
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16802)

Submission date: –

Propositional Logic

In this lecture you will deepen your knowledge about proposi-
tional logic, you will prove your first theorems in an interactive
theorem prover (Isabelle) and see how paper-and-pencil proofs are
related to interactive theorem proving. In particular you will learn
how to do forward-style and backward-style proofs (using Isabelle)
and how to combine these two techniques.

1 Isabelle in a Nutshell

Isabelle is an interactive theorem prover. During an Isabelle session, you will
construct proofs of theorems. A proof consists of a number of proof steps, and
the Isabelle system will ensure that each step is correct, and thus ultimately
that the entire proof is correct. Various degrees of automation can be realized
in Isabelle: you can write each step of a proof yourself, or you can let the system
do big subproofs or even the entire proof automatically. In the beginning, we
will do the former, because we want to understand in detail what a proof looks
like.

In the lecture we will use Isabelle 2004. 1 The graphical user interface (an
instance of Proof General) is based on the editor (X)Emacs and can be started Proof General

1Isabelle is only supported on Unix-like operating systems (e.g. Linux, Solaris, MacOS

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/

by typing2

Isabelle-2004

in a shell. An special configured (X)Emacs will start showing several Isabelle
and Proof General related menus.

Hint: For a nice rendering of mathematical symbols, you should enable the
X-Symbol package. For doing so, select the box 〈Proof-General BX-Symbol
〈Options B X-Symbol〉〉. Now select 〈Proof-General B 〈Options B
Save Options〉〉 to enable X-Symbol automatically on every startup.

Isabelle supports a variety of different logics, thus, before we can prove our first
theorem, we have to choose the logic we want. As Isabelle does not provide a
special setup for propositional logic, we choose first-order logic (fol) by select-
ing 〈Isabelle/Isar B 〈Logics B FOL〉〉. fol is a superset of propositionalfol

logic.

Hint: If you do not want to use the “default” logic (normally higher-order
logic (hol), you must select the logic on every startup of Isabelle.

We are now ready to prove theorems in propositional logic using Isabelle. While
doing so, we have to keep several things in mind:

• The rule names for propositional logic used by Isabelle differ from the
names used in the lecture. For an overview of the rule names used by
Isabelle, see Tab. 1.Isabelle rule names

• Whenever we prove something in Isabelle (or in a paper and pencil fash-
ion), we do so in the context of a theory . The essential parts of a theorytheory
are the definition of some syntax and judgments that are postulated to
be true. In Isabelle, this theory is contained in a file whose name ends
in .thy. We can start a new theory (building upon fol) named ex1 by
creating a file with the first line

theory ex1 = FOL:

• Isabelle uses several concrete syntaxes to represent mathematical symbolssymbol representation

X). You can download Isabelle from http://isabelle.in.tum.de. If you use Win-
dows and do not want to install Linux on your hard disk, we recommend IsaMorph
(http://www.brucker.ch/projects/isamorph/) which is a CD-based Linux that already
provides Isabelle.

2If you have installed Isabelle yourself or if you are using IsaMorph, just type Isabelle

instead of Isabelle-2004.

2

http://isabelle.in.tum.de
http://www.brucker.ch/projects/isamorph/

A B
A ∧B

conjI
A ∧B

A
conjunct1

A ∧B
B

conjunct2

A
A ∨B

disjI1
B

A ∨B
disjI2

A ∨B

[A]
....
C

[B]
....
C

C
disjE

[A]
....
B

A −→ B
impI

A −→ B A
B

mp

A
FalseE

Table 1: Propositional Logic in Isabelle

(see Tab. 2). With enabled X-Symbol mode, you will see the the math-
ematical symbols in the output of Isabelle. You can enter these symbols
either by typing their ascii representation (most of the symbols will be
automatically converted to their mathematical representation) or enter-
ing their internal name. Also selecting the symbols within the 〈X-Symbol
B ...〉 menu is possible.

2 Our first theorem

Open a new file3 simple.thy and enter the following skeleton of a theory file:

theory simple = FOL:

end

Hint: Isabelle requires, that the file name (without extension) is identical to
the theory name.

You can now start the Isabelle process by clicking on the 〈Next〉 button; after
a short startup time, the first line of your theory should be highlighted.

3Click on the menu 〈File B Open〉 and enter simple.thy into the (X)Emacs Minibuffer
(the very last line of the (X)Emacs window).

3

[[[| \<lbrakk>
]] |] \<rbrakk>

=⇒ ==> \<Longrightarrow>∧
!! \<And>

≡ == \<equiv>

 == \<rightleftharpoons>
⇀ => \<rightharpoonup>
↽ <= \<leftharpoondown>
λ % \<lambda>
⇒ => \<Rightarrow>
∧ & \<and>
∨ | \<or>
−→ --> \<longrightarrow>
¬ ~ \<not>
6= ~= \<noteq>
∀ ALL, ! \<forall>
∃ EX, ? \<exists>

∃! EX!, :?! \<exists>!
ε SOME, @ \<epsilon>
◦ o \<circ>
|| abs \<bar> \<bar>
≤ <= \<le>
× * \<times>
∈ : \<in>
6∈ ~: \<notin>
⊆ <= \<subseteq>
⊂ < \<subset>
∪ Un \<union>
∩ Int \<inter>⋃

UN,UNION \<Union>⋂
INT, Inter \<Inter>

∗ ^* \<^sup>*
−1 ^-1 \<inverse>

Table 2: Mathematical Symbols, Their ASCII-Equivalents and Internal Names

2.1 Backward-Style Reasoning in Isabelle

We will now prove A −→ (B −→ A) in backward style. Therefore we begin by
entering our proof goallemma

lemma first theorem: ”A −−> (B −−> A)”

as second line of your theory and click on 〈Next〉 (this processes your theory
one step further). Now, Isabelle will also highlight this line and also will repeat
the proof goal in its output window. As you know from the lecture, we have
to apply →-I as first proof step. Using Tab. 1 we see, that →-I is called impIimpI

in Isabelle. You can look up Isabelle’s definition of impI by clicking on the
〈Command〉 button and enteringimpI

thm thm impI

in the (X)Emacs Minibuffer (the very last line of the (X)Emacs window). Is-Minibuffer
abelle will print its version of the implication introduction rule in its output
area. We apply this rule to the current proof state by writingapply

rule apply (rule impI)

and processing the theory one step. Can you explain the proof step after
executing this rule? Applying impI resolves the rule impI and the previous
goal A −→ (B −→ A) to A =⇒ B −→ A. Put very suggestively, our current
state says: if we can prove B −→ A under the assumption A, we are done.

4

At the moment, you may find it difficult to understand the difference between
=⇒ and −→, since both somehow seem to stand for implication. However, −→
is a symbol of propositional logic, which is our object logic, i.e., the language we
are talking about. In contrast, =⇒ is a symbol of the meta-logic, i.e., Isabelle’s
built-in logic in which other object logics (PL, FOL, HOL, . . .) are formalized.

Now apply impI a second time (by repeating the above line), you should
end up in a state where Isabelle requires to prove A under the assumption
“A B”. This holds trivially, in Isabelle, this is made explicit by the so-called
assumption (tactic) method. Type assumption

apply (assumption)

and after executing this line, Isabelle should reply with No Subgoals which No Subgoals

means, there is nothing to prove anymore. The effect of the assumption method
is to remove the first (and in this case only) subgoal provided the conclusion to
be proven (in this case A) is one of the assumptions. This completes our proof
of A −→ (B −→ A). Try to see that we built the proof tree starting from the
bottom. We can now close the proof be entering done

done

Now, My first theorem is a proven theorem which can be used in the same
way as any other rule, e.g. impI.

Summarizing, you should end up with the following theory file:

theory simple = FOL:
lemma ”My first theorem”: ”A −−> (B −−> A)”

apply (rule impI)
apply (rule impI)
apply (assumption)
done

end

2.2 Forward-Style Reasoning in Isabelle

We will now prove A −→ (B −→ A) using forward style; Forward proofs mirror
more or less directly the structure of a proof tree. Considering the proof tree
for A −→ (B −→ A), we conclude that applying impI twice is a valid proof.
Let’s start with: with lemmas

lemmas forward proof = impI

Convince yourself by executing the thm forward proof that Isabelle is now
aware of this theorem. Now let’s undo the last step by clicking on undo and
change the above line to

5

lemmas forward proof = impI [OF impI]

where OF takes a list of theorems and applies them to the premises of the firstOF

impI. Again, check the result of this step by executing thm forward proof.
As you see, we are nearly done, we only have choose the right assignment for
the meta variables. This can be done by changing the above proof toof

lemmas forward proof = impI [OF impI, of A B A]

This results in:
([[A;B]] =⇒ A) =⇒ A −→ B −→ A

where the first part of this formula is an artefact from discharging the assump-discharging
tions (it says essentially that A has been introduced as assumption during the
proof and that possible “candidates for discharge” are A and B.)

A further version of this proof adds a particular clean-up that performs the
discharging:

lemmas forward proof = impI [OF impI, of A B A, simplified]

which completes the discharge:

([[A;B]] =⇒ True) =⇒ . . .

but, unfortunately, has also the undesired effect to distroy also our conclusion
in this case:

([[A;B]] =⇒ True) =⇒ True

2.3 Combining Forward- and Backward-Style Reasoning

Note that one can arbitrarily mix forward- and backward-style reasoning in
Isabelle, e.g.

lemma third proof: ”A −−> (B −−> A)”
apply (rule forward proof)
apply (assumption)
done

or even

lemma third proof: ”A −−> (B −−> A)”
apply (rule impI [OF impI, of A B A])
apply (assumption)
done

are valid proofs for A −→ (B −→ A).

6

3 Exercises

3.1 Exercise 1

Choose four of the following theorems and prove them

• using paper and pencil,

• in Isabelle using backward style, and

• in Isabelle using forward style.

Choose suitable names for the proven theorems, i.e. choose names based on the
exercise number, like ex1 1 for the first one.

1. A −→ B −→ A

2. A ∧B −→ B ∧A

3. A ∧B −→ A ∨B

4. A ∨B −→ B ∨A

5. A ∧ (B ∧ C) −→ A ∧ C

6. (A −→ B −→ C) −→ (A −→ B) −→ (A −→ C)

7. (A ∧B) ∨ C −→ (A ∨ C) ∧ (B ∨ C)

3.2 Exercise 2

Look up the definition of ¬ (hint: it’s called not def) and execute step-by-step not def

the following proof script: fold
unfold

lemma ”P ∧¬P −→R”
apply (unfold not def)
apply (fold not def)
oops

Explain the proof script in detail. Here, oops just abandons our proof. oops

Now proof the following lemmas using Isabelle (either forward or backward
style):

1. P ∧ ¬P −→ R

2. (A ∨B) ∧ ¬A −→ B

3. (A ∨ ¬A) −→ ((A −→ B) −→ A) −→ A

Keep the last theorem in mind, it will be useful later.

7

3.3 Exercise 3

So far we only used rules of the intuitionistic propositional logic. We will now
add one further rule

[¬A]
....
A

A
classical

to obtain classical propositional logic. The characteristic of classical logic isclassical
that the principle of the excluded middle holds: P ∨ ¬P .

We show that classical is equivalent to the principle of the excluded middle.excluded middle
As above, do the proofs both using paper and pencil and in Isabelle.

1. (¬Q −→ P) −→ P ∨ Q (hint: the main part of this proof is a proof of
P ∨ Q using, among others, the assumption ¬(P ∨ Q), followed by an
application of classical).

2. Using the previous theorem, prove P ∨ ¬P (hint: first prove ¬P ∨ P).

3. Prove P ∨ ¬P −→ ((¬P −→ P) −→ P) intuitionistically.

3.4 Exercise 4

Prove the following classical theorem called Peirce’s law, both using paper and
pencil and in Isabelle:

((A −→ B) −→ A) −→ A

Hing: Use the proof of P ∨ ¬P from Ex. 3.

8

	Isabelle in a Nutshell
	Our first theorem
	Backward-Style Reasoning in Isabelle
	Forward-Style Reasoning in Isabelle
	Combining Forward- and Backward-Style Reasoning

	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

