Interactive Theorem Proving and Applications

Année 2021-22
Prof. Burkhart Wolff wolff@lri.fr
www.lri.fr/~wolff/teach-material/2021-2022/M2-CSMR/

TP 4 - Inductive Constructs in Isabelle
 Semaine du 25 janvier 2021

Exercice 1 (Inductive sets - Inductive Proofs)

Define a (polymorphic) regular expression language α rexp with the alternatives :

- Empty (denoted <>)
- Atom (a singleton, denoted $\left\lfloor_{_}\right\rfloor$)
- Alt (for alternative, denoted _ _ _)
- Conc (for sequence, denoted _ : _)
- Star (for arbitrary repetition)

Tasks :

1. Why is $((A:: \alpha \operatorname{rexp}) \mid B)=(B \mid A)$ not true in general?
2. Define inductively : if A is a language, then star A is the set of all repetitions over A.
3. Define recursively L, the language of a regular expression.
4. Prove $\operatorname{star}\}=\{[]\}$ and therefore $\operatorname{star}(\operatorname{star}\{[]\})=\{[]\}$.

5. Prove that under $L,{ }_{-}$: distributes over _ $\|_{-}$(left and right).
6. Prove that the word ' 'acbc'' is in the language of $\operatorname{Star}\left(\left(\left\lfloor C H R^{\prime \prime} a^{\prime \prime}\right\rfloor\left\lfloor C H R^{\prime \prime} b^{\prime \prime}\right\rfloor\right)\right.$: $\left.\left\lfloor C H R^{\prime \prime} c^{\prime \prime}\right\rfloor\right)$
Note : Main provides the notation CHR ''a'' for "the character a". Strings are defined as lists of characters.

Exercice 2 (Modelling and Proof: The typed λ-calculus)

Define the λ-calculus as a data-type inside HOL. (This is also called a "deep embeding" into HOL). The first 3 parts are identical to TP 3.2.

1. Define the "terms" (abstract syntax tree) of the untyped λ-calcul as "data type"
2. Define the "types" (abstract syntax tree) du λ-calcul as "data type"
3. Define a function instantiate for that substitutes type-variables against types.
4. The environments Σ et Γ by using association lists.
5. Define inductively the well-typedness quartuple : a term t is well-typed with type τ in the environnements Σ et Γ.
6. Define a Σ_{0} with the constants True, False, and equality inside our λ-calculus model.
7. Prove that in Σ_{0} the encoding of the term $\left({ }_{-}{ }_{_}\right)($True $)$has the (encoding of) the type bool \rightarrow bool.
8. Define Σ according to slide 30 in the module "U1 - λ-calculus" and prove that ($\quad=$ $\left.{ }_{-}\right)\left({ }_{-}={ }_{-}\right)$is typeable in Σ.

Exercice 3 (OPTIONAL : Report)

(IN CASE THAT YOU WANT TO HAVE IT GRADED. RECALL THAT 2 OUT OF 6 TP's SHOULD BE SUBMITTED.)

1. Write a little report answering all questions above, note the difficulties you met, add some screenshots if appropriate. 3 pages max (except screenshots and other figures).
