

Cycle Ingénieur – 2^{ème} année Département Informatique

Verification and Validation

Part IV :

Deductive Verification (I)

Burkhart Wolff Département Informatique Université Paris-Saclay / LMF 2021

In the sequel, we concentrate on

Deductive Verification

(Proof Techniques)

Motivation: Hoare - Logic

Motivation: Hoare - Logic

A means to reason over all input and all states: Is there

Motivation: Hoare - Logic

A means to reason over all input and all states: Is there

A Logic for Programs ???

Motivation: Hoare - Logic

A means to reason over all input and all states: Is there

A Logic for Programs ???

We consider the Hoare-Logic, technically an inference system PL + E + A + Hoare

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

$$\frac{A_1 \quad \dots \quad A_n}{A_{n+1}}$$

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

$$\frac{A_1 \quad \dots \quad A_n}{A_{n+1}}$$

• "from the assumptions A_1 to A_n , you can infer the conclusion A_{n+1} ." A rule with n=0 is an elementary fact. Variables occurring in the formulas A_n can be arbitrarily substituted.

 An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary facts (axioms) and inferred facts by rules:

$$\frac{A_1 \quad \dots \quad A_n}{A_{n+1}}$$

- "from the assumptions A_1 to A_n , you can infer the conclusion A_{n+1} ." A rule with n=0 is an elementary fact. Variables occurring in the formulas A_n can be arbitrarily substituted.
- Assumptions and conclusions are terms in a logic containing variables

Recall: Rule instances

$$\frac{x = y \quad y = z}{x = z}$$

$$x = y \quad y = z$$

 $x = y \quad y = z$
 $x = y \quad y = z$
 $x = z$

$$x = y \quad y = z$$

$$x = y \quad y = z$$

$$x = y \quad y = z$$

$$x = z$$

$$x = z$$

$$\frac{1+2=2+1 \quad 2+1=3}{1+2=3}$$

A Formal Proof (or : Derivation)

is a tree with rule instances as nodes

A Formal Proof (or : Derivation)

is a tree with rule instances as nodes

$$\frac{f(a,b) = a}{a = f(a,b)} \quad \frac{f(a,b) = a}{f(a,b) = c} \quad \frac{f(a,b) = c}{a = c} \quad \frac{g(a) = g(a)}{g(a) = g(c)}$$

- A Formal Proof (or : Derivation)
 - is a tree with rule instances as nodes

f(a,b) = a	$\underbrace{f(a,b) = a f(f(a,b),b) = c}_{}$	
a = f(a, b)	f(a,b)=c	
	a = c	$\overline{g(a) = g(a)}$
	g(a) = g(c)	

• The non-elementary facts at the leaves are the global assumptions (here f(a,b) = a and f(f(a,b),b) = c).

 Basis: The mini-language "IMP", (following Glenn Wynskell's Book)

- Basis: The mini-language "IMP", (following Glenn Wynskell's Book)
- We have the following commands (cmd)

- Basis: The mini-language "IMP", (following Glenn Wynskell's Book)
- We have the following commands (cmd)
 - the empty command SKIP

- Basis: The mini-language "IMP", (following Glenn Wynskell's Book)
- We have the following commands (cmd)
 - the empty command SKIP
 - > the assignment x := E $(x \in V)$

- Basis: The mini-language "IMP", (following Glenn Wynskell's Book)
- We have the following commands (cmd)
 - the empty command SKIP
 - ► the assignment x := E $(x \in V)$
 - > the sequential compos. C_1 ; C_2

- Basis: The mini-language "IMP", (following Glenn Wynskell's Book)
- We have the following commands (cmd)
 - the empty command SKIP
 - $x := E \quad (x \in V)$ the assignment \succ
 - the sequential compos. \succ
 - the conditional \succ

$$C_1$$
; C_2

IF cond THEN c₁ ELSE c₂

- Basis: The mini-language "IMP", (following Glenn Wynskell's Book)
- We have the following commands (cmd)
 - the empty command SKIP
 - > the assignment x := E ($x \in V$)
 - the sequential compos.
- $C_1; C_2$
- > the conditional IF cond THEN c_1 ELSE c_2
- the loop WHILE cond DO c

where c, c_1 , c_2 , are cmd's, V variables,

E an arithmetic expression, and cond a boolean expression.

Core Concept: A Hoare Triple consisting ...

- Core Concept: A Hoare Triple consisting ...
 - > of a pre-condition P

- Core Concept: A Hoare Triple consisting ...
 - \succ of a pre-condition P
 - \succ a post-condition Q
- Core Concept: A Hoare Triple consisting ...
 - > of a pre-condition P
 - \succ a post-condition Q
 - and a piece of program cmd

- Core Concept: A Hoare Triple consisting ...
 - ➤ of a pre-condition
 - \succ a post-condition Q
 - and a piece of program cmd
 - the triple (P,cmd,Q) is written:

- Core Concept: A Hoare Triple consisting ...
 - ➤ of a pre-condition
 - \succ a post-condition Q
 - and a piece of program cmd
 - the triple (P,cmd,Q) is written:

$$\vdash \{P\} \ cmd \ \{Q\}$$

- Core Concept: A Hoare Triple consisting ...
 - ➤ of a pre-condition
 - \succ a post-condition Q
 - and a piece of program cmd
 - the triple (P,cmd,Q) is written:

$$\vdash \{P\} \ cmd \ \{Q\}$$

P and Q are formulas over the variables V, so they can be seen as set of possible states.

Idea: We consider the specification (precond, postcond) and the program together

- Idea: We consider the specification (precond, postcond) and the program together
- The Hoare-Triple says : The program "is conform" to the specification

- Idea: We consider the specification (precond, postcond) and the program together
- The Hoare-Triple says : The program "is conform" to the specification
- More precisely:

- Idea: We consider the specification (precond, postcond) and the program together
- The Hoare-Triple says : The program "is conform" to the specification
- More precisely:

 $\vdash \{P\} \ cmd \ \{Q\}$

- Idea: We consider the specification (precond, postcond) and the program together
- The Hoare-Triple says : The program "is conform" to the specification
- More precisely:

$$\vdash \{P\} \ cmd \ \{Q\}$$

If a program *cmd* starts in a state admitted by *P* if it terminates, that the program must reach a state that satisfies *P*.

PL + E + A + Hoare (simplified binding) at a glance:

PL + E + A + Hoare (simplified binding) at a glance:

 $\vdash \{P\}$ SKIP $\{P\}$

PL + E + A + Hoare (simplified binding) at a glance:

PL + E + A + Hoare (simplified binding) at a glance:

 $\vdash \{P \land cond\} \ c \ \{Q\} \quad \vdash \{P \land \neg cond\} \ d \ \{Q\}$

 $\vdash \{P\}$ IF cond THEN c ELSE $d\{Q\}$

PL + E + A + Hoare (simplified binding) at a glance:

 $\vdash \{P \land cond\} \ c \ \{Q\} \quad \vdash \{P \land \neg cond\} \ d \ \{Q\}$

 $\vdash \{P\}$ IF cond THEN c ELSE $d\{Q\}$

 $\frac{\vdash \{P\} \ c \ \{Q\} \ \vdash \{Q\} \ d \ \{R\}}{\vdash \{P\} \ c; \ d \ \{R\}}$

PL + E + A + Hoare (simplified binding) at a glance:

 $\vdash \{P \land cond\} \ c \ \{Q\} \quad \vdash \{P \land \neg cond\} \ d \ \{Q\}$

 $\vdash \{P\}$ IF cond THEN c ELSE $d\{Q\}$

 $\frac{\vdash \{P\} \ c \ \{Q\} \ \vdash \{Q\} \ d \ \{R\}}{\vdash \{P\} \ c; \ d \ \{R\}} \quad \frac{\vdash \{P \land cond\} \ c \ \{P\}}{\vdash \{P\} \ \text{WHILE} \ cond \ \text{DO} \ c \ \{P \land \neg cond\}}$

PL + E + A + Hoare (simplified binding) at a glance:

 $\vdash \{P \land cond\} \ c \ \{Q\} \quad \vdash \{P \land \neg cond\} \ d \ \{Q\}$

 $\vdash \{P\}$ IF cond THEN c ELSE $d\{Q\}$

 $\frac{\vdash \{P\} \ c \ \{Q\} \ \vdash \{Q\} \ d \ \{R\}}{\vdash \{P\} \ c; \ d \ \{R\}} \quad \frac{\vdash \{P \land cond\} \ c \ \{P\}}{\vdash \{P\} \ \text{WHILE} \ cond \ \text{DO} \ c \ \{P \land \neg cond\}}$

 $\frac{P \to P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \to Q}{\vdash \{P\} \ cmd \ \{Q\}}$

Let's consider it one by one ...

• The SKIP-rule for the empty statement:

The SKIP-rule for the empty statement:

$\vdash \{P\}$ SKIP $\{P\}$

The SKIP-rule for the empty statement:

$\vdash \{P\}$ SKIP $\{P\}$

well, states do not change ...

The SKIP-rule for the empty statement:

$\vdash \{P\}$ SKIP $\{P\}$

well, states do not change ...

Therefore, valid states remain valid.

The assignment rule:

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \mathbf{x} :== \mathbf{E}\{P\}$$

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \mathbf{x} :== \mathbf{E}\{P\}$$

• Example (1):

 $\vdash \{1 \leq x \land x \leq 10\} x :== x + 2 \{3 \leq x \land x \leq 12\}$

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge E\{P\}$$

Example (1):

 $\vdash \{1 \leq x \land x \leq 10\} x :== x+2 \{3 \leq x \land x \leq 12\}$

Is this really an *instance* of the assignment rule ? We calculate:

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge E\{P\}$$

Example (1):

 $\vdash \{1 \leq x \land x \leq 10\} x :== x+2 \{3 \leq x \land x \leq 12\}$

□ Is this really an *instance* of the assignment rule ? We calculate:

(3≤x ∧ x≤12) [x→x+2]

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge E\{P\}$$

Example (1):

 $\vdash \{1 \leq x \land x \leq 10\} x :== x+2 \{3 \leq x \land x \leq 12\}$

Is this really an *instance* of the assignment rule ? We calculate:

 $(3 \le x \land x \le 12) [x \mapsto x+2]$ = $3 \le (x+2) \land (x+2) \le 12$

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge E\{P\}$$

• Example (1):

 $\vdash \{1 \leq x \land x \leq 10\} x :== x+2 \{3 \leq x \land x \leq 12\}$

Is this really an *instance* of the assignment rule ? We calculate:

 $(3 \le x \land x \le 12) [x \mapsto x+2]$ = $3 \le (x+2) \land (x+2) \le 12$ = $1 \le x \land x \le 10$

• The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge E\{P\}$$

• The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge = \mathrm{E}\{P\}$$

Example (2):

$$\vdash \{true\} x:== 2 \{x=2\}$$

• The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge = \mathrm{E}\{P\}$$

Example (2):

$$\vdash \{true\} x:== 2\{x=2\}$$

□ Is this really an *instance* of the assignment rule ? We calculate:
• The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge = \mathsf{E}\{P\}$$

Example (2):

$$\vdash$$
 {true} x:== 2 {x=2}

□ Is this really an *instance* of the assignment rule ? We calculate:

(x=2) [x↦2]

The assignment rule:

$$\vdash \{P[x \mapsto E]\} \ge = \mathsf{E}\{P\}$$

Example (2):

$$\vdash$$
 {true} x:== 2 {x=2}

□ Is this really an *instance* of the assignment rule ? We calculate:

(x=2) [x↦2] = 2=2 = true (reflexivity...)

The conditional-rule:

The conditional-rule:

 $\frac{\vdash \{P \land cond\} \ c \ \{Q\}}{\vdash \{P\} \ \text{IF cond THEN } c \ \text{ELSE } d\{Q\}}$

The conditional-rule:

$$\vdash \{P \land cond\} \ c \ \{Q\} \qquad \vdash \{P \land \neg cond\} \ d \ \{Q\}$$
$$\vdash \{P\} \text{ IF cond THEN } c \ \text{ELSE } d\{Q\}$$

Example (3):

The conditional-rule:

$$\vdash \{P \land cond\} \ c \ \{Q\} \qquad \vdash \{P \land \neg cond\} \ d \ \{Q\}$$
$$\vdash \{P\} \text{ IF cond THEN } c \ \text{ELSE } d\{Q\}$$

Example (3):

 $\vdash \{true\} \text{ IF } 0 \leq x \text{ THEN SKIP ELSE } x := -x \{0 \leq x\}$

The conditional-rule:

$$\vdash \{P \land cond\} \ c \ \{Q\} \qquad \vdash \{P \land \neg cond\} \ d \ \{Q\}$$
$$\vdash \{P\} \text{ IF cond THEN } c \ \text{ELSE } d\{Q\}$$

Example (3):

The conditional-rule:

$$\vdash \{P \land cond\} \ c \ \{Q\} \qquad \vdash \{P \land \neg cond\} \ d \ \{Q\}$$
$$\vdash \{P\} \text{ IF cond THEN } c \ \text{ELSE } d\{Q\}$$

Example (3):

This can be extended to the formal proof:

The conditional-rule:

$$\vdash \{P \land cond\} \ c \ \{Q\} \qquad \vdash \{P \land \neg cond\} \ d \ \{Q\}$$
$$\vdash \{P\} \text{ IF cond THEN } c \ \text{ELSE } d\{Q\}$$

Example (3):

The conditional-rule:

$$\vdash \{P \land cond\} \ c \ \{Q\} \qquad \vdash \{P \land \neg cond\} \ d \ \{Q\}$$
$$\vdash \{P\} \ \text{IF} \ cond \ \text{THEN} \ c \ \text{ELSE} \ d\{Q\}$$

Example (3):

. . .

□ The sequence rule:

• The sequence rule:

$$\frac{\vdash \{P\} \ c \ \{Q\} \ \vdash \{Q\} \ d \ \{R\}}{\vdash \{P\} \ c; \ d \ \{R\}}$$

• The sequence rule:

$$\frac{\vdash \{P\} \ c \ \{Q\} \ \vdash \{Q\} \ d \ \{R\}}{\vdash \{P\} \ c; \ d \ \{R\}}$$

essentially a relational composition on state sets.

0

The rule for the sequence.

Example (4):

0

The rule for the sequence.

Example (4):

$\vdash \{true\} \ tm :== 1; (sum :== 1; i :== 0) \ \{tm = 1 \land sum = 1 \land i = 0 \}$

The rule for the sequence.

Example (4):

 $\vdash \{true\} \ tm :== 1; (sum :== 1; i :== 0) \ \{tm = 1 \land sum = 1 \land i = 0 \}$

This can be extended to the formal proof:

The rule for the sequence.

Example (4):

$$\begin{array}{c} \displaystyle \vdash \{true\}tm:==1\{tm=1\} & \vdash \{tm=1\}sum:==1\{B\} & \vdash \{B\} \ i:==0 \ \{A\} \\ \displaystyle \vdash \{true\} \ tm:==1; (sum:==1; i:==0) \ \{tm=1 \land sum=1 \land i=0\} \end{array} \end{array}$$

where $A = tm = 1 \land sum = 1 \land i = 0$ and where $B = tm = 1 \land sum = 1$.

The rule for the sequence.

Example (4):

where $A = tm = 1 \land sum = 1 \land i = 0$ and where $B = tm = 1 \land sum = 1$.

It is often practical to introduce abbreviations.

B. Wolff - VnV - Deductive Verification II

□ The while-rule.

The while-rule.

$$\begin{array}{c} \vdash \{P \land cond\} \ c \ \{P\} \\ \hline \vdash \{P\} \ \text{WHILE} \ cond \ \text{DO} \ c \ \{P \land \neg cond\} \end{array} \end{array}$$

The while-rule.

$$\vdash \{P \land cond\} \ c \ \{P\}$$
$$\vdash \{P\} \text{ WHILE } cond \text{ DO } c \ \{P \land \neg cond\}$$

This works like an induction: if some P is true after n traversals of the loop and remain true for the n+1 traversal, it must be always true.

The while-rule.

$$\vdash \{P \land cond\} \ c \ \{P\}$$
$$\vdash \{P\} \text{ WHILE } cond \text{ DO } c \ \{P \land \neg cond\}$$

- This works like an induction: if some P is true after n traversals of the loop and remain true for the n+1 traversal, it must be always true.
- When exiting the loop, the condition cond can on longer hold.

The while-rule.

$$\begin{array}{c} \vdash \{P \land cond\} \ c \ \{P\} \\ \hline \vdash \{P\} \ \text{WHILE} \ cond \ \text{DO} \ c \ \{P \land \neg cond\} \end{array} \end{array}$$

- This works like an induction: if some P is true after n traversals of the loop and remain true for the n+1 traversal, it must be always true.
- When exiting the loop, the condition cond can on longer hold.
- The predicate P is called an invariant. Note that an invariant can be maintained even if the concrete state changes ! See:

The while-rule.

$$\begin{array}{c} \vdash \{P \land cond\} \ c \ \{P\} \\ \hline \vdash \{P\} \ \text{WHILE} \ cond \ \text{DO} \ c \ \{P \land \neg cond\} \end{array} \end{array}$$

- This works like an induction: if some P is true after n traversals of the loop and remain true for the n+1 traversal, it must be always true.
- When exiting the loop, the condition cond can on longer hold.
- The predicate P is called an invariant. Note that an invariant can be maintained even if the concrete state changes ! See:

 $\vdash \{1 \leq x \land x \leq 10\} \text{ WHILE } x < 10 \text{ DO } x :== x+1 \{\neg (x < 10) \land 1 \leq x \land x \leq 10\}$

□ The consequence-rule:

□ The consequence-rule:

$$\frac{P \to P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \to Q}{\vdash \{P\} \ cmd \ \{Q\}}$$

□ The consequence-rule:

$$\frac{P \to P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \to Q}{\vdash \{P\} \ cmd \ \{Q\}}$$

Reflects the intuition that P' is a subset of legal states P and Q is a subset of legal states Q'.

The consequence-rule:

$$\frac{P \to P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \to Q}{\vdash \{P\} \ cmd \ \{Q\}}$$

Reflects the intuition that P' is a subset of legal states P and Q is a subset of legal states Q'.

This is the only rule that is not determined by the syntax of the program; it can be applied anywhere in the (Hoare-) proof.

□ The consequence-rule:

$$\frac{P \to P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \to Q}{\vdash \{P\} \ cmd \ \{Q\}}$$

Example (5) (the continuation of Example (3)):

□ The consequence-rule:

$$\frac{P \to P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' \to Q}{\vdash \{P\} \ cmd \ \{Q\}}$$

Example (5) (the continuation of Example (3)):

$$\frac{true \wedge \neg (0 \le x) \rightarrow (0 \le -x)}{\vdash \{true \wedge \neg (0 \le x)\}} \xrightarrow{r} \{0 \le x\}} \quad 0 \le x \rightarrow 0 \le x$$

The Hoare calculus has a number of implicit consequences, i.e. rules that can be derived from the other ones.
• A handy derived rule, the False-rule:

• A handy derived rule, the False-rule:

 $\vdash \{false\} \ cmd \ \{false\}$

• A handy derived rule, the False-rule:

$$\vdash \{false\} \ cmd \ \{false\}$$

• **Proof**: by induction over *cmd* ! (At the Blackboard)

• A handy derived rule, the False-rule:

$$\vdash \{false\} \ cmd \ \{false\}$$

- **Proof**: by induction over *cmd* ! (At the Blackboard)
- A very handy corollary of the False-rule and the consequence-rule is the FalseE-rule:

• A handy derived rule, the False-rule:

$$\vdash \{false\} \ cmd \ \{false\}$$

- **Proof**: by induction over *cmd* ! (At the Blackboard)
- A very handy corollary of the False-rule and the consequence-rule is the FalseE-rule:

$$\vdash \{false\} \ cmd \ \{P\}$$

Another handy corollary of the False-rule:

Another handy corollary of the False-rule:

 $\vdash \{P \land \neg cond\} \text{ WHILE } cond \text{ DO } c \ \{P \land \neg cond\}$

Another handy corollary of the False-rule:

$\vdash \{P \land \neg cond\} \text{ WHILE } cond \text{ DO } c \ \{P \land \neg cond\}$

Proof:

by consequence-rule, while-rule,

P and cond-negation,

False-rule.

This means: If we can not enter into the WHILE-loop, it behaves like a SKIP.

Yet another handy corollary of the consequence rule:

Yet another handy corollary of the consequence rule:

$$\frac{P = P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' = Q}{\vdash \{P\} \ cmd \ \{Q\}}$$

Yet another handy corollary of the consequence rule:

$$P = P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' = Q$$
$$\quad \vdash \{P\} \ cmd \ \{Q\}$$

Proof:

by consequence rule and the fact that P = P' (ou $P \equiv P'$) infers $P \rightarrow P'$

Yet another handy corollary of the consequence rule:

$$P = P' \quad \vdash \{P'\} \ cmd \ \{Q'\} \quad Q' = Q$$
$$\quad \vdash \{P\} \ cmd \ \{Q\}$$

Proof:

by consequence rule and the fact that P = P' (ou $P \equiv P'$) infers $P \rightarrow P'$

 Note: We will allow to apply this rule implicitly, thus leveraging local "logical massage" of pre- and post-conditions.

Example (6):

 $\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

• Example (6):

• Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

Proof (bottom up):

 $\frac{true \rightarrow true}{\vdash \{true\} \text{ WHILE } true \text{ DO SKIP } \{false\} \quad false \rightarrow x = 42}{\vdash \{true\} \text{ WHILE } true \text{ DO SKIP } \{x = 42\}}$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

$$true \land \neg true \equiv false$$

$$true \land \neg true \equiv false$$

$$true \rightarrow true^{\checkmark} \vdash \{true\} \text{ WHILE true DO SKIP } \{false\} \quad false \rightarrow x = 42$$

$$\vdash \{true\} \text{ WHILE true DO SKIP } \{x = 42\}$$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

$$true \land \neg true \equiv false$$

$$true \land \neg true \equiv false$$

$$true \rightarrow true^{\checkmark} \vdash \{true\} \text{ WHILE true DO SKIP } \{false\} \quad false \rightarrow x = 42^{\checkmark}$$

$$\vdash \{true\} \text{ WHILE true DO SKIP } \{x = 42\}$$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

$$true \land \neg true \equiv false$$

$$true \land \neg true \equiv false$$

$$true \land \neg true \equiv false$$

$$true \land \neg true^{\checkmark} = \{true\} \text{ WHILE true DO SKIP } \{false\} \quad false \rightarrow x = 42^{\checkmark}$$

$$\vdash \{true\} \text{ WHILE true DO SKIP } \{x = 42\}$$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

$$\begin{array}{ll} & \vdash \{true \land false\} {\rm SKIP}\{false\} \\ \hline true \rightarrow true & \vdash \{true\} \ {\rm WHILE} \ true \ {\rm DO} \ {\rm SKIP} \ \{false\} & false \rightarrow x = 42 \\ \\ & \vdash \{true\} \ {\rm WHILE} \ true \ {\rm DO} \ {\rm SKIP} \ \{x = 42\} \end{array}$$

Example (6):

$\vdash \{true\}$ WHILE true DO SKIP $\{x = 42\}$

Note:

Hoare-Logic is a calculus for partial correctness; for non-terminating programs, it is possible to prove *anything*!

• Example (7):

$$\vdash \{true\}$$
 WHILE $x < 2$ DO $x := x + 1$ $\{2 \le x\}$

Example (7):Proof (bottom up):

Example (7):Proof (bottom up):

$$\begin{array}{ccc} I \wedge x < 2 \rightarrow I'' & \vdash \{I''\} \ x :== x + 1 \ \{I'\} & I' \rightarrow I \\ & \vdash \{I \wedge x < 2\} \ x :== x + 1 \ \{I\} \\ \hline true \rightarrow I & \vdash \{I\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{I \wedge \neg(x < 2)\} & I \wedge \neg(x < 2) \rightarrow 2 \le x \\ & \vdash \{true\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{2 \le x\} \end{array}$$

Example (7):
 Proof (bottom up):

We can't apply the WHILE-rule directly — the only other choice is the consequence rule. Instantiating the invariant variable P by a fresh variable I allows us to bring the triple into a shape that we can apply the WHILE rule later

Example (7): Proof (bottom up):

 $true \to I \quad \vdash \{I\} \text{ WHILE } x < 2 \text{ DO } x := x + 1 \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \to 2 \le x$

 $\vdash \{true\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{2 \le x\}$

We can't apply the WHILE-rule directly — the only other choice is the consequence rule. Instantiating the invariant variable P by a fresh variable I allows us to bring the triple into a shape that we can apply the WHILE rule later

Example (7):Proof (bottom up):

 $\frac{true \to I \quad \vdash \{I\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \to 2 \le x$

 $\vdash \{true\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{2 \le x\}$

Example (7):Proof (bottom up):
Example (7):
 Proof (bottom up):

$\frac{true \to I \quad \vdash \{I\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \to 2 \le x$

 $\vdash \{true\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{2 \le x\}$

Example (7):Proof (bottom up):

$$\frac{true \rightarrow I \quad \vdash \{I\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \ \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \rightarrow 2 \le x}{\vdash \{true\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \ \{2 \le x\}}$$

Now we can apply the while rule.

Example (7):
 Proof (bottom up):

$\frac{true \to I \quad \vdash \{I\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \to 2 \le x$

 $\vdash \{true\} \text{ WHILE } x < 2 \text{ DO } x :== x + 1 \{2 \le x\}$

$$\begin{array}{c} \overbrace{I \land x < 2}{x :== x + 1 \ \{I\}} \\ \hline true \rightarrow I \\ \hline \left\{I\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{I \land \neg(x < 2)\} \\ \hline \left\{I \land \neg(x < 2) \rightarrow 2 \le x \\ \hline \left\{true\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{2 \le x\} \end{array}\right.$$

$$\begin{array}{c} \vdash \{I \land x < 2\} \; x :== x + 1 \; \{I\} \\ \hline true \to I \quad \hline \{I\} \; \text{WHILE} \; x < 2 \; \text{DO} \; x :== x + 1 \; \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \to 2 \leq x \\ \hline \quad \vdash \{true\} \; \text{WHILE} \; x < 2 \; \text{DO} \; x :== x + 1 \; \{2 \leq x\} \end{array}$$

Example (7):Proof (bottom up):

$$\begin{array}{l} \displaystyle \vdash \{I \land x < 2\} \; x :== x + 1 \; \{I\} \\ \hline true \to I \quad \hline \vdash \{I\} \; \text{WHILE} \; x < 2 \; \text{DO} \; x :== x + 1 \; \{I \land \neg(x < 2)\} \quad I \land \neg(x < 2) \to 2 \leq x \\ \hline \vdash \{true\} \; \text{WHILE} \; x < 2 \; \text{DO} \; x :== x + 1 \; \{2 \leq x\} \end{array}$$

To be sure (entering the while loop) we apply again the consequence rule. For the missing bit, we instantiate I".

Example (7):Proof (bottom up):

To be sure (entering the while loop) we apply again the consequence rule. For the missing bit, we instantiate I".

Example (7):Proof (bottom up):

Now, in order to make the assignment rule "fit", we must have $I'' \equiv I'[x \mapsto x+1]$.

Example (7):Proof (bottom up):

$$\begin{array}{ccc} I \wedge x < 2 \rightarrow I'' & \overline{\vdash \{I''\}} \ x :== x + 1 \ \{I'\} & I' \rightarrow I \\ \hline & \vdash \{I \wedge x < 2\} \ x :== x + 1 \ \{I\} \\ \hline & \overline{\vdash \{I\}} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{I \wedge \neg(x < 2)\} & I \wedge \neg(x < 2) \rightarrow 2 \le x \\ \hline & \vdash \{true\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{2 \le x\} \end{array}$$

Now, in order to make the assignment rule "fit", we must have $I'' \equiv I'[x \mapsto x+1]$.

$$\begin{array}{ccc} I \wedge x < 2 \rightarrow I'' & \overline{\vdash \{I''\}} \ x :== x + 1 \ \{I'\} & I' \rightarrow I \\ \hline & \vdash \{I \wedge x < 2\} \ x :== x + 1 \ \{I\} \\ \hline & \vdash \{I\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{I \wedge \neg(x < 2)\} & I \wedge \neg(x < 2) \rightarrow 2 \le x \\ \hline & \vdash \{true\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{2 \le x\} \end{array}$$

Example (7):Proof (bottom up):

$$\begin{array}{ccc} I \wedge x < 2 \rightarrow I'' & \overline{\vdash \{I''\}} \ x :== x + 1 \ \{I'\} & I' \rightarrow I \\ \hline & \vdash \{I \wedge x < 2\} \ x :== x + 1 \ \{I\} \\ \hline & \overline{\vdash \{I\}} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{I \wedge \neg(x < 2)\} & I \wedge \neg(x < 2) \rightarrow 2 \le x \\ \hline & \vdash \{true\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{2 \le x\} \end{array}$$

Additionally, in order that this constitutes a Hoare–Proof, we must have all the implications.

Example (7):Proof (bottom up):

$$\begin{array}{c} I \wedge x < 2 \rightarrow I'' \\ \vdash \{I''\} \ x :== x + 1 \ \{I'\} \\ \hline I' \rightarrow I \\ \vdash \{I \wedge x < 2\} \ x :== x + 1 \ \{I\} \\ \hline I \wedge \neg (x < 2)\} \\ \vdash \{I\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{I \wedge \neg (x < 2)\} \\ \vdash \{true\} \ \text{WHILE} \ x < 2 \ \text{DO} \ x :== x + 1 \ \{2 \le x\} \end{array}$$

Additionally, in order that this constitutes a Hoare-Proof, we must have all the implications.

Example (7):

$$\vdash \{true\}$$
 WHILE $x < 2$ DO $x := x + 1$ $\{2 \le x\}$

So, we have a Hoare Proof iff we have a solution to the following list of constraints:

$$I'' \equiv I'[x \mapsto x+1]$$

$$A \equiv true \rightarrow I$$

$$B \equiv I \land \neg (x < 2) \rightarrow 2 \le x$$

$$C \equiv I \land x < 2 \rightarrow I'[x \mapsto x+1]$$

Example (7):Proof:

$$I'' \equiv I'[x \mapsto x+1]$$

$$A \equiv true \rightarrow I$$

$$B \equiv I \land \neg (x < 2) \rightarrow 2 \le x$$

$$C \equiv I \land x < 2 \rightarrow I'[x \mapsto x+1]$$

$$D = I' \rightarrow I$$

I must be *true*, this solves A, B, D
we are fairly free for a solution for I';
e.g. x ≤ 2 or x ≤ 5 would do the trick !

Assume that we have a reasonably well-defined "compiler function" that maps a program to a relation from input to output states:

C : cmd \rightarrow ($\sigma \times \sigma$)Set

(See Winskell's Book)

Then we can define the "validity" of a specification:

$$\models \{P\} \ cmd \ \{Q\} \equiv \ \forall \sigma, \sigma'.(\sigma, \sigma') \in C(cmd) \rightarrow P(\sigma) \rightarrow Q(\sigma')$$

Remarks:

Remarks:

This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:

apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary

Remarks:

- apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
- apply the consequence rule only at entry points of loops (this is deterministic!)

Remarks:

- apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
- apply the consequence rule only at entry points of loops (this is deterministic!)
- extract the implications used in these consequence rule

Remarks:

- apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
- apply the consequence rule only at entry points of loops (this is deterministic!)
- extract the implications used in these consequence rule
- try to find solutions for these implications
 (worst case: ask the user ...)

Remarks:

- apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
- apply the consequence rule only at entry points of loops (this is deterministic!)
- extract the implications used in these consequence rule
- try to find solutions for these implications
 (worst case: ask the user ...)
- Essence of all: again, we reduced a program verification problem to a constraint resolution problem of formulas ...

Remarks:

- apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
- apply the consequence rule only at entry points of loops (this is deterministic!)
- extract the implications used in these consequence rule
- try to find solutions for these implications
 (worst case: ask the user ...)
- Essence of all: again, we reduced a program verification problem to a constraint resolution problem of formulas ...
- > ... provided we have solutions for the invariants.

Theorem: Correctness of the Hoare-Calculus:

$$\vdash \{P\} \ cmd \ \{Q\} \rightarrow \models \{P\} \ cmd \ \{Q\}$$

... so, whenever there is a proof, it is also valid wrt. C.

Theorem: Relative Completeness of the Hoare-Calculus

$$\models \{P\} \ cmd \ \{Q\} \ \rightarrow \ \vdash \{P\} \ cmd \ \{Q\}$$

Amazingly, this holds also the other way round: whenever a specification is valid, (and we can solve all the implications on arithmetics), there is a Hoare-Proof.

- This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:
 - apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary

- This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:
 - apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
 - apply the consequence rule only at entry points of loops (this is deterministic!)

- This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:
 - apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
 - apply the consequence rule only at entry points of loops (this is deterministic!)
 - extract the implications used in these consequence rule

- This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:
 - apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
 - apply the consequence rule only at entry points of loops (this is deterministic!)
 - extract the implications used in these consequence rule
 - try to find solutions for these implications

(worst case: ask the user ...)

- This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:
 - apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
 - apply the consequence rule only at entry points of loops (this is deterministic!)
 - extract the implications used in these consequence rule
 - try to find solutions for these implications (worst case: ask the user ...)
 - Essence of all: again, we reduced a program verification problem to a constraint resolution problem of formulas ...
- This proof rises the idea of particular construction method of Hoare-Proofs, which can be automated:
 - apply bottom-up all rules following the cmd-syntax;
 introduce fresh variables for the wholes where necessary
 - apply the consequence rule only at entry points of loops (this is deterministic!)
 - extract the implications used in these consequence rule
 - try to find solutions for these implications (worst case: ask the user ...)
 - Essence of all: again, we reduced a program verification problem to a constraint resolution problem of formulas ...
 - … provided we have solutions for the invariants.

$$=$$
 prelude

$$\} \equiv \text{prelude}$$
$$\} \equiv \text{body}$$

$$\} \equiv \text{prelude}$$
$$\} \equiv \text{body}$$

Another Example (8): The integer square-root

Program and Specification in a Hoare Triple

Another Example (8) : The integer square-root

Program and Specification in a Hoare Triple

 $\vdash \{a \ge 0\}$ prelude; WHILE sum $\le a$ DO body {post}

where post $\equiv i^2 \leq a \land a < (i+1)^2$

We cut it into 2 parts (sequence rule):

- We cut it into 2 parts (sequence rule):
 - first:

- We cut it into 2 parts (sequence rule):
 - first: $\vdash \{a \ge 0\}$ prelude $\{a\ge 0 \land i=0 \land tm=1 \land sum=1\}$

- We cut it into 2 parts (sequence rule):
 - first: $\vdash \{a \ge 0\}$ prelude $\{a\ge 0 \land i=0 \land tm=1 \land sum=1\}$

We cut it into 2 parts (sequence rule):

□ first: $\vdash \{a \ge 0\}$ prelude $\{a \ge 0 \land i=0 \land tm=1 \land sum=1\}$

and:

 $\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body $\{i^2 \le a \land a < (i+1)^2\}$

- We cut it into 2 parts (sequence rule):
 - □ first: $\vdash \{a \ge 0\}$ prelude $\{a \ge 0 \land i=0 \land tm=1 \land sum=1\}$

and:

 $\vdash \{a \ge 0 \land A\} \text{ WHILE sum} \le a \text{ DO body } \{i^2 \le a \land a < (i+1)^2\}$

- We cut it into 2 parts (sequence rule):
 - □ first: $\vdash \{a \ge 0\}$ prelude $\{a \ge 0 \land i=0 \land tm=1 \land sum=1\}$

and:

 $\vdash \{a \ge 0 \land A\} \text{ WHILE sum} \le a \text{ DO body } \{i^2 \le a \land a < (i+1)^2\}$

so, for the body, we derive bottom-up:

 $\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}

so, for the body, we derive bottom-up:

$a \ge 0 \land A \longrightarrow I \qquad \vdash \{I\} \text{ WHILE sum} \le a \text{ DO body } \{a < \text{sum} \land I\} \qquad a < \text{sum} \land I \longrightarrow \text{ post}$

 $\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}

B. Wolff - VnV - Deductive Verification II

\vdash {I'} i := i+1; tm := tr	m+2{I[sum⊷sum+tm]}	⊢ {I[sum⊷sum⊣	+tm]}sum:=sum+tm {I}	
$I \land sum \leq a \longrightarrow I'$	$n \le a \longrightarrow I'$ $\mapsto \{I'\} \ i := i+1; \ tm := tm+2; \ sum:=sum+tm \ \{I\} \qquad I \longrightarrow I$			
	$\vdash \{ I \land sum \leq a \}$	oody {I}		
$a \ge 0 \land A \longrightarrow I$	\vdash {I} WHILE sum \leq a	DO body $\{a \leq sum \land I\}$	$a < sum \land I \longrightarrow post$	
$\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}				

\vdash {I'} i := i+1; tm := tr	m+2{I[sum⊷sum+tm]}	⊢{I[sum⊷sum+	tm]}sum:=sum+tm {I}
$I \land sum \leq a \longrightarrow I'$	$\rightarrow I' \qquad \vdash \{I'\} \ i := i+1; \ tm := tm+2; \ sum:=sum+tm \ \{I\} \qquad I \longrightarrow I$		
	$\vdash \{I \land sum \leq a\} body \{I\}$		
$a \ge 0 \land A \longrightarrow I$	\vdash {I} WHILE sum \leq a DO bod	$y \{a < sum \land I\}$	$a < sum \land I \longrightarrow post$
⊢{a	$\geq 0 \land A$ WHILE sum $\leq a \text{ DO } I$	oody {post}	

so, for the body, we derive bottom-up:

 $\vdash \{I'\} \ i := i+1 \{I[sum \mapsto sum + tm][tm \mapsto tm + 2]\} \qquad \vdash \{I[sum \mapsto sum + tm][tm \mapsto tm + 2]\}tm := tm + 2 \{I[sum \mapsto sum + tm]\}tm :$

\vdash {I'} i := i+1; tm := tr	m+2{I[sum→sum+tm]}	⊢ {I[sum⊷sum+tm]}	sum:=sum+tm {I}
$I \land sum \leq a \longrightarrow I'$	$\vdash \{I'\} i := i+1; tm := tm+2; sum:=sum+tm \{I\} \qquad I \longrightarrow I$		
	$\vdash \{I \land sum \leq a\} body \{I\}$		
$\underline{a \ge 0 \land A \longrightarrow I}$	\vdash {I} WHILE sum \leq a DO body {a	$< sum \land I \}$ a	$h < \text{sum } \land I \longrightarrow \text{ post}$
$\vdash \{a \ge 0 \land A\} \text{ WHILE sum} \le a \text{ DO body } \{\text{post}\}$			

\vdash {I'} i := i+1 {I[sum \mapsto su	um+tm][tm⊷tm+2]}	⊢{I[sum→sum+tm][tm→t	$m+2] tm := tm+2 \{I[sum \rightarrow sum+tm]\}$
\vdash {I'} i := i+1; tm := tn	n+2{I[sum⊷sum+tm]}	⊢{I[sum⊦	sum+tm]}sum:=sum+tm {I}
$I \land sum \leq a \longrightarrow I'$	$\vdash \{I'\} i := i+1$; tm := tm+2; sum:=sum	$n+tm \{I\} \qquad I \longrightarrow I$
	\vdash {I \land sum \leq a	a} body {I}	
$a \ge 0 \land A \longrightarrow I$	\vdash {I} WHILE sum \leq	\leq a DO body {a < sum \land	$\{I\}$ a < sum $\land I \longrightarrow post$
$\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}			

so, for the body, we derive bottom-up:

$\vdash \{I''[i \mapsto i+1]\}I := I+1\{I''\}$	I" → I[sum+sum+tm][tr	m→tm+2]	
um+tm][tm \mapsto tm+2]} \vdash {	{I[sum↦sum+tm][tm↦tm+2]}	$tm := tm+2\{I[sum \rightarrow sum+tm]\}$	
n+2{I[sum⊷sum+tm]}	⊢ {I[sum⊷sum+	-tm]}sum:=sum+tm {I}	
$\vdash \{I'\} i := i+1; tm$	n := tm+2; sum:=sum+tm	$\{I\} \qquad I \longrightarrow I$	
$\vdash \{I \land sum \leq a\} b$	ody {I}		
\vdash {I} WHILE sum \leq a]	DO body $\{a < sum \land I\}$	$a < sum \land I \longrightarrow post$	
$\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}			
	$um+tm][tm\mapsto tm+2] \} \qquad \vdash a$ $m+2\{I[sum\mapsto sum+tm]\}$ $\vdash \{I'\} \ i := i+1; \ tm$ $\vdash \{I \land sum \le a\} \ b$ $\vdash \{I\} \ WHILE \ sum \le a\}$	$um+tm][tm\mapsto tm+2]\} \qquad \vdash \{I[sum\mapsto sum+tm][tm\mapsto tm+2]\} \\ \qquad \vdash \{I[sum\mapsto sum+tm]\} \\ \qquad \vdash \{Iisum\mapsto sum+tm]\} \\ \qquad \vdash \{Iisum\mapsto sum+tm) \\ \vdash \{Iisum sum+tm) \\ \vdash \{Iisum\mid $	

so, for the body, we derive bottom-up:

$I' \longrightarrow I''[i \mapsto i+1]$	$\vdash \{I''[i \mapsto i+1]\}I := I+1\{I''\}$	$I" \longrightarrow I[sum \mapsto sum + tm]$	[tm→tm+2]
$ \vdash \{I'\} \ i := i+1\{I[sum \mapsto sum + tm][tm \mapsto tm + 2]\} \qquad \vdash \{I[sum \mapsto sum + tm][tm \mapsto tm + 2]\}tm := tm + 2\{I[sum \mapsto sum + tm]\}$			
$\vdash \{I'\}$ i := i+1; tm := tn	n+2{I[sum⊷sum+tm]}	⊢{I[sum⊷sum	n+tm]}sum:=sum+tm {I}
$I \land sum \leq a \longrightarrow I'$	\vdash {I'} i := i+1; tr	n := tm+2; sum:=sum+tn	$n \{I\} \qquad I \longrightarrow I$
	\vdash {I \land sum \leq a} b	oody {I}	
$a \ge 0 \land A \longrightarrow I$	\vdash {I} WHILE sum \leq a	DO body $\{a < sum \land I\}$	$a < sum \land I \longrightarrow post$
$\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}			

so, for the body, we derive bottom-up:

$I' \longrightarrow I''[i \mapsto i+1]$	$\vdash \{I''[i \mapsto i+1]\}I := I+1\{I''\}$	$I" \longrightarrow I[sum \mapsto sum + tm]$	[tm→tm+2]
$ \vdash \{I'\} \ i := i+1\{I[sum \mapsto sum + tm][tm \mapsto tm + 2]\} \qquad \vdash \{I[sum \mapsto sum + tm][tm \mapsto tm + 2]\}tm := tm + 2\{I[sum \mapsto sum + tm]\}$			
$\vdash \{I'\}$ i := i+1; tm := tn	n+2{I[sum⊷sum+tm]}	⊢{I[sum⊷sum	n+tm]}sum:=sum+tm {I}
$I \land sum \leq a \longrightarrow I'$	\vdash {I'} i := i+1; tr	n := tm+2; sum:=sum+tn	$n \{I\} \qquad I \longrightarrow I$
	\vdash {I \land sum \leq a} b	oody {I}	
$a \ge 0 \land A \longrightarrow I$	\vdash {I} WHILE sum \leq a	DO body $\{a \leq sum \land I\}$	$a < sum \land I \longrightarrow post$
$\vdash \{a \ge 0 \land A\}$ WHILE sum $\le a$ DO body {post}			

Our proof boils down to the constraints:
Our proof boils down to the constraints:

Our proof boils down to the constraints:

Our proof boils down to the constraints:

Our proof boils down to the constraints:

$$I' \rightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$

Our proof boils down to the constraints:

$$I' \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$

Solution I' \equiv I[sum \mapsto sum +tm][tm \mapsto tm+2][i \mapsto i+1]

Our proof boils down to the constraints:

Our proof boils down to the constraints:

"Invariant is preserved in body"

Our proof boils down to the constraints:

"Invariant is preserved in body"

"Invariant initially holds at loop entry"

Our proof boils down to the constraints:

"Invariant is preserved in body"

"Invariant initially holds at loop entry"

"Invariant at loop exit implies post"

9/8/20

B. Wolff - VnV - Deductive Verification II

Our proof boils down to the constraints:

"Invariant is preserved in body"

"Invariant initially holds at loop entry" Recall: ... $\equiv a \ge 0 \land i=0 \land tm=1 \land sum=1$

"Invariant at loop exit implies post"

B. Wolff - VnV - Deductive Verification II

$$I \wedge sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$
$$a \ge 0 \wedge i = 0 \wedge tm = 1 \wedge sum = 1 \longrightarrow I$$
$$a < sum \wedge I \longrightarrow i^{2} \le a \wedge a < (i+1)^{2}$$

Our proof boils further down to finding the invariant I

 $i \ge 0$

$$I \wedge sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$
$$a \ge 0 \wedge i = 0 \wedge tm = 1 \wedge sum = 1 \longrightarrow I$$
$$a < sum \wedge I \longrightarrow i^{2} \le a \wedge a < (i+1)^{2}$$

Our proof boils further down to finding the invariant I

 $a \ge i^2$

B. Wolff - VnV - Deductive Verification II

$$I \wedge sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$
$$a \ge 0 \wedge i = 0 \wedge tm = 1 \wedge sum = 1 \longrightarrow I$$
$$a < sum \wedge I \longrightarrow i^{2} \le a \wedge a < (i+1)^{2}$$

Our proof boils further down to finding the invariant I

$$I \wedge sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$
$$a \ge 0 \wedge i = 0 \wedge tm = 1 \wedge sum = 1 \longrightarrow I$$
$$a < sum \wedge I \longrightarrow i^{2} \le a \wedge a < (i+1)^{2}$$

$$I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$$

B. Wolff - VnV - Deductive Verification II

I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

We check our invariant (constraint 1)

 $I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

We check our invariant (constraint 1)

 $I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

• We check our invariant (constraint 1) $I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

 $= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a$ $\longrightarrow \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

■ We check our invariant (constraint 1) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

 \longrightarrow sum = (i+1)² \land a \ge i² \land tm = 2*i + 1 \land tm \ge 1[sum \mapsto sum+tm][tm \mapsto tm+2][i \mapsto i+1]

 \longrightarrow sum+tm+2 = ((i+1)+1)² \land a \ge (i+1)² \land tm+2 = 2*(i+1) + 1 \land tm+2 \ge 1

■ We check our invariant (constraint 1) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

$$= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a$$

$$\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$

 \longrightarrow sum+tm+2 = ((i+1)+1)² \land a \ge (i+1)² \land tm+2 = 2*(i+1) + 1 \land tm+2 \ge 1

$$= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a \longrightarrow (i+1)^2 + 2*(i+1) + 1 = ((i+1)+1)^2 \land a \ge (i+1)^2 \land (2*i+1) + 2 = 2*(i+1) + 1$$

■ We check our invariant (constraint 1) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i+1 \land tm \ge 1$

 $I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

 $\longrightarrow \text{ sum} = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1[\text{sum} \mapsto \text{sum} + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

$$\longrightarrow$$
 sum+tm+2 = ((i+1)+1)² \land a \ge (i+1)² \land tm+2 = 2*(i+1) + 1 \land tm+2 \ge 1

$$= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a \rightarrow (i+1)^2 + 2*(i+1) + 1 = ((i+1)+1)^2 \land a \ge (i+1)^2 \land (2*i+1) + 2 = 2*(i+1) + 1$$

$$= \sup_{a \ge i+1} \sup_{a \ge i^2} |a| = 2*i + 1 |a| \le 1 |a| \le a$$

$$\longrightarrow a \ge (i+1)^2$$

■ We check our invariant (constraint 1) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

$$I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$

$$= sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a \rightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1] = sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a$$

$$\longrightarrow \quad sum+tm+2 = ((i+1)+1)^2 \ \land \ a \ge (i+1)^2 \ \land \ tm+2 = 2*(i+1)+1 \ \land \ tm+2 \ge 1$$

$$= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a \rightarrow (i+1)^2 + 2*(i+1) + 1 = ((i+1)+1)^2 \land a \ge (i+1)^2 \land (2*i+1) + 2 = 2*(i+1) + 1$$

$$= \sup_{i \to i} \sup$$

 \equiv True

■ We check our invariant (constraint 1) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $I \land sum \le a \longrightarrow I[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$

$$= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a$$

$$\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1[sum \mapsto sum + tm][tm \mapsto tm + 2][i \mapsto i + 1]$$

$$\longrightarrow$$
 sum+tm+2 = ((i+1)+1)² \land a \ge (i+1)² \land tm+2 = 2*(i+1) + 1 \land tm+2 \ge 1

$$= \sup = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \land sum \le a \longrightarrow (i+1)^2 + 2*(i+1) + 1 = ((i+1)+1)^2 \land a \ge (i+1)^2 \land (2*i+1) + 2 = 2*(i+1) + 2$$

$$= \sup_{i \to i} \sup$$

 \equiv True

Invariant preserved

1

We check our invariant (constraint 2)

 $I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

We check our invariant (constraint 2)

I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $a \ge 0 \land i=0 \land tm=1 \land sum=1 \longrightarrow I$

■ We check our invariant (constraint 2) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $a \ge 0 \land i=0 \land tm=1 \land sum=1 \longrightarrow I$

 $= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$ $\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i+1 \land tm \ge 1$

■ We check our invariant (constraint 2) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

$$a \ge 0 \land i=0 \land tm=1 \land sum=1 \longrightarrow I$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow 1 = (0+1)^2 \land a \ge 0^2 \land 1 = 2*0+1 \land 1 \ge 1$$
□ We check our invariant (constraint 2) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i+1 \land tm \ge 1$

$$a \ge 0 \land i=0 \land tm=1 \land sum=1 \longrightarrow I$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow 1 = (0+1)^2 \land a \ge 0^2 \land 1 = 2*0+1 \land 1 \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow a \ge 0 \land 1 = 1$$

■ We check our invariant (constraint 2) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

$$a \ge 0 \land i=0 \land tm=1 \land sum=1 \longrightarrow I$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i+1 \land tm \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow 1 = (0+1)^2 \land a \ge 0^2 \land 1 = 2*0+1 \land 1 \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow a \ge 0 \land 1 = 1$$

$$\equiv$$
 True

■ We check our invariant (constraint 2) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

$$a \ge 0 \land i=0 \land tm=1 \land sum=1 \longrightarrow I$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow 1 = (0+1)^2 \land a \ge 0^2 \land 1 = 2*0+1 \land 1 \ge 1$$

$$= a \ge 0 \land a \ge 0 \land i=0 \land tm=1 \land sum=1$$

$$\longrightarrow a \ge 0 \land 1 = 1$$

 \equiv True

Invariant initially holds

We check our invariant (constraint 3)

 $I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

We check our invariant (constraint 3)

I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $a < sum \land I \longrightarrow i^2 \le a \land a < (i+1)^2$

We check our invariant (constraint 3)

$$I \equiv sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$$

 $a < sum \land I \longrightarrow i^2 \le a \land a < (i+1)^2$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow i^2 \le a \land a < (i+1)^2$$

■ We check our invariant (constraint 3) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $a < sum \land I \longrightarrow i^2 \le a \land a < (i+1)^2$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow i^2 \le a \land a < (i+1)^2$$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow a < sum$$

■ We check our invariant (constraint 3) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1$

 $a < sum \land I \longrightarrow i^2 \le a \land a < (i+1)^2$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow i^2 \le a \land a < (i+1)^2$$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow a < sum$$

 \equiv True

■ We check our invariant (constraint 3) I = sum = $(i+1)^2 \land a \ge i^2 \land tm = 2*i+1 \land tm \ge 1$

 $a < sum \land I \longrightarrow i^2 \le a \land a < (i+1)^2$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow i^2 \le a \land a < (i+1)^2$$

$$= a < sum \land sum = (i+1)^2 \land a \ge i^2 \land tm = 2*i + 1 \land tm \ge 1 \longrightarrow a < sum$$

 \equiv True

Invariant implies post-condition

We check termination:

- We check termination:
 - We provide a function m that decreases for the program state (a, i, tm, sum) for any possible loop traversal (i.e. sum ≤ a ∧ 1), i.e.

- We check termination:
 - We provide a function m that decreases for the program state (a, i, tm, sum) for any possible loop traversal (i.e. sum ≤ a ∧ 1), i.e.

sum $\leq a \land I \longrightarrow m(a, i, tm, sum) > m(a, i+1, tm+2, sum+tm)$

- We check termination:
 - We provide a function m that decreases for the program state (a, i, tm, sum) for any possible loop traversal (i.e. sum ≤ a ∧ 1), i.e.

 $sum \le a \land I \longrightarrow m(a, i, tm, sum) > m(a, i+1, tm+2, sum+tm)$

Iff such a function m (a measure) exists, the loop will terminate.

- We check termination:
 - We provide a function m that decreases for the program state (a, i, tm, sum) for any possible loop traversal (i.e. sum ≤ a ∧ 1), i.e.

 $sum \le a \land I \longrightarrow m(a, i, tm, sum) > m(a, i+1, tm+2, sum+tm)$

- Iff such a function m (a measure) exists, the loop will terminate.
- A candidate for m: m(a, i, tm, sum) = a i which obviously decreases.

Tools: gwhy and Squareroot

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

The Deductive Proof-Method is therefore two-staged:

 verify termination (find mesures for loops and recursive calls that strictly decrease for each iteration)

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

- verify termination (find mesures for loops and recursive calls that strictly decrease for each iteration)
- prove partial correctness of the spec for the program
 via a Hoare-Calculus (or an alternative such as the wp-calculus)

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

- verify termination (find mesures for loops and recursive calls that strictly decrease for each iteration)
- prove partial correctness of the spec for the program
 via a Hoare-Calculus (or an alternative such as the wp-calculus)

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

- verify termination (find mesures for loops and recursive calls that strictly decrease for each iteration)
- prove partial correctness of the spec for the program
 via a Hoare-Calculus (or an alternative such as the wp-calculus)

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

The Deductive Proof-Method is therefore two-staged:

- verify termination (find mesures for loops and recursive calls that strictly decrease for each iteration)
- prove partial correctness of the spec for the program
 via a Hoare-Calculus (or an alternative such as the wp-calculus)

total correctness = partial correctness + termination ...

Note: Validity is a « partial correctness notion »

proof under condition that the program terminates. For non-terminating programs, the calculus allows to prove anything

The Deductive Proof-Method is therefore two-staged:

- verify termination (find mesures for loops and recursive calls that strictly decrease for each iteration)
- prove partial correctness of the spec for the program
 via a Hoare-Calculus (or an alternative such as the wp-calculus)

total correctness = partial correctness + termination ...

In the essence, the Hoare Calculus is an entirely syntactic game that constructs a labelling of the program with assertions ...

Formal Proof

- Can be very hard up to infeasible (nobody will probably ever prove the correctness of MS Word!)
- But still, the proof-task can be automated to a large extent.

Assumptions on "Testability"

(system under test must behave deterministically, or have controlled non-determinism, must be initializable)

Assumptions on "Testability"

(system under test must behave deterministically, or have controlled non-determinism, must be initializable)

Assumptions like Test-Hypothesis (Uniform / Regular behaviour is sometimes a "realistic" assumption, but not always)

Assumptions on "Testability"

(system under test must behave deterministically, or have controlled non-determinism, must be initializable)

 Assumptions like Test-Hypothesis
 (Uniform / Regular behaviour is sometimes a "realistic" assumption, but not always)

Limits in perfection:

We know only up to a given "certainty" that the program meets the specification ...