Prof. Burkhart Wolff wolff@lri.fr

Project - Extending an Automata Theory

Semaine du 8 fevrier 2021

1 Objectives

This project aims at extending an existing theory of regular expressions and automata by operations that rename states via a "renaming morphism". If this morphism is injective on the states occurring in an automata, a "morphed automata" recognizes the same language. This can be used to simplify the automata construction operations.

Modelization

The theory skeleton consists of the following components:

- 1. RegExp.thy contains a the abstract syntax of regular expression together with a *denotational se*mantics, a function L that assigns to each regular expression r the "language" it denotes: L(r).
- 2. Automata.thy defines non-deterministic and deterministic automata, the generalized transition functions as well as the corresponding acceptance conditions for a word in the automata.
- RegExp2NAe.thy contains the compiler and its corresponding correctness nad completeness conditions.

Regular Expression

There is a **abstract syntax of regular expression** and a function L give the language of this regular expression.

A function L give the language of this regular expression.

```
fun L :: "'a rexp => 'a lang"
where L_Emp : "L Empty = {}"
    |L_Atom: "L (|a]) = {[a]}"
    |L_Un: "L (el | er) = (L el) ∪ (L er)"
    |L_Conc: "L (el : er) = {xs@ys | xs ys. xs:L el ∧ ys:L er}"
    |L_Star: "L (Star e) = star(L e)"
```

Nondeterministic automata

na represent nondeterministic automata. It is defined In the theory Automata using record.

```
record ('a,'s)na =
    start :: "'s"
    "next":: "'a ⇒ 's ⇒ 's set"
    fin :: "('s ⇒ bool)"
```

Delta to calcul a set of states reachable after a word in term of w from initial states.

Accepts A Definition decide if a word ca be accepted by nondeterministic automata na which is defined here.

Nondeterministic automata with epsilon transitions

nae is defined for nondeterministic automata with epsilon transitions, which is defined in RegExp2DAe.thy. nae is an instance of the nondeterministic (in)finite automaton(na), which allows a transformation to a new state without consuming any input symbols.

```
type_synonym ('a,'s)nae = "('a option, 's) na"
type_synonym 'a bitsNAe = "('a ,bool list) nae"
```

From regular expressions directly to nondeterministic automata with epsilon

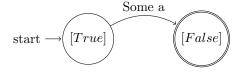
The transition function rexp2nae converts regular expressions into such automata and is defined in file RegExp2DAe.thy. It use 5 definitions for the Atom Conc Union Star case which are defined in the same file. The goal of this project is showing the correctness of this translation.

A key-problem of the construction is that the nodes from which automatas were constructed must be disjoint when "gluing" several automatas together; the present modelization realises this by a re-labelling discipline on node-names which were represented as bitstrings.

We present some diagrams to illustrate transition function of these automatas.

Atom: The Atom case. In its initial state [True], it may consume Some a (of any type), and go over to accepting state [False]. Here is the formal definition:

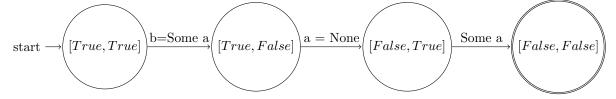
... reflecting the automaton:



Conc: The conc case. It takes two NAe l and r and returns a new NAe. What is interesting here is the injective re-labelling of the nodes; any node label in the left automaton is prefixed by **True**, any node label in the right automaton is prefixed by **False**. Since the translation of regular expressions will be done recursively over the structure of regular expressions, the construction assures that the node sets are always distinct.

```
definition conc :: "'a bitsNAe \Rightarrow 'a bitsNAe \Rightarrow 'a bitsNAe"
where "conc l r == (let gl = na.start l;
                               dl = na.next l;
                               fl = na.fin l;
                               qr = na.start r;
                               dr = na.next r;
                               fr = na.fin r
                              (na.start = (True#ql),
                          in
                                na.next = (\lambda a s. case s of
                                                        [] \Rightarrow \{\}
                                                       |left#s \Rightarrow if left|
                                                                     then (True ## dl a s)∪
                                                                           (if fl s ∧ a =None then {False#qr}
                                                                                                   else{})
                                                                     else False ## dr a s),
                                na.fin = (\lambdas. case s of
                                                        [] \Rightarrow False
                                                       |\text{left#s} \Rightarrow \neg \text{left} \land \text{fr s})|) "
```

Here is the example of the concatenation of two automata l and automata r which happen to be the atomic automaton of the previous example.



Tasks:

- 1. Study the theory in Isabelle.
- 2. Define a graph morphism map_{nae} of the form : $('\sigma \Rightarrow' \sigma') \Rightarrow ('\alpha, '\sigma)nae \Rightarrow ('\alpha, '\sigma')nae$ which renames (relabels) states inside an automaton.
- 3. Prove: $map_{nae}f(map_{nae}gA) = map_{nae}(f \ o \ g)A$
- 4. Prove: for injective f, an automaton A recognises the same language than $map_{nae} g A$.
- 5. Try to reformulate the automata operations such as union via map_{nae} .

Submission

The final version of the files together with a 3-6 pages report of the theory development are due **15.3.2021** per mail at wolff@lri.fr.