2021
’ POLYTECH: Cycle Ingenieur — 2¢me annee
PARIS-SUD
Département Informatique
Verification and Validation

Part IV : An Introduction
to Testing

Burkhart Wolff
Département Informatique
Université Paris-Saclay / LMF



Recall: Validation and Verification




Recall: Validation and Verification

2 Validation :




Recall: Validation and Verification

-
2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?




Recall: Validation and Verification

-
2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?




Recall: Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

2 Verification:




Recall: Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

2 Verification:
= Does the system meet the specification ?




Recall: Validation and Verification

-
2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

4 Verification:
= Does the system meet the specification ?
> Does it correspond to a (mathematical, formal) model ?




Recall: Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

4 Verification:
= Does the system meet the specification ?
= Does it correspond to a (mathematical, formal) model ?

Do we build the system right ? 1Is it « correct » ?




How to do Validation ?

2 Tests and Experiments over Systems
(Integrated artefacts consisting of
software and hardware ...)

PolyTech 2021 VnV: Testing



How to do Verification ?

2 Test and Proof on the basis of formal
specifications (e.g., a la OCL, MOAL, ACSL, ... 1)
against programs or systems ...

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

|
4 costs? 35 - 50 % of the global effort ?

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

|
4 costs? 35 - 50 % of the global effort ?

2 all "real” (large) software has remaining bugs ...

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

|
4 costs? 35 - 50 % of the global effort ?

2 all "real” (large) software has remaining bugs ...

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

|
4 costs? 35 - 50 % of the global effort ?

2 all "real” (large) software has remaining bugs ...

2 The cost of bug ?

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

|
2 costs? 35 - 50 % of the global effort ?

2 all “real” (large) software has remaining bugs ...

9 The cost of bug ?
= the cost to reveal and fix it ...
or:
the cost of a legal battle it may cause...
or  the potential damage to the image
(difficult to evaluate, but veeeery real)
or  costs as aresult to come later on the market

PolyTech 2021 VnV: Testing



Recall: Verification Costs in an SE Process

2 costs? 35 - 50 % of the global effort ?

2 all “real” (large) software has remaining bugs ...

9 The cost of bug ?

= the cost to reveal and fix it ...
or:
the cost of a legal battle it may cause...
or  the potential damage to the image
(difficult to evaluate, but veeeery real)
or  costs as aresult to come later on the market

= on the other side — you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !

PolyTech 2021 VnV: Testing



Verification Costs

PolyTech 2021 VnV: Testing



Verification Costs

2 Conclusion:

PolyTech 2021 VnV: Testing



Verification Costs

2 Conclusion:
= verification and software quality is vitally

important, and also critical in the development

PolyTech 2021 VnV: Testing



Verification Costs

2 Conclusion:
= verification and software quality is vitally

important, and also critical in the development

> to do it cost-effectively, it requires

PolyTech 2021 VnV: Testing



Verification Costs

2 Conclusion:
= verification and software quality is vitally

important, and also critical in the development

> to do it cost-effectively, it requires

a lot of expertise on products and process

PolyTech 2021 VnV: Testing



Verification Costs

2 Conclusion:
= verification and software quality is vitally

important, and also critical in the development

> to do it cost-effectively, it requires
a lot of expertise on products and process

a lot of knowledge over methods,
tools, and tool chains ...

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test
= Structural Test / Functional Test
>~  Statistic Tests

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

2 Functional Test; Link to UML/OCL

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

2 Functional Test; Link o UML/OCL
= Dynamic Unit Tests, Static Unit Tests,

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

2 Functional Test; Link o UML/OCL
= Dynamic Unit Tests, Static Unit Tests,

= Coverage Criteria

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

2 Functional Test; Link o UML/OCL
= Dynamic Unit Tests, Static Unit Tests,

= Coverage Criteria

2 Structural Tests

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

2 Functional Test; Link o UML/OCL
= Dynamic Unit Tests, Static Unit Tests,

= Coverage Criteria

4 Structural Tests
> Control Flow and Data Flow Graphs

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

3 Functional Test; Link to UML/OCL
= Dynamic Unit Tests, Static Unit Tests,
= Coverage Criteria

9 Structural Tests

> Control Flow and Data Flow Graphs
> Tests and executed paths. Undecidability.

PolyTech 2021 VnV: Testing



Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
>  Statistic Tests

3 Functional Test; Link to UML/OCL
= Dynamic Unit Tests, Static Unit Tests,
= Coverage Criteria

9 Structural Tests

> Control Flow and Data Flow Graphs
> Tests and executed paths. Undecidability.

= Coverage Criteria

PolyTech 2021 VnV: Testing



What is testing ?

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

> orinboth

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

> orinboth

4 A systematic test is:

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

> orinboth

4 A systematic test is:

= process programs and specifications
and to compute a set of test-cases
under controlled conditions.

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

> orinboth

4 A systematic test is:

= process programs and specifications
and to compute a set of test-cases
under controlled conditions.

PolyTech 2021 VnV: Testing



What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

> orinboth

4 A systematic test is:

= process programs and specifications
and to compute a set of test-cases
under controlled conditions.

= jdeally: testing is complete if a certain criteria,
the adequacy criteria is reached.

PolyTech 2021 VnV: Testing



Limits of testing ?

PolyTech 2021 VnV: Testing



Limits of testing ?

2 We said, test is an approximation to verification,
usually easier (and less expensive)

PolyTech 2021 VnV: Testing



Limits of testing ?

2 We said, test is an approximation to verification,
usually easier (and less expensive)

2 Note: Sometimes it is easier to verify than
to test. In particular:

PolyTech 2021 VnV: Testing



Limits of testing ?

2 We said, test is an approximation to verification,
usually easier (and less expensive)

2 Note: Sometimes it is easier to verify than
to test. In particular:

=~ low-level OS implementations: memory allocation, garbage collection

memory virtualization, ... crypt-algorithms, ...

PolyTech 2021 VnV: Testing



Limits of testing ?

2 We said, test is an approximation to verification,
usually easier (and less expensive)

2 Note: Sometimes it is easier to verify than
to test. In particular:

=~ low-level OS implementations: memory allocation, garbage collection

memory virtualization, ... crypt-algorithms, ...

=~ non-deterministic programs with no control over the non-determinism.

PolyTech 2021 VnV: Testing



Taxomomy: Static / Dynamic Tests

PolyTech 2021 VnV: Testing

10



Taxomomy: Static / Dynamic Tests

a

static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)

PolyTech 2021 VnV: Testing

10



Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

PolyTech 2021 VnV: Testing 10



Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

PolyTech 2021 VnV: Testing 10



Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

PolyTech 2021 VnV: Testing 10



Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

2 dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain

PolyTech 2021 VnV: Testing 10



Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

2 dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain
= experiment with the real behaviour

PolyTech 2021 VnV: Testing 10



Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

2 dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain
= experiment with the real behaviour
= essentially used for post-hoc ananalysis and debugging

PolyTech 2021 VnV: Testing 10



Taxonomy: Unit / Sequence / Reactive Tests

PolyTech 2021 VnV: Testing

11



Taxonomy: Unit / Sequence / Reactive Tests

2 unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what

you have to do!)

PolyTech 2021 VnV: Testing

11



Taxonomy: Unit / Sequence / Reactive Tests

2 unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

1 sequence: testing of a local component (function,
module), but typicallY sequences of executions,
which typically depend on internal state

PolyTech 2021 VnV: Testing 11



Taxonomy: Unit / Sequence / Reactive Tests

2 unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

1 sequence: testing of a local component (function,
module), but typicallY sequences of executions,
which typically depend on internal state

2 reactive sequence: testing components by sequences
of steps, but these sequences represent communication
where later parts in the segience depend on what has
been earlier cummunicated

PolyTech 2021 VnV: Testing 11



Taxonomy: Functional / Structural Test

PolyTech 2021 VnV: Testing

12



Taxonomy: Functional / Structural Test

2 functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

PolyTech 2021 VnV: Testing 12



Taxonomy: Functional / Structural Test

2 functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

2 structural: (also: white-box tests). Tests were
generated on the basis of the structure or the
program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

PolyTech 2021 VnV: Testing 12



Taxonomy: Functional / Structural Test

2 functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

2 structural: (also: white-box tests). Tests were
generated on the basis of the structure or the
program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

2 both: (also: grey-box testing).

PolyTech 2021 VnV: Testing 12



Functional Dynamic Unit Test

PolyTech 2021 VnV: Testing

13



Functional Dynamic Unit Test

2 We got the spec, but not the program, which is
considered as a black box:

PolyTech 2021 VnV: Testing

13



Functional Dynamic Unit Test

2 We got the spec, but not the program, which is
considered as a black box:

input output

PolyTech 2021 VnV: Testing 13



Functional Dynamic Unit Test

2 We got the spec, but not the program, which is
considered as a black box:

input output

we focus on what the program should do !!!

PolyTech 2021 VnV: Testing 13



Functional Dynamic Unit Test : an example

PolyTech 2021 VnV: Testing

14



Functional Dynamic Unit Test : an example

The (informal) specification:

PolyTech 2021 VnV: Testing

14



Functional Dynamic Unit Test : an example

The (informal) specification:

Read a “"Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

PolyTech 2021 VnV: Testing

14



Functional Dynamic Unit Test : an example

The (informal) specification:

Read a “"Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

Give a specification, and develop a test set ...

PolyTech 2021 VnV: Testing 14



Functional Unit Test : An Example

The specification in UML/MOAL:

Triangles

a, b, c: Integer

- mk (Integer, Integer, Integer) :Triangle

- 1s Triangle(): {equ (*equilateral™),
1so (*1sosceles¥™),
arb (*arbitrary*)}

PolyTech 2021 VnV: Testing



Functional Unit Test : An Example

%
O<a A O<b A O<c

c<a+b A asb+c A b=c+a

We add the constraints of inv
the analysis: n
Triangles —
a, b, c: Integer

~
N

- mk (Integer, Integer, Integer) :Triangle

- is-Triangle(): {equ (*equilateral™),
N iso (*isosceles*),
I arb (*arbitrary*) }

operation tis_Triangle():
post

post (t.a#t.b V t.b#t.c)

ta=t.b AN t.b=t.c — result=equ
A

(t.a=t.b V t.b=t.c V t.a=t.c))—> result=iso
post (t.a#t.b V t.b#t.c V t.a#t.c))—> result=arb

N

PolyTech 2021 VnV: Testing

16



Functional Dynamic Unit Test : an example

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a_ :C,...,a :C)
1 1 n n
pre : P(self,al,...,an)
post : Q(self,al,...,an,result)

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a_ :C,...,a :C)
1 1 n n
pre : P(self,al,...,an)
post : Q(self,al,...,an,result)

to some checking code (with “assert” as in Junit, VCC, Boogie, ...)

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a_ :C,...,a :C)
1 1 n n
pre : P(self,al,...,an)
post : Q(self,al,...,an,result)

to some checking code (with “assert” as in Junit, VCC, Boogie, ...)

check C(); check C (); ... ; check C ();
assert (P(self,al, .. ,an) ),

result=run m(self, IR an) ;

assert (0 (self,al, ceeray result));

PolyTech 2021 VnV: Testing

17



Functional Dynamic Unit Test : an example

PolyTech 2021 VnV: Testing

18



Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/...) Runtime-Tests are:

PolyTech 2021 VnV: Testing

18



Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/...) Runtime-Tests are:

e .. easy fo implement and enforce

PolyTech 2021 VnV: Testing

18



Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/...) Runtime-Tests are:
e .. easy fo implement and enforce

e .. work on real data and are extremely
helpful for post-hoc crash-analysis,
debugging, and forensics.

PolyTech 2021 VnV: Testing

18



Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/...) Runtime-Tests are:

e .. easy fo implement and enforce

e .. work on real data and are extremely
helpful for post-hoc crash-analysis,
debugging, and forensics.

¢ Runtime-tests conflict with efficiency

PolyTech 2021 VnV: Testing

18



Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/...) Runtime-Tests are:

e .. easy fo implement and enforce

e .. work on real data and are extremely
helpful for post-hoc crash-analysis,
debugging, and forensics.

¢ Runtime-tests conflict with efficiency

e But: they are NOT particularly useful
during development, where we need
systematic test-data EARLY.

PolyTech 2021 VnV: Testing

18



Can we do better ?

PolyTech 2021 VnV: Testing

19



Can we do better ?

2 We need a method that:

PolyTech 2021 VnV: Testing

19



Can we do better ?

2 We need a method that:

= generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

PolyTech 2021 VnV: Testing

19



Can we do better ?

2 We need a method that:

= generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

= ...works for partial programs ...

PolyTech 2021 VnV: Testing

19



Can we do better ?

2 We need a method that:

= generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

= ...works for partial programs ...

= ...works in the implementation phase
(and gives immediate feedback to programmers)

PolyTech 2021 VnV: Testing

19



Can we do better ?

2 We need a method that:

= generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

= ...works for partial programs ...

= ...works in the implementation phase
(and gives immediate feedback to programmers)

and not at the deployment phase (so: runs very late) ...

PolyTech 2021 VnV: Testing 19



Can we do better ?

2 We need a method that:

>

>

generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

... works for partial programs ...

... works in the implementation phase
(and gives immediate feedback to programmers)

and not at the deployment phase (so: runs very late) ...

... gives clear criteria on the question:

PolyTech 2021

VnV: Testing 19



Can we do better ?

2 We need a method that:

= generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

= ...works for partial programs ...

= ...works in the implementation phase
(and gives immediate feedback to programmers)

and not at the deployment phase (so: runs very late) ...
= ... gives clear criteria on the question:

.did we test enough” ?

PolyTech 2021 VnV: Testing 19



Intuitive Test-Data Generation

PolyTech 2021 VnV: Testing

20



Intuitive Test-Data Generation

2 Consider the test specification (the "Test Case”):

mKk(X,Y,z).isTriangle() = X

PolyTech 2021 VnV: Testing

20



Intuitive Test-Data Generation

2 Consider the test specification (the "Test Case”):

mKk(X,y,z).isTriangle() = X

i.e. for which input (X,y,z) should an
implementation of our contract yield which X ?

PolyTech 2021 VnV: Testing

20



Intuitive Test-Data Generation

2 Consider the test specification (the "Test Case”):

mKk(X,y,z).isTriangle() = X

i.e. for which input (X,y,z) should an
implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid,
as well as all other invalid triangles ...

PolyTech 2021 VnV: Testing

20



Intuitive Test-Data Generation

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)

2 an equilateral triangle: (5, 5, 5)

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)

2 an equilateral triangle: (5, 5, 5)

2 anisoscele triangle and its permutations :

(6,6,7),(7,6,6),(6,7,6)

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)

2 an equilateral triangle: (5, 5, 5)

2 anisoscele triangle and its permutations :
(6,6,7),(7,6,6),(6,7,6)

4 impossible triangles and their permutations :
1,2,4),(4,1,2),(2,4,1) --x+y>z
1,2,3),(2,4,2),(5,3,2) --x+y=2z(necessary?)

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)
2 an equilateral triangle: (5, 5, 5)

2 anisoscele triangle and its permutations :
(6,6,7),(7,6,6),(6,7,6)

4 impossible triangles and their permutations :
1,2,4),(4,1,2),(2,4,1) --x+y>z
1,2,3),(2,4,2),(5,3,2) --x+y=2z(necessary?)

4 azerolength: (0,5, 4),(4,0,5),

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)

2 an equilateral triangle: (5, 5, 5)

2 anisoscele triangle and its permutations :
(6,6,7),(7,6,6),(6,7,6)

4 impossible triangles and their permutations :
1,2,4),(4,1,2),(2,4,1) --x+y>z
1,2,3),(2,4,2),(5,3,2) --x+y=2z(necessary?)

4 azerolength: (0,5, 4),(4,0,5),

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)

2 an equilateral triangle: (5, 5, 5)
2 anisoscele triangle and its permutations :

(6,6,7),(7,6,6),(6,7,6)

2 impossible triangles and their permutations :
1,2,4),(4,1,2),(2,4,1) --x+y>z
1,2,3),(2,4,2),(5,3,2) --x+y=2z(necessary?)

4 azerolength: (0,5, 4),(4,0,5),

4 Would we have to consider negative values?

PolyTech 2021 VnV: Testing

21



Intuitive Test-Data Generation

PolyTech 2021 VnV: Testing

22



Intuitive Test-Data Generation

2 Ouf, is there a systematic and automatic
way to compute all these tests ?

PolyTech 2021 VnV: Testing

22



Intuitive Test-Data Generation

2 Ouf, is there a systematic and automatic
way to compute all these tests ?

Q  Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

PolyTech 2021 VnV: Testing

22



Intuitive Test-Data Generation

2 Ouf, is there a systematic and automatic
way to compute all these tests ?

Q  Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

2 And the question remains:

When did we test ,,enough™ ?

PolyTech 2021 VnV: Testing

22



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

23



Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r

9/8/20 B. Wolff - GLA - Black-Box Tests

23



Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r

= inVTriangIe(G) A I:)reisTriangIe(rnk(x’y’z))(o) A

9/8/20 B. Wolff - GLA - Black-Box Tests

23



Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r

= inVTriangIe(G) A I:)reisTriangIe(rnk(x’y’z))(o) A

inv (o) A post. mk(x,y,z),r)(c,0)

Triangle nsTr'iangle(

9/8/20 B. Wolff - GLA - Black-Box Tests

23



Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r
= inVTriangIe(G) A preisTriangIe(mk(x’y’z))(a) A
inv (o) a post (mk(x,y,z),r)(o,0")

Triangle

(* see semantics of MOAL in Part IIT *)

isTriangle

Some Facts:

9/8/20 B. Wolff - GLA - Black-Box Tests

23



Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r
= inVTriangIe(G) A preisTriangIe(mk(x’y’z))(a) A
inVTr-iangle(G’) A pOSTisTriangle(mk(x'y'z)'r)(O’G’)

(* see semantics of MOAL in Part IIT *)

Some Facts:

> From modifiesOnly({}) follows o = 6’ hence

mVTriangIe(O) = InVTriangIe(O)

9/8/20 B. Wolff - GLA - Black-Box Tests

23



Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r
= inVTriangIe(G) A preisTriangIe(mk(x’y’z))(a) A
inv (o) a post (mk(x,y,z),r)(o,0")

Triangle

(* see semantics of MOAL in Part IIT *)

isTriangle

Some Facts:

> From modifiesOnly({}) follows o = 6’ hence

inVTriangIe(O) = inVTriangIe(O,)
= From mk(x,y,z) # null (see preisTriangle) and from mVTriangIe(G) and
mk(x,y,z) € Triangle (o) follows that:
0<xANO<yA0<z A xSy+z AN yS<x+z N zS<x+y (= inv)
9/8/20 B. Wolff - GLA - Black-Box Tests

23



Revision: Boolean Logic + Some Basic Rules

9/8/20 B. Wolff - GLA - Black-Box Tests

24



Revision: Boolean Logic + Some Basic Rules

|
4 "(@aab)=mav-b (* deMorgan1 *)

4 "(avb)=maan"b (* deMorgan2 *)
2 aa(bvc)=(aab)v(anac)

2 ~"(ha)=a,ava=T,,ana=F,

9 aanb=bara; avb=bva

2 aa(bac)=(anb)ac

2 av(bvc)=(avb)vec

2 a—b=("a)vb

2 (a=b A P(a)) = P(b) (* one point rule *)

2 letx=EinC(x) = C(E) (* let elimination *)
2 ifcthenCelseD=(caC)v(mcaD) =(c— C)a(mc— D)

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

25



Test-Data Generation

d  Recall the test specification:
mk(x,y,z).isTriangle() = r

9/8/20 B. Wolff - GLA - Black-Box Tests

25



Test-Data Generation

d  Recall the test specification:
mk(x,y,z).isTriangle() = r

iI"]VTriangIe(O) A I:)reisTriangIe(rnk(X’y’Z))(O) A

9/8/20 B. Wolff - GLA - Black-Box Tests
25



Test-Data Generation

d  Recall the test specification:
mk(x,y,z).isTriangle() = r

iI"]VTriangIe(O) A I:)reisTriangIe(rnk(X’y’Z))(O) A
|.anr'icmgle(O,) A pOSTisTriangle(mk(x'y'z)’r)(g’o’)

9/8/20 B. Wolff - GLA - Black-Box Tests
25



Test-Data Generation

d  Recall the test specification:
mk(x,y,z).isTriangle() = r

ir]VTriangIe(O) A I:)reisTriangIe(rnk(x’y’z))(O) A
|.anr'icmgle(O,) A pOSTisTriangle(mk(x'y'z)’r‘)(g’o’)

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

9/8/20 B. Wolff - GLA - Black-Box Tests
25



Test-Data Generation

Recall the test specification:
mk(x,y,z).isTriangle() = r

ir]VTriangIe(O) A I:)reisTriangIe(rnk(x’y’z))(o) A
I.anr'icmgle(O,) A pOSTisTriangle(mk(x'y'z)’r‘)(g’o’)

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

> arb#equ#iso

9/8/20 B. Wolff - GLA - Black-Box Tests
25



Test-Data Generation

d  Recall the test specification:
mk(x,y,z).isTriangle() = r

ir]VTriangIe(O) A I:)reisTriangIe(rnk(x’y’z))(o) A
I.anr'icmgle(O,) A pOSTisTriangle(mk(x'y'z)’r‘)(g’o’)

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

> arb#equ#iso
= post.

isTriangle

(mk(xy,z),r)(o,0) can be simplified to:
(X=y AN y=2 —> r=equ) A

((Xaéy V yv#z) N (x=y V y=z V x=z) —> r=iso) A

9/8/20 B. Wolff - GLA - Black-Box Tests
25



Test-Data Generation

Recall the fest specification:
mk(X,y,z).isTriangle() = r

ir]VTriangIe(O) A I:)reisTriangIe(rnk(x’y’z))(o) A

I.anr'icmgle(O,) A pOSTisTriangle(mk(x'y'z)’r‘)(g’o’)

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

> arb#equ#iso
= post.

isTriangle

(mk(xy,z),r)(o,0) can be simplified to:
(X=y AN y=2 —> r=equ) A
((Xaéy V yv#z) N (x=y V y=z V x=z) —> r=iso) A

((x#y N yv#z N x#z) —> r=arb)

9/8/20 B. Wolff - GLA - Black-Box Tests
25



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

26



Test-Data Generation

2 Summing up:
mKk(x,y,z).isTriangle() =r

9/8/20 B. Wolff - GLA - Black-Box Tests

26



Test-Data Generation

9

Summing up:
mKk(x,y,z).isTriangle() =r

ir]VTriangIe(O) A preisTriangIe(mk(XIYIZ))(O) A
ianr‘iangle(G,) A post (mk(x,y,z),r)o,0")

isTriangle

9/8/20 B. Wolff - GLA - Black-Box Tests

26



Test-Data Generation

9

Summing up:
mKk(x,y,z).isTriangle() =r

ir]VTriangIe(O) A preisTriangIe(mk(XIYIZ))(O) A
ianriangle(o’) A post (mk(x,y,z),r)o,0")

isTriangle

=> (* the discussed facts *)

9/8/20 B. Wolff - GLA - Black-Box Tests

26



Test-Data Generation

9

Summing up:
mKk(x,y,z).isTriangle() =r

ir]VTriangIe(O) A preisTriangIe(mk(XIYIZ))(O) A
ianr‘iangle(G,) A post (mk(x,y,z),r)o,0")

isTriangle

=> (* the discussed facts *)

inv A
(x=y AN y=2 —> rzequ) A
((x#y V yv#z) N (x=y V y=z V x=2z)— r=iso) A

(x#y AN yv#¥z N x#z —> r=arb)

9/8/20 B. Wolff - GLA - Black-Box Tests

26



Test-Data Generation

d  Recall the test specification:
inv A (x=y N y=z — r=equ) A

((x#y V v#z) N (x=y V y=z V x=z)— r=iso) A

(x#y N y#z N x#z —> r=arb)

= (* elimination — , deMorgan¥*)

inv A
(x#y V y#z V r=equ) A
((x=y AN y=z) V (x#y N y#z N x#z) V r=iso) A

(x=y V y=z V x=z V rzarb)

9/8/20 B. Wolff - GLA - Black-Box Tests

27



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

28



Test-Data Generation

QA This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

9/8/20 B. Wolff - GLA - Black-Box Tests

28



Test-Data Generation

QA This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Now, under which precise conditions do we have

9/8/20 B. Wolff - GLA - Black-Box Tests

28



Test-Data Generation

QA This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Now, under which precise conditions do we have
=~ r=iso
= r=arb

= r=equ ???

9/8/20 B. Wolff - GLA - Black-Box Tests

28



Test-Data Generation

Q2 This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Can we transform the spec into the form

= A/N..N AN Tr=iso
= B ALANB APr=arb

= C/A..NC A r=equ 27?

9/8/20 B. Wolff - GLA - Black-Box Tests

29



Test-Data Generation

Q  This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Can we transform the spec into a

Disjunctive Normal Form (DNF) ?

9/8/20 B. Wolff - GLA - Black-Box Tests

30



Excursion

9/8/20 B. Wolff - GLA - Black-Box Tests

31



Excursion

]
2 Generalized Distribution Laws:

9/8/20 B. Wolff - GLA - Black-Box Tests

31



Excursion

]
2 Generalized Distribution Laws:

(A, vA)A(B,vB,) =(Ar(B,vB,) Vv(A,A(B,vB,)

9/8/20 B. Wolff - GLA - Black-Box Tests

31



Excursion

]
2 Generalized Distribution Laws:

(A, vA)A(B,vB,) =(Ar(B,vB,) Vv(A,A(B,vB,)
= (A, AB) v(A,AB,) v(A AB,) v(A,AB,)

9/8/20 B. Wolff - GLA - Black-Box Tests

31



Excursion

m

Generalized Distribution Laws:

(A, vA)A(B,vB,) =(Ar(B,vB,) Vv(A,A(B,vB,)
= (A, AB) v(A,AB,) v(A AB,) v(A,AB,)

(A, vA,vA) A (B, vB,vB,) A (C, vC,vC))

9/8/20 B. Wolff - GLA - Black-Box Tests

31



Excursion

m

Generalized Distribution Laws:

(A, vA)A(B,vB,) =(Ar(B,vB,) Vv(A,A(B,vB,)
= (A, AB) v(A,AB,) v(A AB,) v(A,AB,)

(A, vA,vA) A (B, vB,vB,) A (C, vC,vC))

9/8/20 B. Wolff - GLA - Black-Box Tests

31



Excursion

]
2 Generalized Distribution Laws:

(A, vA)A(B,vB,) =(Ar(B,vB,) Vv(A,A(B,vB,)
= (A, AB) v(A,AB,) v(A AB,) v(A,AB,)

(A, vA,vA) A (B, vB,vB,) A (C, vC,vC))

= (A AB, AC ) v(AAB, AC,) v(AAB, AC)) v
(A,AB, AnC ) v(A,AB, AC) v(A,AB, AC)) v

(A;AB; ACy) v(A,AB, A C,) v(A;AB, A Cy)

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

32



Test-Data Generation

3

Recall the tfest specification:

inv A

(x#y V y#z V r=equ) A

(X=y V y=z V x=z V r=arb)A

((x=y N y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20

B. Wolff - GLA - Black-Box Tests

32



Test-Data Generation

1 Recall the test specification:
distrib

= 1nv A

(x#y V y#z V r=equ) A
(X=y V y=2z V x=z V r=arb)A

((x=y N y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

1 Recall the test specification:
distrib

= 1nv A

(x#y V y#z V r=equ) A
(X=y V y=2z V x=z V r=arb)A

((x=y N y=z) V (x#y N y#z N x#z) V r=iso)

((X#y AN x=y)V(x#fy AN y=z)V (X#¥y A x=z)V (X#y A rzarb)) vV
((y#z AN x=y)V(y#z N y=z)V(y#z N x=z)V(y#z A r=arb)) '}
(( V(r= equAy—z)V(r=eqqu=z)V(rzequArzarb)) vV
((X=y N y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - GLA - Black-Box Tests
32



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

33



Test-Data Generation

4 Recall the test specification:

9/8/20 B. Wolff - GLA - Black-Box Tests

33



Test-Data Generation

4

Recall the test specification:

= 1inv A
(x#y V y#z V rzequ) A
(X=y V y=z V x=z V r=arb)A
((X=y AN y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - GLA - Black-Box Tests

33



Test-Data Generation

4

Recall the test specification:

= 1inv A
(x#y V y#z V rzequ) A
(X=y V y=z V x=z V r=arb)A
((X=y AN y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - GLA - Black-Box Tests

33



Test-Data Generation

4

Recall the test specification:

= 1inv A
(x#y V y#z V rzequ) A
(X=y V y=z V x=z V r=arb)A
((X=y AN y=z) V (x#y N y#z N x#z) V r=iso)

= (* elimination contradictions *)

9/8/20 B. Wolff - GLA - Black-Box Tests

33



Test-Data Generation

4 Recall the test specification:

inv A

(x#y V y#z V rzequ) A

(X=y V y=z V x=z V r=arb)A

((X=y AN y=z) V (x#y N y#z N x#z) V r=iso)

(* elimination contradictions *)

inv A

((x#y AN x=y)V(Xx#fy N y=z)V (Xx#y N x=z)V (Xx#¥#y AN r=arb) V
(yv#z N x=y)V(y#z N y=z)V(y#z N x=z)V(y#¥z N r=arb) V
(r=eqqu=y)V(r=equAy=z)V(r=eqqu=z)V(r=equAr=arb)) Vv
((X=y N y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20

B. Wolff - GLA - Black-Box Tests

33



4

Test-Data Generation

Recall the test specification:

= (* elimination contradictions *)
inv A
((x£y AN y=2)V(x#£y A x=z)V(x#y A r=arb) V
(yv#z N x=y)V(y#z N x=z)V(y#z N r=arb) V
(r=eqqu=y)V(r=equAy=z)V(r=eqqu=z)) A
((X=y N yv=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - GLA - Black-Box Tests

34



Test-Data Generation

Q = (* generalized distribution 2nd/3rd ((9 * 3 = 27 cases !)*)
inv A
((x#yAy=zAx=yAy=z)V(x#yAx=zA
x=yAy=z)V (X#yAr=arbAx=yAy=z) V
(v#FzAx=yAx=yAy=2z)V (y#zAx=2zNA
x=yANy=2z)V (y#zAr=arbAx=yAy=z) V
(r=equlAx=yAx=yAy=z)V (r=equh
y=zAx=yAy=z)V(r=eqqu=zAx=yAy=z))V
((x#yAy=zAx#yAy¢zAx#z)V(X#yAx=zAx¢yAy¢zAx#z)V(X#yAr=arb

N XFYANYFZAXFZ)V (VFZAX=YAXFYANYFZAXFZ) V (yFZAX=2Z2AXFYANyFZ A
XF#FZ2)V(y#zAr=arbAx#yAy#zAx#z) V (r=equAX=yAxX#FYAYy#FzZAx#Zz) V (

r=eqUAy=zAx#YyAy#zAx#z)V (r=equlAx=zAx#yANy#zA x#z))v
((x#y AN yv=zAr=1s0)V (X¥y AN x=zAr=1s0)V (Xx#yAr=arbAr=1s0)
V(y#zAx=yAr=1s0)V (y#zAx=zAr=1so0)V (y#zAr=arbAr=1iso) V
(r=equAX=yAr=iso)V(r=equAy=zAr=iso)V(r=eqqu=zAr=iso))

9/8/20 B. Wolff - GLA - Black-Box Tests
35



Test-Data Generation

a = (* elimination of the contradictions and redundancies *)
inv A
((x#yAy=zAx=yAy=z)V(X#yAX=zA
x=yANy=z)V (X#yAr=arbAx=yAy=z) V
(yFzZAx=yAx=yAy=z)V (y#Z2Ax=2z A
x=yAy=z)V (y#zAr=arbAx=yAy=z) V
(r=equlAx=yAx=yAy=z)V (r=equl

y:ZszyAy:Z)V(rzeqUAXZZszyAy:Z))V

((x#yAy=zAx#yAy#zAx#z)V(X#yAx=zAx#yAy#zAx#z)V(X#yAr=arb
N XFYNYFZAXFZ)V (YFZAX=YAXFYANYFZAXFZ )V (YFZAX=ZAXFYANYyFZ A
X#FZ)V(y#zZAr=arbAx#yAy#zAx#z) V (r=equAX=YAX#FYAYyFZAXF#Z) V (

r=equAy=zAx#yAy#zAx#z) V (r=equlAx=zAx#yAy#zA x#z))v

((x#y N y=zANr=1s0)V (x#y N x=zAr=1s0)V (X#yAr=arbAr=1s0)
V(y#zAx=yAr=1is0)V (y#zAx=zAr=1so0) V (y#zAr=arbAr=1so) V

(r=eqqu=yAr=iso)V(r=equAy=zAr=iso)V(r=eqqu=zAr=iso))

9/8/20 B. Wolff - GLA - Black-Box Tests
36



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

37



Test-Data Generation

A = (" cleanup, distribution *)

inv A x=y N x=y N y=z AN r=equ) V
Xty N y#z N x#z N r=arb ) V
X#y N Zz N r=iso) V
X#y N Zz N r=1iso) V
yv#z N x=y AN r=iso) V
v#Z N z N r=1s0)

|_|
3
<
> > > > >

o U b W DN

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

2 = (* cleanup, distribution *)
inv A x=y AN x=y AN y=z A r=equ) V

(

(inv A xX#y N y#z N x#z AN r=arb ) V
(inv AN x#y AN y=z N r=iso) V

(1nv AN x#y N x=z N r=iso) V

(inv A y#z N x=y N r=1iso) V

(inv A y#z AN x=z N r=1s0)

Q  Test-Case-Construction by DNF Method

o U b W DN

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

A = (" cleanup, distribution *)

inv A x=y N x=y N y=z AN r=equ) V
Xty N y#z N x#z N r=arb ) V
x#y N y=z N r=iso) V
x#y N x=z N r=iso) V
yv#z N x=y AN r=iso) V
v#zZ N x=z N r=1s0)

|_|
3
<
> > > > >

Q  Test-Case-Construction by DNF Method

yields six abstract test cases
relating input X y z fo output r

o U b W DN

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

A = (* cleanup, distribution *)

inv A x=y N x=y N y=z AN r=equ) V
Xty N y#z N x#z N r=arb ) V
x#y N y=z N r=iso) V
x#y N x=z N r=iso) V
yv#z N x=y AN r=iso) V
v#zZ N x=z N r=1s0)

|_|

)

<
> > > > >
o U W N R

2 Test-Case-Construction by DNF Method

yields six abstract test cases
relating input X y z fo output r

2 Note: In general, output r is not necessarily
uniquely defined as in our example ...
The spec can be non-defterministic admitting several results.

9/8/20 B. Wolff - GLA - Black-Box Tests
37



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

38



Test-Data Generation

aQ  Test-Data-Selection:
For each abstract test-case, we construct one
concrete test, by choosing values that make

the abstract test case true (« that satisfies the
abstract test case »)

9/8/20 B. Wolff - GLA - Black-Box Tests

38



Test-Data Generation

4

Test-Data-Selection:

For each abstract test-case, we construct one
concrete test, by choosing values that make

the abstract test case true (« that satisfies the
abstract test case »)

case result

X
(1) 3 equ
(2) 3 arb
(3) 4 iso
(4) 5 iso
() S5

4

(6)

iSO

W o b~ O bW
~ B~ O 01 O W N

iSO

9/8/20 B. Wolff - GLA - Black-Box Tests

38



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

J

Intuitively, what does it mean that we “covered”
the DNF by tests

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

J

Intuitively, what does it mean that we “covered”
the DNF by tests

2 Any basic predicate (“literal”) has been
used at least one time

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

J

Intuitively, what does it mean that we “covered”
the DNF by tests

2 Any basic predicate (“literal”) has been
used at least one time

9 .. provided it is not contradictory ("A=False”)

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

J

Intuitively, what does it mean that we “covered”
the DNF by tests

2 Any basic predicate (“literal”) has been
used at least one time

9 .. provided it is not contradictory ("A=False”)
2 .. provided that it is not redundant ("A=True")

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

a  Intuitively, what does it mean that we “covered”
the DNF by tests

2 Any basic predicate (“literal”) has been
used at least one time

9 .. provided it is not contradictory ("A=False”)
2 .. provided that it is not redundant (“A=True")
2 .. provided it is not implied by another

literal, i.e. it is subsumed ("B — A")

9/8/20 B. Wolff - GLA - Black-Box Tests

39



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

40



Test-Data Generation

2 A First Summary on the Test-Generation Method:

9/8/20 B. Wolff - GLA - Black-Box Tests

40



Test-Data Generation

|

A First Summary on the Test-Generation Method:

=~ PHASE I: Stripping the Domain-Language (UML-MOAL) away,
“purification”

9/8/20 B. Wolff - GLA - Black-Box Tests

40



Test-Data Generation

2 A First Summary on the Test-Generation Method:

=~ PHASE I: Stripping the Domain-Language (UML-MOAL) away,

“purification”
=~ PHASE II: Abstract Test Case Construction by
"DNF computation”

9/8/20 B. Wolff - GLA - Black-Box Tests

40



Test-Data Generation

2 A First Summary on the Test-Generation Method:
=~ PHASE I: Stripping the Domain-Language (UML-MOAL) away,
“purification”
=~ PHASE II: Abstract Test Case Construction by
"DNF computation”
= PHASE IITI: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection’

9/8/20 B. Wolff - GLA - Black-Box Tests
40



Test-Data Generation

2 A First Summary on the Test-Generation Method:
=~ PHASE I: Stripping the Domain-Language (UML-MOAL) away,
“purification”
=~ PHASE II: Abstract Test Case Construction by
"DNF computation”
= PHASE IITI: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection’
= COVERAGE CRITERION:
DNF - coverage of the Spec: for each abstract test-case

one concrete test-input is constructed.
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)

9/8/20 B. Wolff - GLA - Black-Box Tests
40



Test-Data Generation

2 A First Summary on the Test-Generation Method:
=~ PHASE I: Stripping the Domain-Language (UML-MOAL) away,
“purification”
=~ PHASE II: Abstract Test Case Construction by
"DNF computation”
= PHASE IITI: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection’

=~ COVERAGE CRITERION:
DNF - coverage of the Spec; for each abstract test-case
one concrete test-input is constructed.
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)
2 Remark: During Codiung phase, when the Spec does not
change, the test-data-selection can be repeated easily
creating always different test sets ...

9/8/20 B. Wolff - GLA - Black-Box Tests
40



Test-Data Generation

d  Variants:

>  Alternative to PHASE II (DNF construction):
Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:
inv A
(x=y AN y=2 — r=equ) A
((x#y V v#z) AN (x=y V y=z V x=z)—> r=iso) A
(x#y N y#z N X#z —> r=arb)
It is possible to abstract this spec to a fairly small

number of ,base predicates” ... They should be logically
independent and not contain the output variable...

9/8/20 B. Wolff - GLA - Black-Box Tests

41



Test-Data Generation

ad  Variants:

> Alternative to PHASE II (DNF construction):
Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

inv A
(A ANB — r=equ) A
(HAV-B) A (AVBVC)— r=iso) A

(ﬂAAﬂBA—'C—>r=arb)

where A » x=y, B » y=z, C p» Xx=z

(actually: A and B imply C)

9/8/20 B. Wolff - GLA - Black-Box Tests

42



Test-Data Generation

2 Variants:
> .. Now we can construct a tableau and get by simplification:

case A B C spec reduces to
(1) T T T . r=equ

(2) T T F » r=equ (!}
(3) T F T . r=iso

(4) T F F . r=iso

(5) F T T . r=iso

(6) F T F - r=iso

(7) F F T . r=iso

(8) F F F . r=arb

9/8/20 B. WoIff - GLA - Black-Box Tests

43



Test-Data Generation

J  Variants:

>  PHASE III: Borderline analysis.
Principle: we replace in our DNF inequalities by
.the closest values that make the spec true”

XFY P X =y +1Vx=y -1
x Ly P x =y V x <y
x <y P X =v -1 etc.

= .. and recompute the DNF. In general,
this gives a much finer mesh ...

9/8/20 B. Wolff - GLA - Black-Box Tests



Test-Data Generation

2 Variants:
>  PHASE I: Test for exceptional behaviour.

We negate the precondition and to DNF generation
on the precondition only.

Test objectives could be:

should raise an exception if public

should not diverge

9/8/20 B. Wolff - GLA - Black-Box Tests

45



Test-Data Generation

J

How to handle Recursion ?

9/8/20 B. Wolff - GLA - Black-Box Tests

46



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

47



3

Test-Data Generation

How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)
at fwo points:

9/8/20 B. Wolff - GLA - Black-Box Tests

47



Test-Data Generation

3

How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)

at fwo points:

=~ at the level

of data

9/8/20 B. Wolff - GLA - Black-Box Tests

47



Test-Data Generation

3

How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)

at fwo points: 0..1

next

~ at the level LList

sum () : Integer

lgth:Integer
of data

9/8/20 B. Wolff - GLA - Black-Box Tests

47



Test-Data Generation

2 How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)

at fwo points: 0..1
next
=~ at the level LList
lgth:Integer 1
Of dClTCl sum () :Int%ger
invariant: \ e

inv . = Vnode€LList.
node.lgth =i1f node.next = null
then 1
else next.lgth + 1

9/8/20 B. Wolff - GLA - Black-Box Tests
47



Test-Data Generation

How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)

at fwo points:

=~ at the level

of data

Note that this excludes
cyclic lists !

0..1
next

LList
lgth:Integer
sum():Int%ger

\

invariant; \ e

inv . = Vnode€LList.
node.lgth =i1f node.next = null
then 1
else next.lgth + 1

9/8/20

B. Wolff - GLA - Black-Box Tests
47



a

Test-Data Generation

How to handle Recursion ?

In UML/MOAL, recursion occurs (at least)
at two points:

> at the level of oper-

ations (post-conds
may contain calls ...)

9/8/20 B. Wolff - GLA - Black-Box Tests

48



Test-Data Generation

2 How to handle Recursion ?

In UML/MOAL, recursion occurs (at Ieaso‘r) )

at two points: next
LList

> at the level of oper- lgth:Integer
sum () : Integer

ations (post-conds
may contain calls ...)

9/8/20 B. Wolff - GLA - Black-Box Tests

48



Test-Data Generation

2 How to handle Recursion ?

In UML/MOAL, recursion occurs (at Ieaso‘r) )

at two pOinTS: next
LList
= at the level of oper- lgth:Integer
sum () :\nteger
ations (post-conds \
may contain calls ...)
&.

query contract (modifiesOnly({})): \

definition pre_ (1) = True
definition post_ (1,res)= res=if l.next=null then 1.lgth
else 1l.1gth + 1l.next.sum()

definition sum (1) = arb{r|pre_ (1) A post_ (1,r)}

9/8/20 B. Wolff - GLA - Black-Box Tests
48




Test-Data Generation

2 How to handle Recursion ?

In UML/MOAL, recursion occurs (at Ieaso‘r) )

at two points: next
LList
= at the level of oper- lgth:Integer
sum () :"Anteger
ations (post-conds
may contain calls ...)
query contract (modifiesOnly({})): AN
definition pre_ (1) = True

definition post_ (1,res)= res=if l.next=null then 1.lgth
else 1l.1gth + 1l.next.sum()

definition sum (1) = arb{r|pre_ (1) A post_ (1,r)}

Note that arb (S) gives an
arbitrary member of S: arb (S) €S.
Since from x=arb ({y}) follows x=y; B. Wolff - GLA - Black-Box Tests

48

thus sum (1) is (uniquely) defined.




3

Test-Data Generation

Prerequisite: We present the invariant as recursive predicate.

definition NV et core

else n.next.lgth (o)

we have:
inv . (o) = Vn€LList (o). inquLCmen o
and
inW¢m3bm(n)(o): (1f n.next (o)=null then n.lgth (o)

else n.lgth (o) =n.next.lgth (o)
A n.next (o) ELList (o)
A inv

LList Core (n.next) (o))

Furthermore we have:
sum(1l) (o’,0) = if 1l.next (o)=null then 1.1gth (o)

else 1l.1gth(o) + sum(l.next) (o', o)

n o =(n.lgth(o) = 1f n.next(o)=null then 1

We have 6 =0 (why?). We will again apply (6',0) - convention.

9/8/20 B. Wolff - GLA - Black-Box Tests

49



Test-Data Generation

2 Consider the test specification:
Xsum() =Y (for some XeLList, i.e. X#null)
= invLList (X) A pre_ (X) A postSum (X,Y)
where:
pre_ (X) = true
post_ (X,Y)= (if X.next = null then Y = X.lgth
else Y =X.lgth + sum(X.next))
= (X.next=null A Y = X.lgth)
V (X.nextznull A Y = X.lgth+sum(X.next)
9/8/20 B. Wolff - GLA - Black-Box Tests

50



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

51



Test-Data Generation

4 DNF computation yields already the test cases:
Xsum() =Y (for some XelList, i.e. X#null)
lnvLList_Core (X) A pOStsum (X, ¥))
= (if X.next=null then X.lgth =1
else X.lgth =X.next.lgth+l A X.next€LList A invLList Core (X-1EXE) ) A
(if X.next = null then Y = X.lgth
else Y =X.1gth + sum(X.next))
= (if c then C else D elim, DNF)
(X.next=null AX.lgth=1 AY = X.lgth)
vV (X.next#null A X.lgth =X.next.lgth+1l
A X.next€LList A inVLList_Core(X'neXt)
AY = X.lgth+sum(X.next))
9/8/20 B. Wolff - GLA - Black-Box Tests

51



Test-Data Generation

4 DNF computation yields already the test cases:

Xsum() =Y (for some XelList, i.e. X#null)
lnvLList_Core (X) A pOStsum (X, ¥)) New
= (if X.next=null then X.lgth =1 Test-
else X.lgth =X.next.lgth+l A X.next€LList A inv . . (X.next)) Casell

(if X.next = null then Y = X.lgth
else Y =X.1gth + sum(X.next))

= (if c then C else D elim, DNF)

[ (X.next=null A X.lgth=1 AY = X.lgth) }
vV (X.next#null A X.lgth =X.next.lgth+1l
A X.nextELList A mVLList_Core(X'neXt)
AY = X.lgth+sum(X.next))
9/8/20 B. Wolff - GLA - Black-Box Tests

51



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

52



4

Test-Data Generation

Intermediate Summary: test-cases known so far ?

9/8/20 B. Wolff - GLA - Black-Box Tests

52



J

Test-Data Generation

Intermediate Summary: test-cases known so far ?

9/8/20 B. Wolff - GLA - Black-Box Tests

52



J

Test-Data Generation

Intermediate Summary: test-cases known so far ?

i:LList »
Igth=1

null

9/8/20

B. Wolff - GLA - Black-Box Tests

52



J

Test-Data Generation

Prerequisite: We present the invariant as recursive
predicate.
inVuBLCmeU1)= (if n.next=null then n.lgth =1
else n.lgth =n.next.lgth + 1
A n.next€LList Ainwlmjbm(n.next))

sum(l) = if l.next=null then 1l.lgth

else 1l.1lgth + sum(l.next)
sum(l) = 1f X.next.next=null then X.next.lgth

else X.next.lgth + sum(X.next.next)

9/8/20 B. Wolff - GLA - Black-Box Tests

53



Test-Data Generation

2 DNF computation yields already the test cases:
Xsum() =Y (for some XelList, i.e. X#null)
— ... =
= (unfolding sum and vaList_Core)
(X.next=null A X.lgth=1 AY = X.lgth)
vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList
A (if X.next.next=null then X.next.lgth = 1
else X.next.lgth =X.next.next.lgth + 1
A X.next.next€LList A MVum(bm(X.next.next))
A (Y = X.1lgtht(if X.next.next=null then X.next.lgth
else X.next.lgth + sum(X.next.next)))
9/8/20 B. Wolff - GLA - Black-Box Tests

54



Test-Data Generation

2 DNF computation yields already the test cases:

X.sum()

Y (for some XelList, i.e. X#null)

:

(DNF partial)
(X.next=null A X.lgth=1 AY = X.lgth)
vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList
A (X.next.next=null AX.next.lgth = 1 AY = X.lgth+X.next.lgth)
\Y% (X.next.nextinull A X.next.lgth=X.next.next.lgth+1l

A X.next.next€LList A NV, it Core (X.next.next)

AY = X.lgth+ X.next.lgth + sum(X.next.next))

9/8/20 B. Wolff - GLA - Black-Box Tests

55



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

56



Test-Data Generation

|
2 DNF computation yields already the test cases:

Xsum() =Y (for some XelList, i.e. X#null)
—> ... =
= (DNF partial)

(X.next=null A X.lgth=1 AY = X.lgth)

vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList

A X.next.next=null A X.next.lgth=1 A Y = X.lgth+X.next.lgth))
vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList
A X.next.next#null A X.next.lgth=X.next.next.lgth+1l
A X.next.next€LList A NV, st Core (X.next.next)

AY = X.lgth+ X.next.lgth + sum(X.next.next))

9/8/20 B. Wolff - GLA - Black-Box Tests
56



Test-Data Generation

|
2 DNF computation yields already the test cases:

Xsum() =Y (for some XelList, i.e. X#null)
—> ... = New
Test-
= (DNF partial) Case!!
(X next=null X lgth=1 oY = X 1gth)

vV (X.next#null A X.lgth=X.next.lgth+l A X.nextEy/st

A X.next.next=null A X.next.lgth=1 A Y = X.lgth+X.next.lgth))

vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList
A X.next.next#null A X.next.lgth=X.next.next.lgth+1l
A X.next.next€LList A NV, st Core (X.next.next)

AY = X.lgth+ X.next.lgth + sum(X.next.next))

9/8/20 B. Wolff - GLA - Black-Box Tests
56



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

57



4

Test-Data Generation

Intermediate Summary: test-cases known so far ?

9/8/20 B. Wolff - GLA - Black-Box Tests

57



J

Test-Data Generation

Intermediate Summary: test-cases known so far ?

9/8/20 B. Wolff - GLA - Black-Box Tests

57



J

Test-Data Generation

Intermediate Summary: test-cases known so far ?

X Y
i:LList
2

9/8/20

B. Wolff - GLA - Black-Box Tests

57



Test-Data Generation

4 Intermediate Summary: test-cases known so far ?

X Y
i: LList
iy [ 1
i:LList | [ i:LList
_{Igth=2J (igth=1 | null 2

9/8/20 B. Wolff - GLA - Black-Box Tests



Summary: Symbolic Test-Case Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts

= enter loop:

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Summary: Symbolic Test-Case Generation

Q ... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts
= enter loop:

° unfold predicates one step

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Summary: Symbolic Test-Case Generation

Q ... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts
= enter loop:
= unfold predicates one step
compute DNF

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts
= enter loop:
unfold predicates one step
compute DNF
simplify DNF

9/8/20 B. Wolff - GLA - Black-Box Tests

58



Summary: Symbolic Test-Case Generation

Q ... and we could continue forever

>

compile to semantics
(-> convert in mathematical, logical notation)

use recursive predicates, recursive contracts
enter loop:
= unfold predicates one step
compute DNF
simplify DNF

extract test-cases

9/8/20

B. Wolff - GLA - Black-Box Tests

58



Summary: Symbolic Test-Case Generation

Q ... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts
= enter loop:
° unfold predicates one step
compute DNF
simplify DNF
extract test-cases

until we are satisfied, i.e. have .enough” test cases ...

9/8/20 B. Wolff - GLA - Black-Box Tests
58



Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts
= enter loop:
° unfold predicates one step
compute DNF
simplify DNF
extract test-cases
until we are satisfied, i.e. have .enough” test cases ...

> Select test-data: constraint resolution of test cases.

9/8/20 B. Wolff - GLA - Black-Box Tests
58



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

59



Test-Data Generation

2 Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

9/8/20 B. Wolff - GLA - Black-Box Tests

59



Test-Data Generation

2 Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

2 Logically: we used a reqularity hypothesis, i.e ..

(V X. | X|]<k = X.sum() =Y)
= (V X. X.sum() =Y)

9/8/20 B. Wolff - GLA - Black-Box Tests

59



Test-Data Generation

2 Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

2 Logically: we used a reqularity hypothesis, i.e ..

(V X. | X|]<k = X.sum() =Y)
= (V X. X.sum() =Y)

where we choose as "complexity mesure” |X|
just X.gth and k (the number of unfoldings)
was 2 ...

9/8/20 B. Wolff - GLA - Black-Box Tests

59



Test-Data Generation

2 Coverage Criterion for recursive specification:

DNF,

For all data up to complexity k, we constructed abstract
test-cases and generated a test.

In our example, the "complexity measure” is just the length

of the LLists.

9/8/20 B. Wolff - GLA - Black-Box Tests

60



Test-Data Generation

(I

What are the alternatives to symbolic
test-case generation ?

Must this really be so complicated ???

Well, think about the probability to
“guess” input with a complex invariant
or precondition, if you use "blind"
random-generation of input...

9/8/20 B. Wolff - GLA - Black-Box Tests

61



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

62



Test-Data Generation

-1 Summary

9/8/20 B. Wolff - GLA - Black-Box Tests

62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

9/8/20 B. Wolff - GLA - Black-Box Tests
62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:

9/8/20 B. Wolff - GLA - Black-Box Tests
62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:

> object orientation

9/8/20 B. Wolff - GLA - Black-Box Tests
62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:
> object orientation

- data invariants (recursive predicates)

9/8/20 B. Wolff - GLA - Black-Box Tests
62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:
> object orientation
- data invariants (recursive predicates)

° recursive functions (via unfolding)

9/8/20 B. Wolff - GLA - Black-Box Tests
62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:
> object orientation
- data invariants (recursive predicates)
° recursive functions (via unfolding)

= The process can be tool-supported
(HOL-TestGen)

9/8/20 B. Wolff - GLA - Black-Box Tests
62



Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:
> object orientation
- data invariants (recursive predicates)
° recursive functions (via unfolding)

= The process can be tool-supported
(HOL-TestGen)

= The process is intended for automation.

9/8/20 B. Wolff - GLA - Black-Box Tests

62



Test-Data Generation

9/8/20 B. Wolff - GLA - Black-Box Tests

63



Test-Data Generation

-4 Summary

Key-Ingredients are:

9/8/20 B. Wolff - GLA - Black-Box Tests

63



Test-Data Generation

-4 Summary

Key-Ingredients are:

= Unfolding predicates up to a given depth k

9/8/20 B. Wolff - GLA - Black-Box Tests

63



Test-Data Generation

-4 Summary

Key-Ingredients are:
= Unfolding predicates up to a given depth k

= computing the Disjunctive Normal Form (DNFk)

9/8/20 B. Wolff - GLA - Black-Box Tests

63



Test-Data Generation

-4 Summary

Key-Ingredients are:
= Unfolding predicates up to a given depth k

= computing the Disjunctive Normal Form (DNFk)

= Adequacy:
Pick for each test-case (a conjoint in the DNF )

one test, i.e. one substitution for the free
variables satisfying the test-case |

9/8/20 B. Wolff - GLA - Black-Box Tests

63



