Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

❑ And the question remains:

 When did we test „enough“ ?

22

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics of MOAL in Part III *)

Some Facts:

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics of MOAL in Part III *)

Some Facts:
➢ From modifiesOnly({}) follows σ = σ’ hence

 invTriangle(σ) = invTriangle(σ’)

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics of MOAL in Part III *)

Some Facts:
➢ From modifiesOnly({}) follows σ = σ’ hence

 invTriangle(σ) = invTriangle(σ’)

➢ From mk(x,y,z) ≠ null (see preisTriangle) and from invTriangle(σ) and

mk(x,y,z) ∈ Triangle (σ) follows that:
 0<x∧0<y∧0<z ∧ x≤y+z ∧ y≤x+z ∧ z≤x+y (≡ inv)

23

9/8/20 B. Wolff - GLA - Black-Box Tests

Revision: Boolean Logic + Some Basic Rules

24

9/8/20 B. Wolff - GLA - Black-Box Tests

Revision: Boolean Logic + Some Basic Rules

❑ !"#$%$&'(!$#$)$!$&$$ $ $ $ "*$+,-./0#12$*'$
❑ !"#$)$&'(!$#$%$!$&$ $ $ $ "*$+,-./0#13$*'$
❑ #$%$"&$)$4'$($"#$%$&'$)$"#$%$4'$
❑ !"!$#'$($#$5$#$)$!#$($65$5$#$%$!#$(75
❑ #$%$&$($&$%$#8$$#$)$&$($&$)$#$
❑ #$%$"&$%$4'$($"#$%$&'$%$4$
❑ #$)$"&$)$4'$($"#$)$&'$)$4$
❑ #$⟶$&$($"!$#'$)$&$

❑ "#(&$%$9"#''$($9"&'$$ $ $ $ "*$.1,$:.;1<$/=>,$*'?

❑ >,<$@$(A;1$B"@'$$($B"A'$ $ $ "*$>,<$,>;C;1#<;.1$*'$
❑ ;D4<E,1B,>F,G($"4$%B')$"!$4$%$G'$$($"4$⟶B'%$"!$4$⟶$G'

24

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics d’un appel de methopde, in MOAL II, page 22. *)

Some Facts:

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics d’un appel de methopde, in MOAL II, page 22. *)

Some Facts:
➢ arb≠equ≠iso

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics d’un appel de methopde, in MOAL II, page 22. *)

Some Facts:
➢ arb≠equ≠iso
➢ postisTriangle(mk(x,y,z),r)(σ,σ) can be simplified to:

 (x=y ∧ y=z ⟶ r=equ) ∧
 ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z) ⟶ r=iso) ∧

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

 (* see semantics d’un appel de methopde, in MOAL II, page 22. *)

Some Facts:
➢ arb≠equ≠iso
➢ postisTriangle(mk(x,y,z),r)(σ,σ) can be simplified to:

 (x=y ∧ y=z ⟶ r=equ) ∧
 ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z) ⟶ r=iso) ∧

 ((x≠y ∧ y≠z ∧ x≠z) ⟶ r=arb)

25

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

26

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summing up:
 mk(x,y,z).isTriangle() = r

26

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summing up:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

26

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summing up:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

⟹ (* the discussed facts *)

26

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summing up:
 mk(x,y,z).isTriangle() = r

≡ invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧
 invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)

⟹ (* the discussed facts *)

inv ∧
(x=y ∧ y=z ⟶ r=equ) ∧
((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z)⟶ r=iso) ∧

 (x≠y ∧ y≠z ∧ x≠z ⟶ r=arb)

26

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 inv ∧ (x=y ∧ y=z ⟶ r=equ) ∧
 ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z)⟶ r=iso) ∧

 (x≠y ∧ y≠z ∧ x≠z ⟶ r=arb)

≡ (* elimination ⟶ , deMorgan*)

inv ∧
(x≠y ∨ y≠z ∨ r=equ) ∧
((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso) ∧

 (x=y ∨ y=z ∨ x=z ∨ r=arb)

2727

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

28

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ This first part of the calculation could be called

 PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ...

28

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ This first part of the calculation could be called

 PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ...

Now, under which precise conditions do we have

28

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ This first part of the calculation could be called

 PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ...

Now, under which precise conditions do we have
➢ r = iso
➢ r = arb
➢ r = equ ???

28

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ This first part of the calculation could be called

 PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ...

Can we transform the spec into the form

➢ A1 ∧ ... ∧ Ai ∧ r = iso

➢ B1 ∧ ... ∧ Bk ∧ r = arb

➢ C1 ∧ ... ∧ Cl ∧ r = equ ???

29

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ This first part of the calculation could be called

 PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ...

Can we transform the spec into a

Disjunctive Normal Form (DNF) ?

30

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

❑ Generalized Distribution Laws:

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

❑ Generalized Distribution Laws:

"H2$)$H3'$%$"I2$)$I3'$ $($"H2$%$"I2$)$I3''$)$"H3$%$"I2$)$I3''$

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

❑ Generalized Distribution Laws:

"H2$)$H3'$%$"I2$)$I3'$ $($"H2$%$"I2$)$I3''$)$"H3$%$"I2$)$I3''$

($"H2$%$I2'$)$"H3$%$I2'$)$"H2$%$I3'$)$"H3$%$I3'?

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

❑ Generalized Distribution Laws:

"H2$)$H3'$%$"I2$)$I3'$ $($"H2$%$"I2$)$I3''$)$"H3$%$"I2$)$I3''$

($"H2$%$I2'$)$"H3$%$I2'$)$"H2$%$I3'$)$"H3$%$I3'?

"H2$)$H3$)$HJ'$%$"I2$)$I3$)$IJ'$%$"B2$)$B3$)$BJ'$ $

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

❑ Generalized Distribution Laws:

"H2$)$H3'$%$"I2$)$I3'$ $($"H2$%$"I2$)$I3''$)$"H3$%$"I2$)$I3''$

($"H2$%$I2'$)$"H3$%$I2'$)$"H2$%$I3'$)$"H3$%$I3'?

"H2$)$H3$)$HJ'$%$"I2$)$I3$)$IJ'$%$"B2$)$B3$)$BJ'$ $

($K

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Excursion

❑ Generalized Distribution Laws:

"H2$)$H3'$%$"I2$)$I3'$ $($"H2$%$"I2$)$I3''$)$"H3$%$"I2$)$I3''$

($"H2$%$I2'$)$"H3$%$I2'$)$"H2$%$I3'$)$"H3$%$I3'?

"H2$)$H3$)$HJ'$%$"I2$)$I3$)$IJ'$%$"B2$)$B3$)$BJ'$ $

($K
($"H2$%$I2$$%$B2'$)$"H2$%$I2$$%$B3'$)$"H2$%$I2$$%BJ')$$?

$$"H3$%$I2$$%$B2'$)$"H3$%$I2$$%$B3'$)$"H3$%$I2$$%BJ')?
$$LLL?

$$"H2$%$IJ$$%BJ')$"H3$%$IJ$$%BJ')$"HJ$%$IJ$$%$BJ'

31

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

32

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 ...
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)
≡

32

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 ...
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)
≡

distrib

32

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 ...
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)
≡
inv ∧

((x≠y ∧ x=y)∨(x≠y ∧ y=z)∨(x≠y ∧ x=z)∨(x≠y ∧ r=arb)) ∨
((y≠z ∧ x=y)∨(y≠z ∧ y=z)∨(y≠z ∧ x=z)∨(y≠z ∧ r=arb)) ∨
((r=equ∧x=y)∨(r=equ∧y=z)∨(r=equ∧x=z)∨(r=equ∧r=arb)) ∨
((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

distrib

32

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

33

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 …

33

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 …
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

33

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 …
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

33

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 …
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

 ≡ (* elimination contradictions *)

33

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 …
≡ inv ∧
 (x≠y ∨ y≠z ∨ r=equ) ∧
 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧
 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

 ≡ (* elimination contradictions *)
 inv ∧

((x≠y ∧ x=y)∨(x≠y ∧ y=z)∨(x≠y ∧ x=z)∨(x≠y ∧ r=arb) ∨
 (y≠z ∧ x=y)∨(y≠z ∧ y=z)∨(y≠z ∧ x=z)∨(y≠z ∧ r=arb) ∨
 (r=equ∧x=y)∨(r=equ∧y=z)∨(r=equ∧x=z)∨(r=equ∧r=arb)) ∨
((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

33

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Recall the test specification:
 ...
≡ (* elimination contradictions *)
inv ∧

((x≠y ∧ y=z)∨(x≠y ∧ x=z)∨(x≠y ∧ r=arb) ∨
 (y≠z ∧ x=y)∨(y≠z ∧ x=z)∨(y≠z ∧ r=arb) ∨
 (r=equ∧x=y)∨(r=equ∧y=z)∨(r=equ∧x=z)) ∧

 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

34

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ ≡ (* generalized distribution 2nd/3rd ((9 * 3 = 27 cases !)*)
inv ∧

((x≠y∧y=z∧x=y∧y=z)∨(x≠y∧x=z∧
 x=y∧y=z)∨(x≠y∧r=arb∧x=y∧y=z) ∨
 (y≠z∧x=y∧x=y∧y=z)∨(y≠z∧x=z∧
 x=y∧y=z)∨(y≠z∧r=arb∧x=y∧y=z) ∨
 (r=equ∧x=y∧x=y∧y=z)∨(r=equ∧
 y=z∧x=y∧y=z)∨(r=equ∧x=z∧x=y∧y=z)) ∨
((x≠y∧y=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧x=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧r=arb
∧ x≠y∧y≠z∧x≠z)∨(y≠z∧x=y∧x≠y∧y≠z∧x≠z)∨(y≠z∧x=z∧x≠y∧y≠z∧
x≠z)∨(y≠z∧r=arb∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=y∧x≠y∧y≠z∧x≠z)∨(
r=equ∧y=z∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=z∧x≠y∧y≠z∧ x≠z)) ∨
((x≠y ∧ y=z∧r=iso)∨(x≠y ∧ x=z∧r=iso)∨(x≠y∧r=arb∧r=iso)
 ∨(y≠z∧x=y∧r=iso)∨(y≠z∧x=z∧r=iso)∨(y≠z∧r=arb∧r=iso) ∨
 (r=equ∧x=y∧r=iso)∨(r=equ∧y=z∧r=iso)∨(r=equ∧x=z∧r=iso))

35

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ ≡ (* elimination of the contradictions and redundancies *)
inv ∧

((x≠y∧y=z∧x=y∧y=z)∨(x≠y∧x=z∧
 x=y∧y=z)∨(x≠y∧r=arb∧x=y∧y=z) ∨
 (y≠z∧x=y∧x=y∧y=z)∨(y≠z∧x=z∧
 x=y∧y=z)∨(y≠z∧r=arb∧x=y∧y=z) ∨
 (r=equ∧x=y∧x=y∧y=z)∨(r=equ∧
 y=z∧x=y∧y=z)∨(r=equ∧x=z∧x=y∧y=z)) ∨
((x≠y∧y=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧x=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧r=arb
∧ x≠y∧y≠z∧x≠z)∨(y≠z∧x=y∧x≠y∧y≠z∧x≠z)∨(y≠z∧x=z∧x≠y∧y≠z∧
x≠z)∨(y≠z∧r=arb∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=y∧x≠y∧y≠z∧x≠z)∨(
r=equ∧y=z∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=z∧x≠y∧y≠z∧ x≠z)) ∨
((x≠y ∧ y=z∧r=iso)∨(x≠y ∧ x=z∧r=iso)∨(x≠y∧r=arb∧r=iso)
 ∨(y≠z∧x=y∧r=iso)∨(y≠z∧x=z∧r=iso)∨(y≠z∧r=arb∧r=iso) ∨
 (r=equ∧x=y∧r=iso)∨(r=equ∧y=z∧r=iso)∨(r=equ∧x=z∧r=iso))

36

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

37

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ ≡ (* cleanup, distribution *)
 (inv ∧ x=y ∧ x=y ∧ y=z ∧ r=equ) ∨ (1)

 (inv ∧ x≠y ∧ y≠z ∧ x≠z ∧ r=arb) ∨ (2)
 (inv ∧ x≠y ∧ y=z ∧ r=iso) ∨ (3)
 (inv ∧ x≠y ∧ x=z ∧ r=iso) ∨ (4)
 (inv ∧ y≠z ∧ x=y ∧ r=iso) ∨ (5)
 (inv ∧ y≠z ∧ x=z ∧ r=iso) (6)

37

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ ≡ (* cleanup, distribution *)
 (inv ∧ x=y ∧ x=y ∧ y=z ∧ r=equ) ∨ (1)

 (inv ∧ x≠y ∧ y≠z ∧ x≠z ∧ r=arb) ∨ (2)
 (inv ∧ x≠y ∧ y=z ∧ r=iso) ∨ (3)
 (inv ∧ x≠y ∧ x=z ∧ r=iso) ∨ (4)
 (inv ∧ y≠z ∧ x=y ∧ r=iso) ∨ (5)
 (inv ∧ y≠z ∧ x=z ∧ r=iso) (6)

❑ Test-Case-Construction by DNF Method

37

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ ≡ (* cleanup, distribution *)
 (inv ∧ x=y ∧ x=y ∧ y=z ∧ r=equ) ∨ (1)

 (inv ∧ x≠y ∧ y≠z ∧ x≠z ∧ r=arb) ∨ (2)
 (inv ∧ x≠y ∧ y=z ∧ r=iso) ∨ (3)
 (inv ∧ x≠y ∧ x=z ∧ r=iso) ∨ (4)
 (inv ∧ y≠z ∧ x=y ∧ r=iso) ∨ (5)
 (inv ∧ y≠z ∧ x=z ∧ r=iso) (6)

❑ Test-Case-Construction by DNF Method
 yields six abstract test cases

 relating input x y z to output r

37

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ ≡ (* cleanup, distribution *)
 (inv ∧ x=y ∧ x=y ∧ y=z ∧ r=equ) ∨ (1)

 (inv ∧ x≠y ∧ y≠z ∧ x≠z ∧ r=arb) ∨ (2)
 (inv ∧ x≠y ∧ y=z ∧ r=iso) ∨ (3)
 (inv ∧ x≠y ∧ x=z ∧ r=iso) ∨ (4)
 (inv ∧ y≠z ∧ x=y ∧ r=iso) ∨ (5)
 (inv ∧ y≠z ∧ x=z ∧ r=iso) (6)

❑ Test-Case-Construction by DNF Method
 yields six abstract test cases

 relating input x y z to output r
❑ Note: In general, output r is not necessarily

uniquely defined as in our example ...
The spec can be non-deterministic admitting several results.

37

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

38

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Test-Data-Selection:
For each abstract test-case, we construct one
concrete test, by choosing values that make
the abstract test case true (« that satisfies the
abstract test case »)

38

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Test-Data-Selection:
For each abstract test-case, we construct one
concrete test, by choosing values that make
the abstract test case true (« that satisfies the
abstract test case »)

case x y z result
(1) 3 3 3 equ
(2) 3 4 6 arb
(3) 4 5 5 iso
(4) 5 4 5 iso
(5) 5 5 4 iso
(6) 4 3 4 iso

38

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intuitively, what does it mean that we “covered”
the DNF by tests

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intuitively, what does it mean that we “covered”
the DNF by tests
❑ Any basic predicate (“literal”) has been

used at least one time

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intuitively, what does it mean that we “covered”
the DNF by tests
❑ Any basic predicate (“literal”) has been

used at least one time
❑ … provided it is not contradictory (“H(7#>F,”)

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intuitively, what does it mean that we “covered”
the DNF by tests
❑ Any basic predicate (“literal”) has been

used at least one time
❑ … provided it is not contradictory (“H(7#>F,”)
❑ … provided that it is not redundant (“H(6/=,”)

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intuitively, what does it mean that we “covered”
the DNF by tests
❑ Any basic predicate (“literal”) has been

used at least one time
❑ … provided it is not contradictory (“H(7#>F,”)
❑ … provided that it is not redundant (“H(6/=,”)
❑ … provided it is not implied by another

 literal, i.e. it is subsumed (“I$⟶$$H”)

39

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ A First Summary on the Test-Generation Method:

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ A First Summary on the Test-Generation Method:
➢ PHASE I: Stripping the Domain-Language (UML-MOAL) away,

“purification”

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ A First Summary on the Test-Generation Method:
➢ PHASE I: Stripping the Domain-Language (UML-MOAL) away,

“purification”
➢ PHASE II: Abstract Test Case Construction by

“DNF computation”

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ A First Summary on the Test-Generation Method:
➢ PHASE I: Stripping the Domain-Language (UML-MOAL) away,

“purification”
➢ PHASE II: Abstract Test Case Construction by

“DNF computation”
➢ PHASE III: Constraint Resolution (by solvers like CVC4 or Z3) “Test Data Selection”

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ A First Summary on the Test-Generation Method:
➢ PHASE I: Stripping the Domain-Language (UML-MOAL) away,

“purification”
➢ PHASE II: Abstract Test Case Construction by

“DNF computation”
➢ PHASE III: Constraint Resolution (by solvers like CVC4 or Z3) “Test Data Selection”
➢ COVERAGE CRITERION:

DNF - coverage of the Spec; for each abstract test-case
one concrete test-input is constructed.
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ A First Summary on the Test-Generation Method:
➢ PHASE I: Stripping the Domain-Language (UML-MOAL) away,

“purification”
➢ PHASE II: Abstract Test Case Construction by

“DNF computation”
➢ PHASE III: Constraint Resolution (by solvers like CVC4 or Z3) “Test Data Selection”
➢ COVERAGE CRITERION:

DNF - coverage of the Spec; for each abstract test-case
one concrete test-input is constructed.
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)

❑ Remark: During Codiung phase, when the Spec does not
change, the test-data-selection can be repeated easily
creating always different test sets ...

40

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Variants:

➢ Alternative to PHASE II (DNF construction):

Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

 inv ∧
 (x=y ∧ y=z ⟶ r=equ) ∧
 ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z)⟶ r=iso) ∧

 (x≠y ∧ y≠z ∧ x≠z ⟶ r=arb)

It is possible to abstract this spec to a fairly small
number of „base predicates“ ... They should be logically
independent and not contain the output variable...

41

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Variants:

➢ Alternative to PHASE II (DNF construction):

Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

 inv ∧
 (A ∧ B ⟶ r=equ) ∧
 ((¬ A ∨ ¬ B) ∧ (A ∨ B ∨ C)⟶ r=iso) ∧

 (¬ A ∧ ¬ B ∧ ¬ C ⟶ r=arb)

where A ↦ x=y, B ↦ y=z, C ↦ x=z

(actually: A and B imply C)

42

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Variants:

➢ ... Now we can construct a tableau and get by simplification:

case A B C spec reduces to
(1) T T T ● r=equ

(2) T T F ● r=equ (!!!)

(3) T F T ● r=iso

(4) T F F ● r=iso

(5) F T T ● r=iso

(6) F T F ● r=iso

(7) F F T ● r=iso

(8) F F F ● r=arb

43

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Variants:

➢ PHASE III: Borderline analysis.

Principle: we replace in our DNF inequalities by
„the closest values that make the spec true“

 x≠y ↦ x = y + 1 ∨ x = y - 1

 x ≤ y ↦ x = y ∨ x < y

 x < y ↦ x = y - 1 etc.

➢ ... and recompute the DNF. In general,
this gives a much finer mesh ...

44

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Variants:

➢ PHASE I: Test for exceptional behaviour.

We negate the precondition and to DNF generation
on the precondition only.

Test objectives could be:

□ should raise an exception if public

□ should not diverge

45

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?

46

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

47

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)
at two points:

47

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)
at two points:

➢ at the level

of data

47

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)
at two points:

➢ at the level

of data

1

LList
lgth:Integer
sum():Integer

next
0..1

47

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)
at two points:

➢ at the level

of data

1

LList
lgth:Integer
sum():Integer

next
0..1

invariant:
invLList ≡ ∀node∈LList.
 node.lgth =if node.next = null
 then 1
 else next.lgth + 1

47

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)
at two points:

➢ at the level

of data

1

LList
lgth:Integer
sum():Integer

next
0..1

Note that this excludes
cyclic lists !!!

invariant:
invLList ≡ ∀node∈LList.
 node.lgth =if node.next = null
 then 1
 else next.lgth + 1

47

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?

In UML/MOAL, recursion occurs (at least)
at two points:
➢ at the level of oper-

ations (post-conds
may contain calls ...)

48

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?

In UML/MOAL, recursion occurs (at least)
at two points:
➢ at the level of oper-

ations (post-conds
may contain calls ...)

LList
lgth:Integer
sum():Integer

next
0..1

48

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?

In UML/MOAL, recursion occurs (at least)
at two points:
➢ at the level of oper-

ations (post-conds
may contain calls ...)

LList
lgth:Integer
sum():Integer

next
0..1

query contract (modifiesOnly({})):
definition pre

sum
(l) ≡ True

definition post
sum

(l,res)≡ res=if l.next=null then l.lgth

 else l.lgth + l.next.sum()
definition sum(l)≡ arb{r|pre

sum
(l) ∧ post

sum
(l,r)}

48

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ How to handle Recursion ?

In UML/MOAL, recursion occurs (at least)
at two points:
➢ at the level of oper-

ations (post-conds
may contain calls ...)

Note that arb(S) gives an
arbitrary member of S: arb(S)∈S.
Since from x=arb({y})follows x=y;
thus sum(l) is (uniquely) defined.

LList
lgth:Integer
sum():Integer

next
0..1

query contract (modifiesOnly({})):
definition pre

sum
(l) ≡ True

definition post
sum

(l,res)≡ res=if l.next=null then l.lgth

 else l.lgth + l.next.sum()
definition sum(l)≡ arb{r|pre

sum
(l) ∧ post

sum
(l,r)}

48

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Prerequisite: We present the invariant as recursive predicate.

definition invLList_Core n σ ≣(n.lgth(σ) = if n.next(σ)=null then 1

 else n.next.lgth(σ) + 1)

we have:
 invLList (σ) = ∀n∈LList(σ). invLList_Core n σ

and
 invLList_Core(n)(σ)= (if n.next(σ)=null then n.lgth(σ) = 1

 else n.lgth(σ) =n.next.lgth(σ) + 1
 ∧ n.next(σ)∈LList(σ)
 ∧ invLList_Core(n.next)(σ))

Furthermore we have:
 sum(l)(σ’,σ) = if l.next(σ)=null then l.lgth(σ)
 else l.lgth(σ) + sum(l.next)(σ’,σ)

We have σ’=σ (why?). We will again apply (σ’,σ) - convention.

49

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Consider the test specification:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

≣ inv

LList
(X) ∧ pre

sum
(X)∧ post

sum
(X,Y)

where:

 pre
sum

(X)≣ true

 post
sum

(X,Y)≣ (if X.next = null then Y = X.lgth

 else Y = X.lgth + sum(X.next))
 ≣ (X.next=null ∧ Y = X.lgth)
 ∨ (X.next≠null ∧ Y = X.lgth+sum(X.next)

50

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

51

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ DNF computation yields already the test cases:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

⟹ invLList_Core(X) ∧ postsum(X,Y))
≣ (if X.next=null then X.lgth = 1
 else X.lgth =X.next.lgth+1 ∧ X.next∈LList ∧ invLList_Core(X.next)) ∧ 
 (if X.next = null then Y = X.lgth
 else Y = X.lgth + sum(X.next))

≣ (if c then C else D elim, DNF)  
 (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth)

 ∨ (X.next≠null ∧ X.lgth =X.next.lgth+1
 ∧ X.next∈LList ∧ invLList_Core(X.next)

 ∧ Y = X.lgth+sum(X.next))

51

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ DNF computation yields already the test cases:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

⟹ invLList_Core(X) ∧ postsum(X,Y))
≣ (if X.next=null then X.lgth = 1
 else X.lgth =X.next.lgth+1 ∧ X.next∈LList ∧ invLList_Core(X.next)) ∧ 
 (if X.next = null then Y = X.lgth
 else Y = X.lgth + sum(X.next))

≣ (if c then C else D elim, DNF)  
 (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth)

 ∨ (X.next≠null ∧ X.lgth =X.next.lgth+1
 ∧ X.next∈LList ∧ invLList_Core(X.next)

 ∧ Y = X.lgth+sum(X.next))

New
Test-

Case!!

51

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

52

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

52

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

 X Y

1

... ...

... ...

52

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

i:LList
lgth=1

null

X Y

1

... ...

... ...

52

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Prerequisite: We present the invariant as recursive
predicate.

invLList_Core(n)= (if n.next=null then n.lgth = 1

 else n.lgth =n.next.lgth + 1
 ∧ n.next∈LList ∧ invLList_Core(n.next))

❑ sum(l) = if l.next=null then l.lgth
 else l.lgth + sum(l.next)

sum(l) = if X.next.next=null then X.next.lgth
 else X.next.lgth + sum(X.next.next)

53

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ DNF computation yields already the test cases:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

⟹ ... ≣ ...

≣ (unfolding sum and invLList_Core)  
 (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth)

 ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList

 ∧ (if X.next.next=null then X.next.lgth = 1

 else X.next.lgth =X.next.next.lgth + 1
 ∧ X.next.next∈LList ∧ invLList_Core(X.next.next))

 ∧ (Y = X.lgth+(if X.next.next=null then X.next.lgth
 else X.next.lgth + sum(X.next.next)))

54

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ DNF computation yields already the test cases:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

⟹ ... ≣ ...

≣ (DNF partial)  
 (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth)

 ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList

 ∧ ((X.next.next=null ∧ X.next.lgth = 1 ∧ Y = X.lgth+X.next.lgth)

 ∨(X.next.next≠null ∧ X.next.lgth=X.next.next.lgth+1

 ∧ X.next.next∈LList ∧ invLList_Core(X.next.next)

 ∧ Y = X.lgth+ X.next.lgth + sum(X.next.next))
)

55

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

56

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ DNF computation yields already the test cases:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

⟹ ... ≣ ...

≣ (DNF partial)  
 (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth)

 ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList
 ∧ X.next.next=null ∧ X.next.lgth=1 ∧ Y = X.lgth+X.next.lgth))
 ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList
 ∧ X.next.next≠null ∧ X.next.lgth=X.next.next.lgth+1
 ∧ X.next.next∈LList ∧ invLList_Core(X.next.next)

 ∧ Y = X.lgth+ X.next.lgth + sum(X.next.next))

56

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ DNF computation yields already the test cases:

 X.sum() ≣ Y (for some X∈LList, i.e. X≠null)

⟹ ... ≣ ...

≣ (DNF partial)  
 (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth)

 ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList
 ∧ X.next.next=null ∧ X.next.lgth=1 ∧ Y = X.lgth+X.next.lgth))
 ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList
 ∧ X.next.next≠null ∧ X.next.lgth=X.next.next.lgth+1
 ∧ X.next.next∈LList ∧ invLList_Core(X.next.next)

 ∧ Y = X.lgth+ X.next.lgth + sum(X.next.next))

New
Test-

Case!!

56

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

57

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

57

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

 X Y

1

... 2

... ...

57

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

i:LList
lgth=1

null

X Y

1

... 2

... ...

57

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Intermediate Summary: test-cases known so far ?

i:LList
lgth=1

null

X Y

1

... 2

... ...

i:LList
lgth=2

i:LList
lgth=1 null

57

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

□ unfold predicates one step

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

□ unfold predicates one step
□ compute DNF

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

□ unfold predicates one step
□ compute DNF
□ simplify DNF

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

□ unfold predicates one step
□ compute DNF
□ simplify DNF
□ extract test-cases

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

□ unfold predicates one step
□ compute DNF
□ simplify DNF
□ extract test-cases

until we are satisfied, i.e. have „enough“ test cases ...

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Summary: Symbolic Test-Case Generation

❑ ... and we could continue forever
➢ compile to semantics

(-> convert in mathematical, logical notation)
➢ use recursive predicates, recursive contracts
➢ enter loop:

□ unfold predicates one step
□ compute DNF
□ simplify DNF
□ extract test-cases

until we are satisfied, i.e. have „enough“ test cases ...
➢ Select test-data: constraint resolution of test cases.

58

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

59

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

59

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

❑ Logically: we used a regularity hypothesis, i.e …

(∀ X. |X|<k ⇒ X.sum() ≡ Y)
 ⇒ (∀ X. X.sum() ≡ Y)

59

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

❑ Logically: we used a regularity hypothesis, i.e …

(∀ X. |X|<k ⇒ X.sum() ≡ Y)
 ⇒ (∀ X. X.sum() ≡ Y)

where we choose as “complexity mesure” |X|
just X.lgth and k (the number of unfoldings)
was 2 ...

59

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Coverage Criterion for recursive specification:

 DNFk

For all data up to complexity k, we constructed abstract

test-cases and generated a test.

In our example, the “complexity measure” is just the length

of the LLists.

60

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ What are the alternatives to symbolic
test-case generation ?

Must this really be so complicated ???

Well, think about the probability to
“guess” input with a complex invariant
or precondition, if you use “blind”
random-generation of input...

61

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications
➢ It takes into account:

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications
➢ It takes into account:

□ object orientation

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications
➢ It takes into account:

□ object orientation
□ data invariants (recursive predicates)

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications
➢ It takes into account:

□ object orientation
□ data invariants (recursive predicates)
□ recursive functions (via unfolding)

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications
➢ It takes into account:

□ object orientation
□ data invariants (recursive predicates)
□ recursive functions (via unfolding)

➢ The process can be tool-supported
(HOL-TestGen)

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary
➢ We have (sketched) a symbolic Test-Case

Generation Procedure for UML/MOAL Specifications
➢ It takes into account:

□ object orientation
□ data invariants (recursive predicates)
□ recursive functions (via unfolding)

➢ The process can be tool-supported
(HOL-TestGen)

➢ The process is intended for automation.

62

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

63

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary

Key-Ingredients are:

63

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary

Key-Ingredients are:

➢ Unfolding predicates up to a given depth k

63

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary

Key-Ingredients are:

➢ Unfolding predicates up to a given depth k

➢ computing the Disjunctive Normal Form (DNFk)

63

9/8/20 B. Wolff - GLA - Black-Box Tests

Test-Data Generation

❑ Summary

Key-Ingredients are:

➢ Unfolding predicates up to a given depth k

➢ computing the Disjunctive Normal Form (DNFk)

➢ Adequacy:
Pick for each test-case (a conjoint in the DNFk)

one test, i.e. one substitution for the free
variables satisfying the test-case !

63

