Interactive Theorem Proving and Applications

Année 2021-22

Prof. Burkhart Wolff wolff@lri.fr

www.lri.fr/~wolff/teach-material/2021-2022/M2-CSMR/

TP 4 - Inductive Constructs in Isabelle

Semaine du 25 janvier 2021

Exercice 1 (Inductive sets - Inductive Proofs)

Define a (polymorphic) regular expression language α rexp with the alternatives:

- Empty (denoted <>)
- Atom (a singleton, denoted | |)
- Alt (for alternative, denoted _|_)
- Conc (for sequence, denoted _ : _)
- Star (for arbitrary repetition)

Tasks:

- 1. Why is $((A :: \alpha \ rexp)|B) = (B|A)$ not true in general?
- 2. Define inductively: if A is a language, then star A is the set of all repetitions over A.
- 3. Define recursively L, the language of a regular expression.
- 4. Prove $star\{\} = \{[]\}$ and therefore $star(star\{[]\}) = \{[]\}$.
- 5. Prove that L commutes over $_|_$.
- 6. Prove that under L, $\underline{}$: $\underline{}$ distributes over $\underline{}$ (left and right).
- 7. Prove that the word ''acbc'' is in the language of $Star((\lfloor CHR''a''\rfloor |\lfloor CHR''b''\rfloor): |CHR''c''|)$

Note: Main provides the notation CHR ''a' for "the character a". Strings are defined as lists of characters.

Exercice 2 (Modelling and Proof : The typed λ -calculus)

Define the λ -calculus as a data-type inside HOL. (This is also called a "deep embeding" into HOL). The first 3 parts are identical to TP 3.2.

- 1. Define the "terms" (abstract syntax tree) of the untyped λ -calcul as "data type"
- 2. Define the "types" (abstract syntax tree) du λ -calcul as "data type"
- 3. Define a function instantiate for that substitutes type-variables against types.
- 4. The environments Σ et Γ by using association lists.
- 5. Define inductively the well-typedness quartuple : a term t is well-typed with type τ in the environnements Σ et Γ .
- 6. Define a Σ_0 with the constants True, False, and equality inside our λ -calculus model.
- 7. Prove that in Σ_0 the encoding of the term $(_ = _)(True)$ has the (encoding of) the type $bool \rightarrow bool$.
- 8. Define Σ according to slide 30 in the module "U1 λ -calculus" and prove that (_ = _)(_ = _) is typeable in Σ .

Exercice 3 (OPTIONAL : Report)

(IN CASE THAT YOU WANT TO HAVE IT GRADED. RECALL THAT 2 OUT OF 6 TP's SHOULD BE SUBMITTED.)

1. Write a little report answering all questions above, note the difficulties you met, add some screenshots if appropriate. 3 pages max (except screenshots and other figures).