Interactive Theorem Proving and Applications

Année 2022-23
Prof. Burkhart Wolff wolff@lri.fr
www.lri.fr/~wolff/teach-material/2022-2023/M2-CSMR/

TP 1 - Introduction to Isabelle/HOL
 Week 9 Jan 2022

Exercice 1 (Installation)

Install Isabelle(version 2022) from the Isabelle website https://isabelle.in.tum.de. Start Isabelle and make yourself familiar with the documentation, in particular the overview "What's in Main" where "Main" is the standard HOL library we base our exercises on.

Exercice 2 (Editing, Type-Checking, Searching)

Use the Isabelle commands, typ, term and prop to enter types, terms and propositions into the system, thus using the parser and type-checker of Isabelle.

Start an anonymous session with isabelle jedit and create an anonymous session with

```
theory Scratch
    imports Main
begin
```


Questions

1. Enter, parse and type-check (if possible) some types, terms, and propositions. The result should look similar to this: Change types, terms and props at your guise though.

Figure 1 - example caption
2. Enter, parse and type-check (if possible) the term

$$
(\lambda x \cdot \lambda y \cdot(\lambda z \cdot(\lambda x . z x)(\lambda y . z y))(x y))
$$

(It might be helpful to add spaces ...) Note how the system represents bound and free variables.
3. Define via a number of definitions the Church Numerals of the slides of class 1. The syntax is :
definition const_name :: typ where "eqn"

Which type do Church-Numerals have in the typed λ-calculus?
4. axiomatize the Y -combinator, i.e. enter " $\mathrm{Y} \mathrm{f}=\mathrm{f}(\mathrm{Y} \mathrm{f})$ " as axiom into the system. The syntax is :

```
axiomatization const_name :: typ where ax_name: "eqn"
```

Which (external) type has to be given to the Y-combinator for this axiomatization?
5. use find_theorems to browse your theory so far! You will need this possibility later on!
6. Prove that, according to your definitions, PLUS TWO THREE is indeed FIVE. Hint : state a lemma for this equation, unfold the definitions, and apply the simplification method by simp

Exercice 3 (OPTIONAL : Report (IN CASE THAT YOU WANT TO HAVE IT GRADED :))

1. Write a little report answering all questions above, note the difficulties you met, add some screenshots if appropriate. 3 pages max.
