
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16802)

Submission date: –

FOL with Equality: Equational
Reasoning

In this exercise, we will study elementary equational reasoning for
groups and orders, and learn how to combine this with reasoning via
case distinction. The technical level is deliberately rather low since
elementary fall-back techniques are necessary if more automated
tactics fail.

1 More on Isabelle

1.1 Backward Proof Control Structures

Revising our first proof scripts, it becomes clear that proof-scripts contain
considerable repetition. Thus, more automation can be achieved by introducing
control structures in the isar-language. These are: control structures

isar
1. M,M’ sequential composition: try tactic M; if it succeeds try tactic M’. sequential composition

(, )
2. M|M alternative: try tactic M; if it fails try tactic M’.

alternative (|)
3. M? option: try tactic M; if it fails report success. option (?)

4. M+ repetition: try tactic M and repeat as long as no failure occurs. repetition (+)
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For example, instead of:

apply(rule X)
apply(erule Y)

we may write:

apply(rule X, rule Y)

Further, instead of:

apply(drule mp)
apply(assumption)
apply(assumption)
apply(erule disjE )
apply(drule mp)
apply(erule disjE )

we may write:

apply(drule mp,(assumption|erule disjE)+)+

1.2 FOL with Equality

In lecture, first-order logic with equality has been introduced as a logical system
where the equality x = y has been defined as a predicate on terms which rep-equality x = y

resents a congruence relation. This is covered in Isabelle/fol by the following
rules:refl

trans
sym

subst

refl : ”a=a”
trans : ”[[ x=z; x=y ]] =⇒ y=z”
sym: ”y=x =⇒ x=y”
subst : ”[[ a=b; P(a) ]] =⇒P(b)”

Note that the substitutivity rule in Isabelle does not distinguish between “for-
mulas” and “terms” as described in the lecture.

1.3 New Tactics

We introduce two new tactical commands for case splitting reasoning and per-
forming one rewrite step. Both can be understood as abbreviation of previously
introduced commands and/or rules. These are:

1. case tac ”<form>”, where <form> is a splitting formula. It is equivalentcase tac

to: insert excluded middle [of ”<form>”], erule disjE
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2. subst rule , where rule is a (conditional) equation performed left-to-right.
It is equivalent to: rule subst [OF sym[OF rule]]subst

Note that the subst chooses an arbitrary “position” where to perform a rewrite
step; this lack of control may be sometimes undesirable. In such cases there may
be no alternative to providing a more concrete substitution for meta variables,
for example like rule tac P = ”λz. ?X ∗ z = e” in subst [OF rule]. Here, the
λ-expression denotes a function that generates a term (with a “hole” ?X). In λ-expression
general, giving too special substitutions is tedious and makes proof-scripts less
robust; giving too general substitutions may result in a dead end of a proof.

By the way, sym[OF rule] is also equivalent to rule [symmetric]. symmetric

1.4 New Declaration Elements

In an isar theory file, proofs can be mixed with other syntactic elements such
as type declarations, constant declarations, definitions and axioms (here only type declarations

constant declarations
definitions
axioms

used as exercise!). Consider:

typedecl <T>
arities <T> :: ”term”

Here, the type <T> is declared; since Isabelle has a two-staged type system
with “types of types” called type classes, the new type is declared to the class
term introduced in the ifol theory.

A standard constant declaration is given by an example:

consts
If :: ”[o, i , i ] ⇒ i” (”( if ( )/ then ( )/ else ( ))” [10] 10)

Here, If is declared to have type [o, i , i ] ⇒ i which is notationally equivalent
to o ⇒ i ⇒ i ⇒ i . The final phrase is a pragma to the Isabelle parser: the
user is allowed to write if P then Q else R instead of If (P,Q,R).

There are two ways of possibilities to define declared constant. One is by
axioms as in the following example:

axioms
if P : ”P =⇒ ( if P then y else z) = y”
if notP : ”¬P =⇒( if P then y else z) = z”

The other possibility is by a special type of axioms, called definitions:

defs
if def : ”( if P then y else z) = <E>”
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where <E> is a closed expression not containing the constant If (we do not
have the semantic means to give a useful definition for If at the moment).

Use analogies to declarations in the ifol and fol theories of the Isabelle dis-
tribution. You can find these theories nicely formatted on the Isabelle website:
http://isabelle.in.tum.de/library/FOL/index.html

1.5 Proof-State Massage

The standard apply-command usually effects only the first subgoal. Thus, it
may be desirable to rotate the list of subgoals in a proof state. The defer n ordefer n

prefer n commands move a subgoal to the last or the first position.prefer n

For the choice of unifiers, the order of assumptions in a subgoal may be rele-
vant. rotate tac n rotates the assumptions of the first subgoal by n positions:rotate tac n

from right to left if n is positive, and from left to right otherwise. The default
value is one.

2 Exercises

2.1 Exercise 15

Derive the symmetry and transitivity rules for =

x = y

y = x
sym

x = y y = z

x = z
trans

using only applications of refl and subst.

2.2 Exercise 16

Prove the following group properties from the lecture without using the tactic
command subst.

x−1 ∗ x = e and x ∗ e = x

Hint: Declare a type i of sort term in Isabelle/FOL and the constants −1, ∗
and e over i in your theory! (use analogies to declarations in the theories
FOL and IFOL.

Hint: Take the “axioms” of group theory, namely associativity, right identity
and right inverse as named assumptions in a backward proof.
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2.3 Exercise 17

Declare a predicate <= of type i ⇒ i ⇒ o (similar to equality). Formalize
that <= is total or antisymmetric and use this as assumption at need in
the proofs.

Prove that:

1. ¬ x <= y ==> y <= x

2. ¬ y <= x ==> x <= y

3. ¬ y = x ==> ¬(x <= y)∨¬(y <= x)

4. y <= x ==> x = y ∨(¬x <= y)

Hint: Use subst and case tac whenever possible.

Hint: Consider derived rules of classical logic like swap, contrapos and swap

contraposcontrapos2.
contrapos2

2.4 Exercise 18

Declare the constant If (presented syntactically in mix-fix notation) and define
it via the axioms:

if P : ”P =⇒ ( if P then y else z) = y”
if notP : ”¬P =⇒( if P then y else z) = z”

Assume in the sequel that <= is a partial order (i.e. reflexive, transitive,
antisymmetric).

Declare and define the operation max based on <= and If .
Prove that max is

1. idempotent,

2. commutative

3. and left-idempotent (i.e. max(x,max(x,y)) = max(x,y))

Hint: Use subst and case tac whenever possible.
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