Prof. Burkhart Wolff
wolff@lri.fr

TP 6 - Modeling Operational Semantics

Semaine du 8 fevrier 2021

Objective: Defining an operational semantics "Plotking-style" big-step semantic for as more-or-less standard regular expression language. This type of semantics represents "states" ' s in the original language and inductively models the transition relation between states via a transition predicate $\left\langle_{_},{ }_{-}\right\rangle \longrightarrow_{c}$ _ of type's \times^{\prime} output option \times ' $s \Rightarrow$ bool where option is the usual option type constructor from Main. Following common terminology in automata theory, we will call a list of atoms a word, and a set of words a language. The denotational semantics we are referring here is a function that maps an (abstract) syntax to a set of deonotations, i.e. regular expressions to the language they denote. We will introduce the term epsilon as abbreviation for Star Empty, an α rexp term for the empty language.

We reuse the abstract syntax α rexp of the regular expression language from TP 5 .

Exercice 1 (Inductive Sets - Inductive Proofs)

Define a Plotkin-style semantics for regular expressions, where 'output is set to ' α. Complete the list of inductive rules starting with :

- $\langle\lfloor a\rfloor$, Some $a\rangle \longrightarrow_{c}$ epsilon
$-\langle$ Empty $: R$, None $\rangle \longrightarrow_{c}$ Empty
$-\langle\lfloor a\rfloor: R$, Some $a\rangle \longrightarrow_{c} \quad R$
- \langle Star r, None $\rangle \longrightarrow_{c}(r:($ Star $r))$
$-\langle$ Star r, None $\rangle \longrightarrow_{c}$ epsilon
- ...

Tasks :

1. Prove $\left\langle\lfloor a\rfloor\right.$, Some $\left.a^{\prime}\right\rangle \longrightarrow_{c}$ epsilon $=\left(a^{\prime}=a\right)$ and $\left\langle\lfloor a\rfloor, a^{\prime}\right\rangle \longrightarrow_{c} R^{\prime}=\left(a^{\prime}=\right.$ Some $a \wedge$ $R^{\prime}=$ epsilon) (This should hold for your completion of the above inductive rule-set).
2. Derive all similar lemmas resulting from your definitions (should be approx 8). Hint : for the latter rule, there is actually a specific command that derives this type of simplification lemmas automatically. For example, the last mentioned lemma could be derived automatically via :

$$
\text { inductive_simps atom } 1 S: "\left\langle\lfloor a\rfloor, a^{\prime}\right\rangle \longrightarrow_{c} R^{\prime \prime}
$$

3. Prove the eliminiation rule :

$$
\left\langle\lfloor a\rfloor, \text { Some } a^{\prime}\right\rangle \longrightarrow_{c} \text { epsilon } \Longrightarrow\left(a^{\prime}=a \Longrightarrow P\right) \Longrightarrow P
$$

4. Prove all other elimination rules and configure them into the global context as such. Hint : for the latter rule, there is actually a specific command that derives this type of simplification lemmas automatically. For example, the last mentioned lemma could be derived automatically via :

$$
\text { inductive_simps atom } 1 S: "\left\langle\lfloor a\rfloor, a^{\prime}\right\rangle \longrightarrow_{c} R^{\prime \prime}
$$

5. Now define the mu;tiple step semantics Plotkin style. This hsould lopok like this :
inductive
evalstar :: "['a rexp,'a list,'a rexp] \Rightarrow bool" ("〈_'_〉/ $\longrightarrow c^{*}$ _" [0,0,60] 60)
where
idle: \quad " \langle epsilon, [] $\rangle \longrightarrow c^{*}$ epsilon"
| stepl: $\quad "\langle r$, Some $a\rangle \longrightarrow c r^{\prime} \Longrightarrow\langle r,[a]\rangle \longrightarrow c^{*} r^{\prime \prime \prime}$
| continuation1: " $\langle r$, None $\rangle \longrightarrow c r^{\prime} \Longrightarrow\left\langle r^{\prime}, S\right\rangle \longrightarrow c^{*} r^{\prime \prime} \Longrightarrow\langle r, S\rangle \longrightarrow c^{*} r^{\prime \prime \prime}$
| continuation2: " $\langle r$, Some $a\rangle \longrightarrow c r^{\prime} \Longrightarrow\left\langle r^{\prime}, S\right\rangle \longrightarrow c^{*} r^{\prime \prime} \Longrightarrow\langle r, a \# S\rangle \longrightarrow c^{*} r^{\prime \prime \prime \prime}$
6. Prove :

$$
\left.\left\langle\operatorname{Star}\left(\left(\left\lfloor C H R^{\prime \prime} a^{\prime \prime}\right\rfloor \| C H R^{\prime \prime} b^{\prime \prime}\right\rfloor\right):\left\lfloor C H R^{\prime \prime} c^{\prime \prime}\right\rfloor\right),,^{\prime \prime} b c^{\prime \prime}\right\rangle \longrightarrow_{c}^{*} \text { epsilon }
$$

7. Prove:
```
theorem operational_implies_denotational_generalized':
assumes nat_steps: "
    and den_cont: "\existsas. as \in L r'"
shows "\exists as . s@as < L r ^ as < L r'"
```

8. Prove the main theorem "operational semantics implies denotational semantics" :

$$
\left(\langle r, s\rangle \longrightarrow_{c}^{*} \text { epsilon }\right) \longrightarrow s \in L(r)
$$

Note : Main provides the notation CHR ', a', for "the character a". Strings are defined as lists of characters.

Exercice 2 (OPTIONAL : Report)

(IN CASE THAT YOU WANT TO HAVE IT GRADED. RECALL THAT 2 OUT OF 6 TP's SHOULD BE SUBMITTED.)

1. Write a little report answering all questions above, note the difficulties you met, add some screenshots if appropriate. 3 pages max (except screenshots and other figures).
