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How to do Verification ?

In the sequel, we concentrate on
Deductive Verification

(Proof Techniques)
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Motivation: Hoare - Logic

3 A means to reason over all input and all states: Is there

A Logic for Programs ???
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Motivation: Hoare - Logic

3 A means to reason over all input and all states: Is there
A Logic for Programs ???

9 We consider the Hoare-Logic, technically
an inference system PL + E + A + Hoare
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An+1
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Recall: Proof Systems

3 An Inference System (or Logical Calculus) allows to infer formulas
from a set of elementary facts (axioms) and inferred facts by rules:

A ... A,

a “from the assumptions A to A , you can infer the conclusion 4 . .

n

A rule with n=0 is an elementary fact. Variables occurring in the
formulas 4 can be arbitrarily substituted.
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Recall: Proof Systems

3 An Inference System (or Logical Calculus) allows to infer formulas
from a set of elementary facts (axioms) and inferred facts by rules:

A ... A,

An+1

a “from the assumptions A to A , you can infer the conclusion 4 . .

n

A rule with n=0 is an elementary fact. Variables occurring in the
formulas 4 can be arbitrarily substituted.

4 Assumptions and conclusions are terms in a logic containing variables
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The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

I — <
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

ZH3}’ CU:Z

1+2=2+1 2+1=3
1+2=3
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

{xp1+2,
yp2+1, .
z-3} .fE — Z
| xe142,
yPa,
1+42=2+1 2+1=3 73}

1+2=3 V
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

{xm1+2,
yr2+1, .
z-3} .fE — Z
| xe142,
yPa,
1+42=2+1 2+1=3 73}
1+2=3

1+2=a a=3
1+2=3
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

et
703} Ir =2 y=3*T}
| xe142,
yPa,
1+42=2+1 2+1=3 73}
1+2=3

1+2=a a=3
1+2=3
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Recall: Rule instances

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

B1+2
s —_— s & %
703} T — 2 yr5*t}
| xe142,
yPa,
1+2=2+1 2+1=3 73} T*H =0T bHx1T=2
1+2=3 T*D =2

1+2=a a=3
1+2=3
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IS a tree with rule instances as nodes
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Recall: Formal Proofs

QA Formal Proof (or : Derivation)
IS a tree with rule instances as nodes

f(aab):a' f(a'ab):a' f(f(a'7b)7b) =C

a = f(a,b) f(a,b) =c
a=c 9(a) = g(a)
g(a) = g(c)
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Recall: Formal Proofs

QA Formal Proof (or : Derivation)
IS a tree with rule instances as nodes

f(a'ab):a' f(a'ab):a' f(f(a'7b)7b) =C

a = f(a,b) fla,b) =c
a=c 9(a) = g(a)
g(a) = g(c)

2 The non-elementary facts at the leaves are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).
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Hoare - Logic: A Proof System for Programs

4 Basis: The mini-language ,IMP",
(following Glenn Wynskell's Book)
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Hoare - Logic: A Proof System for Programs

4 Basis: The mini-language ,IMP",
(following Glenn Wynskell's Book)

4 We have the following commands (crmd)

= the empty command SKIP

> the assignment X:i== (xeV)
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Hoare - Logic: A Proof System for Programs

4 Basis: The mini-language ,IMP",
(following Glenn Wynskell's Book)

4 We have the following commands (crmd)

= the empty command SKIP
> the assignment X:== (xeV)
= the sequential compos. C,;C,
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Hoare - Logic: A Proof System for Programs

4 Basis: The mini-language ,IMP",
(following Glenn Wynskell's Book)

4 We have the following commands (crmd)

= the empty command SKIP

> the assignment X:==E (xeV)

= the sequential compos. C,;C,

> the conditional IF cond THEN c, ELSE c,
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Hoare - Logic: A Proof System for Programs

(.

Basis: The mini-language ..IMP",
(following Glenn Wynskell's Book)

4 We have the following commands (crmd)

>

>

>

the empty command
the assignment
the sequential compos.

the conditional

the loop

SKIP
X:==E (xeV)
C,;C

2
IF cond THEN C, ELSE C,

WHILE cond DO c

where c, c,, C,, are cmd’s, V variables,

E an arithmetic expression, and cond a boolean expression.
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> of a pre-condition P
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2 Core Concept: A Hoare Triple consisting ...
> of a pre-condition P

> a post-condition 0,
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Hoare - Logic: A Proof System for Programs
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> of a pre-condition P
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Hoare - Logic: A Proof System for Programs

2 Core Concept: A Hoare Triple consisting ...

> of a pre-condition P
> a post-condition 0,
> and a piece of program cmd

> the triple (P,cmd,Q) is written:

- P} emd {Q}
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Hoare - Logic: A Proof System for Programs

2 Core Concept: A Hoare Triple consisting ...

> of a pre-condition P
> a post-condition 0,
> and a piece of program cmd

> the triple (P,cmd,Q) is written:

- P} emd {Q}

= P and Q are formulas over the variables V,
so they can be seen as set of possible states.
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and the program together
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Hoare - Logic: A Proof System for Programs

2 TIdea: We consider the specification (precond, postcond)
and the program together

2 The Hoare-Triple says : The program “is conform”
to the specification
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Hoare - Logic: A Proof System for Programs

2 TIdea: We consider the specification (precond, postcond)
and the program together

2 The Hoare-Triple says : The program “is conform”
to the specification

2 More precisely:

- P} emd {Q}

If a program cmd starts in a state admitted
by P if it ferminates, that the program must
reach a state that satisfies P.
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Hoare - Logic: A Proof System for Programs
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Hoare - Logic: A Proof System for Programs
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Hoare - Logic: A Proof System for Programs

PL + E + A + Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P|x — F|} x :== E{P}
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Hoare - Logic: A Proof System for Programs

PL + E + A + Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P|x — F|} x :== E{P}

F{P Acond} c{Q} F{PA-cond}d{Q}
- {P} IF cond THEN ¢ ELSE d{Q}
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4

Hoare - Logic: A Proof System for Programs

PL + E + A + Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P|x — F|} x :== E{P}

F{P Acond} c{Q} F{PA-cond}d{Q}
- {P} IF cond THEN ¢ ELSE d{Q}

-{P} c{Q} F{Q}d{R}
={P} ¢ d {R}
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Hoare - Logic: A Proof System for Programs

2 PL+E+ A+ Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P|x — F|} x :== E{P}

F{P Acond} c{Q} F{PA-cond}d{Q}
- {P} IF cond THEN ¢ ELSE d{Q}

F{P} c{Q} F{Q}d{R} = {P A cond} c {P}
- {P} ¢; d {R} = {P} WHILE cond DO ¢ {P A —cond}
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Hoare - Logic: A Proof System for Programs

2 PL+E+ A+ Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P[x — E|} x :== E{P}

={P Acond} c{Q} F{P A-cond} d{Q}
= {P} IF cond THEN ¢ ELSE d{Q}

F{P} c{Q} F{Q}d{R} = {P A cond} c {P}
- {P} ¢; d {R} = {P} WHILE cond DO ¢ {P A —cond}

P—P F{P}emd{Q} Q —Q
= {P} emd {Q}
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Hoare - Logic: A Proof System for Programs

Let's consider it one by one ...
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Hoare - Logic: A Proof System for Programs

9 The SKIP-rule for the empty statement:

9/8/20 B. Wolff - VnV - Deductive Verification II

12



Hoare - Logic: A Proof System for Programs

9 The SKIP-rule for the empty statement:

- {P} SKIP {P}

9/8/20 B. Wolff - VnV - Deductive Verification II

12



Hoare - Logic: A Proof System for Programs

9 The SKIP-rule for the empty statement:

- {P} SKIP {P}

well, states do not change ...
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Hoare - Logic: A Proof System for Programs

9 The SKIP-rule for the empty statement:

- {P} SKIP {P}

well, states do not change ...

Therefore, valid states remain valid.

9/8/20 B. Wolff - VnV - Deductive Verification II
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Hoare - Logic: A Proof System for Programs
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4 The assignment rule:

= {P[x — E|} x :== E{P}
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Hoare - Logic: A Proof System for Programs

4 The assignment rule:

= {P[x — E|} x :== E{P}

a2 Example (1):

F {1=x A Xx<10} x:== x+2 {3=<x A x<12}
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Hoare - Logic: A Proof System for Programs

2 The assignment rule:

= {P[x — E|} x :== E{P}

2 Example (1):
F {1=x A Xx<10} x:== x+2 {3=<x A x<12}

2 Is this really an instance of the assignment rule ? We calculate:
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2 The assignment rule:

= {P[x — E|} x :== E{P}

2 Example (1):
F {1=x A Xx<10} x:== x+2 {3=<x A x<12}

2 Is this really an instance of the assignment rule ? We calculate:

(B=x A X=12) [x-Xx+2]
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2 The assignment rule:

= {P[x — E|} x :== E{P}

2 Example (1):
F {1=x A Xx<10} x:== x+2 {3=<x A x<12}

2 Is this really an instance of the assignment rule ? We calculate:

(B=x A X=12) [x-Xx+2]
= 3=(x+2) A (x+2)<12
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Hoare - Logic: A Proof System for Programs

2 The assignment rule:

= {P[x — E|} x :== E{P}

2 Example (1):
F {1=x A Xx<10} x:== x+2 {3=<x A x<12}

2 Is this really an instance of the assignment rule ? We calculate:

(B=x A X=12) [x-Xx+2]
= 3=(x+2) A (x+2)<12

= 1<x A X<10

9/8/20 B. Wolff - VnV - Deductive Verification II 13
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4 The assignment rule:

- {P|z — E|} x :== E{P}
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4 The assignment rule:

- {P|z — E|} x :== E{P}

2 Example (2):
- {true} x:==2 {x=2}
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4 The assignment rule:

- {P[x — FE|} x :== E{P}

2 Example (2):
- {true} x:==2 {x=2}

2 Is this really an instance of the assignment rule ? We calculate:
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Hoare - Logic: A Proof System for Programs

4 The assignment rule:

- {P[x — FE|} x :== E{P}

2 Example (2):
- {true} x:==2 {x=2}

2 Is this really an instance of the assignment rule ? We calculate:

(x=2) [x-2]

9/8/20 B. Wolff - VnV - Deductive Verification II
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Hoare - Logic: A Proof System for Programs

4 The assignment rule:

- {P[x — FE|} x :== E{P}

2 Example (2):
- {true} x:==2 {x=2}

2 Is this really an instance of the assignment rule ? We calculate:

(x=2) [x++2]
= 2=2 = true (reflexivity...)

9/8/20 B. Wolff - VnV - Deductive Verification II
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Hoare - Logic: A Proof System for Programs

The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}
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Hoare - Logic: A Proof System for Programs

The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):
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Hoare - Logic: A Proof System for Programs

The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):

- {true} IF 0 < z THEN SKIP ELSE z :== —z {0 < z}
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The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):
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Hoare - Logic: A Proof System for Programs

The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):

This can be extended to the formal proof:
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The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):
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Hoare - Logic: A Proof System for Programs

2  The conditional-rule:

F{P Acond} c{Q} +F{PA-cond} d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):

F{trueN0 <z} SKIP {0 <z} F{trueA—-(0<2z)}z:==—2{0<z}
- {true} IF 0 < z THEN SKIP ELSE z :== —z {0 < z}
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4 The sequence rule:
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Hoare - Logic: A Proof System for Programs

4 The sequence rule:

- {P} c{Q} F{Q}d{R}
- {P} ¢ d{R}
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Hoare - Logic: A Proof System for Programs

4 The sequence rule:

- {P} c{Q} F{Q}d{R}
- {P} ¢ d{R}

4 essentially a relational composition on state sets.

9/8/20 B. Wolff - VnV - Deductive Verification II
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Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):
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Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

= {true} tm :==1;(sum == 1;1:==0) {tm =1Asum=1Ai=0}

9/8/20 B. Wolff - VnV - Deductive Verification II 18



Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

= {true} tm :==1;(sum == 1;1:==0) {tm =1Asum=1Ai=0}

This can be extended to the formal proof:
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Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):
= {tm = 1}sum:==1{B} F{B}i:==0{A}
= {true}tm ;== 1{tm = 1} = {tm =1} sum:==1;i:==0 {A}
= {true} tm :==1; (sum == 1;i:==0) {tm =1 A sum = 1 Ai =0}

where A=tm=1Asum=1A1=0 and where B=tm =1A sum = 1.
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Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):
= {tm = 1}sum:==1{B} F{B}i:==0{A}
= {true}tm :== 1{tm =1} = {tm =1} sum == 1;1:==0 {A}
= {true} tm :==1; (sum == 1;i:==0) {tm =1 A sum = 1 Ai =0}

where A=tm=1Asum=1A1=0 and where B=tm =1A sum = 1.

It is often practical to introduce abbreviations.
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2 The while-rule.
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Hoare - Logic: A Proof System for Programs

2 The while-rule.
= {P A cond} c {P}
- {P} WHILE cond DO ¢ {P A —cond}
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Hoare - Logic: A Proof System for Programs

2 The while-rule.
= {P A cond} c {P}
- {P} WHILE cond DO ¢ {P A —cond}
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and remain true for the n+1 traversal, it must be always frue.

2 When exiting the loop, the condition cond can on longer hold.

24 The predicate P is called an invariant. Note that an invariant
can be maintained even if the concrete state changes ! See:

F {1=x A Xx<10} WHILE x < 10 DO x:==x+1 {-~ (X < 10) A 1=x A x<10}
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P—P F{P}emd{Q'} Q —Q
- {P} emd {Q}

Reflects the intuition that P’ is a subset of legal states P and Q is a subset
of legal states O’.

This is the only rule that is not determined by the syntax of the

program; it can be applied anywhere in the (Hoare-) proof.
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2 The consequence-rule:
P—P F{P}lemd{Q} Q —Q
- {P} emd {Q}

Example (5) (the continuation of Example (3)):

trueAN-(0<z) - (0<—z) FH{0<Lz)[z—o —2z]}z:==—2{0<2} 0<z—-0<z
F{true A=(0 < z)} z:== -2z {0 <z}
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2 The Hoare calculus has a number of implicit
consequences, i.e. rules that can be derived from
the other ones.
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2 Another handy corollary of the False-rule:

= {P A ~cond} WHILE cond DO ¢ {P A —~cond}
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2 Another handy corollary of the False-rule:

= {P A =cond} WHILE cond DO ¢ {P A —cond}

Proof.

by consequence-rule, while-rule,
P and cond-negation,

False-rule.

This means: If we can not enter into the WHILE-loop, it behaves like a SKIP.
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4 Yet another handy corollary of the consequence rule:

P=P +{P}tmd{Q} Q=0Q
- {P} cmd {Q}

Proof:
by consequence rule and the fact that P = P' (ou P= P’) infers P — P’
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4 Yet another handy corollary of the consequence rule:

P=P +{P}tmd{Q} Q=0Q
- {P} cmd {Q}

Proof:
by consequence rule and the fact that P = P' (ou P= P’) infers P — P’

3 Note: We will allow to apply this rule implicitly, thus leveraging

local “logical massage” of pre- and post-conditions.
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2 Example (6):

- {true} WHILE true DO SKIP {x = 42}
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2 Example (6):

= {true} WHILE true DO SKIP {x = 42}

Note:
Hoare-Logic is a calculus for

partial correctness; for non-terminating
programs, it is possible to prove anything!
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1 Example (7):

- {true} WHILE z <2 DO z:==z+1 {2 < z}
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2 Example (7):
Proof (bottom up):

true—1 F{I} WHILEz<2DOz:==2+1{IA-(z<2)} IA-(z<2)—-2<z
- {true} WHILE 2 < 2DO z:==2z+1 {2 <z}

Now we can apply the while rule.
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consequence rule. For the missing bit, we instantiate /”.
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Additionally, in order that this constitutes a Hoare-Proof, we must

have all the implications.
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Example (7):

- {true} WHILE z < 2 DO z:==z+1 {2 < z}

So, we have a Hoare Proof iff we have a solution to the
following list of constraints:

I'"=I'[x»x+1]
A= true — 1
B=EIA—-(x<2)—2=<x

CEInx<2—=I[xwx+]]

9/8/20 B. Wolff - VnV - Deductive Verification II
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d

Example (7):

Proof:
I'"=EI'[x»x+1]
A= true —= 1
B=EIA—-(x<2)—2=<x
CEInx<2—=1[xwx+]]
D=I—-=1]

> | must be true, this solves 4, B, D
= we are fairly free for a solution for I,
e.g.x <2 or x <5 would do the trick !
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Hoare - Logic: Some facts.

Assume that we have a reasonably well-defined
“compiler function” that maps a program to
a relation from input to output states:

C: cmd — (ox0)Set
(See Winskell’'s Book)

Then we can define the “validity” of a specification:

= {P} ecmd {Q} = Vo,0'.(0,0") € C(ecmd) — P(o) — Q(o’)
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2 Remarks:
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U

Remarks:
This proof rises the idea of particular construction
method of Hoare-Proofs, which can be automated:

2 apply bottom-up all rules following the cmd-syntax;
introduce fresh variables for the wholes where necessary

2 apply the consequence rule only at entry
points of loops (this is deterministic!)

2 extract the implications used in these consequence rule
3 fry to find solutions for these implications
(worst case: ask the user ...)
> Essence of all: again, we reduced a program verification problem
to a constraint resolution problem of formulas ...

= .. provided we have solutions for the invariants.
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Hoare - Logic: Some facts.

Theorem: Correctness of the Hoare-Calculus:

F{P} emd {Q} —

= {P} cmd {Q}

... S0, whenever there is a proof, it is also

valid wrt. C.
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Hoare - Logic: Some facts.

Theorem: Relative Completeness of the Hoare-
Calculus

=P} cmd {Q} — F{P} cmd {Q}

Amazingly, this holds also the other way round:
whenever a specification is valid, (and we can solve
all the implications on arithmetics), there is a Hoare-
Proof.
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2 This proof rises the idea of particular construction
method of Hoare-Proofs, which can be automated:

2 apply bottom-up all rules following the cmd-syntax;
introduce fresh variables for the wholes where necessary

2 apply the consequence rule only at entry
points of loops (this is deterministic!)

4 extract the implications used in these consequence rule
4 fry to find solutions for these implications
(worst case: ask the user ...)
= Essence of all: again, we reduced a program verification
problem fo a constraint resolution problem of formulas ...

= ... provided we have solutions for the invariants.
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2 Another Example (8) : The integer square-root

int 1 = 0;

int tm = 1;

int sum = 1;

WHILE sum < a DO
1 i+1;
tm := tm + 2;
sum:= sum + tm;
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2 Another Example (8) : The integer square-root

int 1 = 0;
int tm = 1; }Eprelude
int sum = 1;
WHILE sum < a DO
1 = 1+1;
tm = tm + 2; }Ebody

sum:= sum + tm;

e

2 Program and Specification in a Hoare Triple

~{a >0} prelude; WHILE sum < a DO body {post}

where post=i2<a A a<(itl)?
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2 We cut it into 2 parts (sequence rule):

2 first: +{a>0} prelude {a>0 A i=0 A tm=1 A sum=1}

. (e,O&\ - {tm=1}sum:==1{B}  + {B}i:==0 {4}
- {true}tm taze{\t;n =1} = {tm =1} sum == 1;i:==0 {A}
I—W\g} tm == 1;(sum:==1;1:==0) {tm=1Asum =1Ai =0}
o
VAN

\‘AQ'WhereA:tmzl/\sumzl/\i:O and where B=tm=1Asum = 1.

2 and:

—{a>0 A A} WHILE sum <a DO body {i2 <a A a <(i+1)2}
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2 so, for the body, we derive bottom-up:

F{a>0 A A} WHILE sum <a DO body {post}
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2 so, for the body, we derive bottom-up:

@ H{I7[ipi+1] 1= I+1{I7} Ql[suml-»sumﬂm][t@

={I’} 1 :=1+1 {I[sumpsum+tm][tm~tm+2]} —{I[sumPpsum+tm][tmrtm~+2]}tm = tm+2 {I[sumrsum-+tm]}

H{I’} 1 :=1+]; tm ;= tm+2 {I[[sum~sum+tm]} {I[sumPpsum-+tm]} sum:=sum+tm {I}

(IAasum<a—1) H{I’} 1:=1+1; tm := tm+2; sum:=sum+tm {I} [— 1

—{I A sum <a} body {I}

@ — {1} WHILE sum < a DO body {a < sum A I} @AI—E

F{a>0 A A} WHILE sum <a DO body {post}
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2 Qur proof boils down to the constraints:

[ — I[sumrsum+tm] [t@
a<sum A I —E
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2 Qur proof boils down to the constraints:

[” —I[sumesum+tm] [t@ Solution I’ = [[sumrsum+tm][tm~tm+2]

a<sum/\I—®
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2 Qur proof boils down to the constraints:

@ml-»sumﬂm] [tmetm+2][irit+1] Solution I’ = [[sumrsum+tm][tmetm+2][1=1+1 ]

a<sum/\I—E
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2 Qur proof boils down to the constraints:

@ —> [[sumPpsum+tm][tmetm+2][1-1+1 “Invariant is preserved in body”
“Invariant initially holds at loop entry”

Recall: ...=a>0 A 1i=0 A tm=1 A sum=1

@ Al —@ “Invariant at loop exit implies post”
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2 Our proof boils further down to finding the invariant I

@ — I[sumesum-+tm][tmetm-+2][iri+1
(O/\izo A tm=1 A sum=1>
@A ] — i2<anAa @
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2 Our proof boils further down to finding the invariant I

@ — I[sumesum-+tm][tmetm-+2][iri+1
(O/\izo A tm=1 A sum=1>
@A ] — i2<anAa @

1>0
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2 Our proof boils further down to finding the invariant I

1>0

@ — I[sumpsum+tm][tmetm+2][iki+1 tm> 1
sum > 1

(O/\izo A tm=1 A sum=1>

@A ] — i2<anAa @
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2 Our proof boils further down to finding the invariant I

1>0

@ — I[sumpsum+tm][tmetm+2][iki+1 tm> 1

sum > 1
(O/\izo A tm=1 A sum=1>

tm=2%*1+ 1
@A Il — 12<ana a@
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2 Our proof boils further down to finding the invariant I

1>0

@ — [[sum~sum+tm] [tm%@ tm > 1
sum > |
(O/\izo A tm=1 A sum=1>
tm = 2%1 + 1
a<sumAI—>i2§aAa@ _yi
< sum—zk_0 2*k + 1)
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2 Our proof boils further down to finding the invariant I

1>0

@ — I[sumpsum+tm][tmetm+2][iki+1 tm> 1

(O/\izo A tm=1 A sum=1>

@AI% i2§aAa@

sum > 1
tm=2%1+1

1
sum=zk_0 2*k + 1)

sum = (1+1)2
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2 Our proof boils further down to finding the invariant I

1>0

@ — I[sumpsum+tm][tmetm+2][iki+1 tm> 1
sum > 1
(O/\izo A tm=1 A sum=1>

tm=2%1+1
@AI% i2§a/\a@ sum=zik_0(2*k+1)
sum = (1+1)2
a>12
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2 Our proof boils further down to finding the invariant I
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@A ] — i2<anAa @
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2 Our proof boils further down to finding the invariant I

@ — I[sumesum-+tm][tmetm-+2][iri+1
(O/\izo A tm=1 A sum=1>
@A ] — i2<anAa @

I = sum=(@G+1)2 Aa>2Aatm=2%1+1Atm>1
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d We check our invariant (1)

@a — I[sumesum-+m][tmetm-2][ini+1
@20 A i=0 A tm=1 A sum=1 — [
a<sumAl— 12<an a@

9/8/20 B. Wolff - VnV - Deductive Verification II



Hoare - Logic: A Proof System for Programs

d We check our invariant (1)

[ = sum=(0+1)2 Aa>2Aatm=2%+1Atm>1

@ — I[sumesum-+tm][tmetm-+2][iri+1
@20 A i=0 A tm=1 A sum=1 — [
a<sumAl— 12<an a@
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J  We check our invariant (constraint 1)

I = sum=(0G0+t1)2 Ara>2Aatm=2*1+1 Atm>1
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J  We check our invariant (constraint 1)
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sum=(it1)2 Aa>2Aatm=2*1+1 Atm>1 Asum<a

— sum = (1+1)2 A a>12 A tm=2%1+ 1 A tm > 1[sumPsum-+tm][tm~tm+2][1-1+]1 ]

sum=(it1)2 Aa>2Aatm=2*1+1Atm>1 Asum<a
—> sum+tm+2 = ((1+1)+1)2 A a> (i+1)2 A tm+2 =2*@{+1)+ 1 A tm+2 > 1
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4 We check our invariant (constraint 2)
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2 We check our invariant (constraint 3)

I = sum=(0G0+t1)2 Ara>2Aatm=2*1+1 Atm>1

a<sumAl— 12<anAna<(it+l)?

a<sumAsum=(+1)2 Aa>i2atm=2*1+1Atm>1— 2<ana<(itl)?

a<sumAsum=(+1)2 Aa>2Aatm=2*1+1 Atm>1— a<sum

True

Invariant implies post-condition
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Hoare - Logic: A Proof System for Programs

2 We check termination:

n

We provide a function m that decreases for the
program state (a, i, tm, sum) for any possible

loop traversal (i.e. sum=anxl), i.e.
sum=sanal— m(a,i,tm,sum)>m(a, i+1, tm+2, sum+tm)
Iff such a function m (a measure) exists, the
loop will terminate.
A candidate for m: m(a, i, tm, sum) = a-i

which obviously decreases.
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Tools: gwhy and Squareroot

I
000 gWhy: a verification conditions viewer

File Configuration Proof

Alt-Ergo

rqrt_i-pl_po_l
Proof obligations 0.9 Statistics

a: int
Hl: 0 <= a

C function sqrt

0 * 0 <= a

Correctness

1. leoop invariant initially holds

2. loop invariant initially holds /*@ axiom square sum :
e \forall int i; i * i + ((2 * i) + 1) ==(i+1) *(i+1)

3. loop invariant initially holds ex/

4. loop invariant initially holds

/*@ requires O<=a
€ ensures \result * \result <= a < (\result+l) * (\result+l)

el

5. assertion

6. loop invariant preserved
7. loop invariant preserved
8. loop invariant preserved
9. variant decreases

10. variant decreases

11. postcondition

12. postcondition

0000 OCOOOOOOT

K1 | |
Timeout| 10 |§|I:I Pretty Printer | |file: Sqrt.c Correctness of C function sqrt S
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Hoare - Logic: Summary

3

.. in the essence, the Hoare Calculus is an entirely
syntactic game that constructs a labelling of the

program with assertions ...
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Hoare - Logic: Summary

Formal Proof

> Can be very hard - up to infeasible
(nobody will probably ever prove the
correctness of MS Word!)

> But still, the proof-task can be
automated to a large extent.
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Recall: What are the limits of tests

2 Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

2 Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a .realistic" assumption, but not always)

2 Limits in perfection:
We know only up to a given "certainty” that the
program meets the specification ...
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