
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16814)

Submission date: –

First-Order Logic

In this lecture you will deepen your knowledge about first-order
logic (fol). Theorem proving in fol involves the issue of binding
and substitution, which we treat at a fairly pragmatic level for the
moment. (The issue will be revisited in the subsequent exercises on
meta-theory and λ-calculus). We will learn to manage premises in
backward proofs and tactic methods that manipulate assumptions
in backward proofs.

1 More on Isabelle

1.1 Isabelle System Architecture

For using Isabelle it is sometimes helpful if one has a broad overview of Isabelle’s
system architecture (see Fig. 1). Isabelle is generic theorem prover providing
a simple meta logic; it is implemented the functional language “Standard ML”
(sml). On top of the Isabelle core, a variety of Isabelle instances are built, sml

e.g. Isabelle/fol (for first-order logic), Isabelle/hol (for higher-order logic),
or Isabelle/zf (for Zermelo-Fränkel set theory). Isabelle instances can be pro-
grammed directly via programs written in sml or via the isar-proof language,
which also provides powerful documentation facilities. On top of this, different

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/


Standard ML (SML)

Isabelle

Isabelle/FOL

Proof General

Implementation Language

Generic Theorem Prover

Isabelle Instance for FOL

(X)Emacs−based User Interface

SML−based User Interface

Figure 1: The System Architecture of Isabelle

user interfaces are provided. In this lecture, we use the most modern interface,
called “Proof General”, which itself builds upon the (X)Emacs editor family.Proof General

1.2 Assumptions in Backward Proof

In backward proof, Isabelle allows two notions for introducing assumptions intoassumptions
a proof context. For simple cases we can use

lemma name: ”[[ a1; . . .; an]]=⇒C”

The latter format introduces assumptions as named objects that can be refer-
enced identically to rules:

lemma name:
assumes name1: ”a1”

...
assumes namen: ”an”
shows ”C”

lemma name:
assumes name1: ”a1”

...
and namen: ”an”
shows ”C”

One can use the assumes or and to enumerate several assumptions. Using thisassumes

and style, the assumptions are not automatically added to assumption list of the
goals. If needed, you can insert them with the command insert .insert

Assumptions, derived rules, rules, axioms, theorems are all the same in Is-
abelle and can be combined in arbitrary ways in forward and backward proof!
Remark: Internally, all these objects are represented as a particular abstract
data type thm. The Isabelle kernel is a collection of sml-modules that imple-thm

2



ment this data type (provers of this system architecture are often referred as
lcs-style-provers). lcs-style

1.3 New FOL Rules

The distinctive feature of fol compared to pl are the quantifiers ∀ and ∃. Note
that quantifiers have low priority, e.g., we have to write (∀x.p(x)) −→ (∃x.p(x)).

Recall the introduction and elimination quantifier rules from the lecture:

P (x)

∀x. P (x)
∀-I1.

∀x. P (x)

P (t)
∀-E

P (t)

∃x. P (x)
∃-I
∃x. P (x)

[P (x)]
....
R

R
∃-E2.

quantifier rules
where the side conditions are:

1. x is not free in any assumption on which P (x) depends.

2. x is not free in B or any assumption of the sub-derivation of B other
than A(x).

In Isabelle/fol, these rules are represented (including the side conditions)
as follows: spec

allI
exI
exE

(
∧

x.P (x)) =⇒ (∀x.P (x)) allI (
∧

x.P (x)) =⇒ P (x) spec

P (x) =⇒ (∃x.P (x)) exI

[[
∃x.P (x);

∧
x.P (x) =⇒ R

]]
=⇒ R exE

Where
∧

is the meta-level universal quantification. If a goal is preceded by meta-level universal
quantifier∧the meta-quantor

∧
x. . . ., this means that Isabelle must be able to prove the

subgoal in a way which is independent from x, i.e., without instantiating x.
Another view on meta-level quantification is that they introduce “fresh free
variables” on the fly (in fact, variables bound by outermost meta-level quanti-
fiers were treated as free variables within substitutions).

Whenever an application of a rule leads to the introduction of meta vari-
ables in a goal preceded by

∧
, these introduced meta variables will be made

dependent on x. You may also say that those meta-variables will be Skolem
functions of x. When experimenting with rule applications introducing

∧
’s,

you will notice that the order of these introductions is crucial.

3



1.4 Substitutions in Backward Proof

As mentioned in the lecture, Isabelle uses meta-variables ?X,?Y ,. . . . These
meta-variables are logically treated as free variables, but may be instantiated
either interactively or automatically by Isabelle itself.

Sometimes the automatic instantiation is not appropriate for a proof; then
the user must provide it interactively. In forward proof, this can be done by
the of command you have already got to know.

In backward proof, variants of proof commands were provided. Instead of

apply(rule name)

we might give several substitution during rule application :rule tac

apply( rule tac of x1= ”term1” and . . .and xn= ”termn” in rule)

Where rule tac may contain syntactic elements and free variables of the proof
context. Note that

apply( rule tac of x = ”term” in rule)

is not the same as

apply(rule [of . . .”term” . . .])

Can you figure out why?

1.5 Manipulating Assumptions in Backward Proof

So far, we never changed the assumptions ai of a goal [[a1; . . . ; an]] =⇒ C. The
command rule instantiates its argument rule such that its conclusion becomes
equal to the conclusion C of the goal.

A collection of Isabelle tactic methods follows a different strategy:

1. erule rule constructs an instantiation such that the first assumption b1erule

of rule becomes equal to an ai, and that the conclusion of rule becomes
equal to an C. ai is erased from the assumptions.

2. drule rule constructs an instantiation such that the first assumption b1drule

of rule becomes equal to an ai, and that the conclusion of rule becomes
a new assumption. ai is erased from the assumptions.

3. drule rule works like drule rule but does not erase ai.frule

Moreover, with the command insert , an arbitrary theorem or assumption caninsert

be added to the assumption list.
Note that for some of these tactic methods are variants with explicit substi-

tutions available: erule tac , drule tac , and frule tac .erule tac

drule tac

frule tac

4



2 Exercises

2.1 Exercise 5

Derive the following rules in Isabelle:

P ∧Q

[P,Q]
....
R

R
conjE

P −→ Q P

[Q]
....
R

R
impE

[P ]
....
⊥
¬P

notI
¬P P

R
notE

conjE, impE
notI, notE2.2 Exercise 6

Prove the following theorems using erule and disjE and conjE wherever pos-
sible.

1. (A ∧B) ∧ C −→ A ∧B ∧ C

2. (A ∧B) ∧ (C ∧D) −→ (B ∧ C) ∧ (D ∧A)

3. (A ∨B) ∨ (C ∨D) −→ (B ∨ C) ∨ (D ∨A)

Compare the first two proofs with the proofs without erule in Ex. 1.

2.3 Exercise 7

Derive the rule
[A]
....
B

[B]
....
A

A←→ B

in Isabelle. Recall that ←→ is defined by:

P ←→ Q ≡ (P −→ Q) ∧ (Q −→ P ) iff def

Use erule and drule wherever you can.
2.4 Exercise 8

Prove the following theorems of first-order logic in Isabelle:

1. (∀x.p(x)) −→ ∃x.p(x)

2. ((∀x.p(x)) ∨ (∀x.q(x))) −→ (∀x.(p(x) ∨ q(x)))

3. ((∀x.p(x)) ∧ (∀x.q(x)))←→ (∀x.(p(x) ∧ q(x)))

5



4. (∃x.∀y.p(x, y)) −→ (∀y.∃x.p(x, y))

5. (∃x.p(f(x))) −→ (∃x.p(x))

What about: (∀x.(p(x)∨ q(x))) −→ ((∀x.p(x))∨ (∀x.q(x)))? Can you prove it?

2.5 Exercise 9

Prove
(∀x.A −→ B(x))←→ (A −→ ∀x.B(x))

all distr

in Isabelle. Reuse Exercise 7.
In lecture ‘1.5 fol: Natural Deduction” it was said that in the above theorem

it is crucial that “A does not contain x freely”. How does Isabelle take this
into account? Try to prove: p(x) −→ ∀x.p(x)
2.6 Exercise 10

Prove the following theorem of first-order logic in Isabelle:

s (s (s (s (zero)))) = four ∧ p(zero) ∧ (∀x.p(x) −→ p(s(s(x)))) −→ p(four)

6


	More on Isabelle
	Isabelle System Architecture
	Assumptions in Backward Proof
	New FOL Rules
	Substitutions in Backward Proof
	Manipulating Assumptions in Backward Proof

	Exercises
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10


