
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16814)

Submission date: –

λ-Calculus

In this exercise, we will will use Isabelle as a prototype tool to
describe calculi (including binding) and to perform computations in
them by using tactics involving backtracking. This will also deepen
our understanding of the unification procedures used by Isabelle.

We will also introduce the concept of (parametric) Polymorphism
which can be used to encode object languages including their type
system.

1. Isabelle

1.1. The Context of this Exercise

In lecture “The λ-Calculus”, we defined the syntax of the untyped λ-calculus untyped λ-calculus
by the following grammar:

e ::= x | c | (ee) | (λx. e)

together with conventions of left-associativity and iterated λ’s in order to avoid
cluttering the notation. Later, we defined a substitution on this raw syntax,
and congruence relations on λ-terms such as α-, β- and η congruences.

In this exercise, we will use a particular representation technique for
the untyped λ-calculus called shallow embedding . It can be found in the- shallow embedding

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/

ory http://www.infsec.ethz.ch/education/permanent/csmr/material/ Lambda.thy

Lambda.thy (which is based on fol for purely technical reasons - the dec-
laration part can be loaded even in Pure, the meta logic of Isabelle itself). In-
stead of e, we declare one universal type term — the presented calculus is thusterm

untyped. The application is represented by the constant declaration ”ˆ” :: ”ˆ

[term, term] ⇒ term”, consequently. Instead of defining an own substitution
function, however, we define the abstraction as a constructor of a function;
thus, it gets the type Abs :: ”[term ⇒ term] ⇒ term” where⇒ is the functionAbs

space inherited from Pure. The notation lam x. P x is equivalent to Abs(λ xlam x. P x

. P x); recall that λ is the internal abstraction inherited from Isabelle/Pure.
Thus, whenever we want to substitute a term into the body of an abstraction,
we can just use the β-reduction provided by Isabelle/Pure (one also speaks
of an “internalized” substitution provided by the shallow embedding of our
language; or of using higher-order abstract syntax).higher-order abstract

syntax Our theory for the untyped λ-calculus also provides the β-reduction relation
and the β-congruence by a set of axioms; note that we make no claims on the
logical consistency of this exercise!

Further, it provides definitions for the standard combinators K,S and I and
two versions of Y combinators.

In lecture it was said that the untyped λ-calculus is Turing-complete. We
will show two core ingredients for such a proof: namely that data types (in
particular: natural numbers) and fix-point combinators (enabling the presen-
tation of recursive functional programs) can be represented inside the untyped
λ-calculus.

1.2. Automated Proof Search Tactics

As mentioned in the lecture “Proof Search”, Isabelle can organize proof-states
in a tree-like fashion, which can therefore be searched according to depth-first
or breadth-first strategies. The tactic command fast performs the former,
according to introduction and elimination rules given to it. Introduction and
Elimination rules are both subdivided into two classes:

1. safe rules, which transform a proof state into an equivalent one,safe rules

2. unsafe rule, which may transform a proof state into a logically weakerunsafe rule
one.

Unsafe rules where tried in a limited way after safe rules did not succeed, and
assumption is applied after no more unsafe rule applications are possible. Some
syntactic variants for fast-commands are:fast intro

fast elim

2

http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy

fast intro : rules
fast elim : rules

If the full context of assumptions should be included as well, one can append
a ! to intro , elim, and dest, e.g.:

fast intro !: rules

2. Exercises

2.1. Exercise 18

As a warm-up, reduce the following terms to β-normal form in Isabelle.

1. SKK

2. SKS

Hint: Start with

lemma ex18 1: ”SˆKˆK >−−> ?x”

In the end, the metavariable ?x should be instantiated to a term in β-
normal form.

Hint: Do the proofs without using fast .

2.2. Exercise 19

Automate the proofs from Ex. 18 using fast and the isar control structures.
Thanks to automation, you should be able to show also the following reductions
using the identical “proof script”:

1. SKKISS

2. SKIKISS

2.3. Exercise 20

Now show in Isabelle that for both Y -combinator versions enjoy a fix-point
property, i.e. prove that:

1. YT F >=< F (YT F) and

2. YCF >=< F (YCF).

Is it possible to show YT F-->F (YT F) and YCF-->F (YCF)?

3

2.4. Exercise 21

Following a proposal by Alonzo Church, natural numbers n were encoded as
the term

λfx. f(f . . . (f︸ ︷︷ ︸
n times

x) · · ·) ,

which we abbreviate by writing λfx. fnx. The successor function and addition
are given by the λ-terms:

succ ≡ λufx. f(ufx)
add ≡ λuvfx. uf(vfx)

Write a theory of the Church-Numerals with constants for C0,C1,C2 and
succ and add .

Convince yourself that succ and add are indeed the successor and addi-
tion function, by evaluating them symbolically (i.e, on “terms” λfx. fnx and
λfx. fmx) under a suitable assumption.
2.5. Exercise 22

Reduce the following terms:

1. succ C0

2. add C3 C2

2.6. Exercise 23 (optional)

When applying a rule, Isabelle uses a process that is called higher-order uni-
fication for finding instantiations for meta-variables. Consider the unification
problem

?P(?b) =αβη y = x

which has the solutions:
[?P← (λz. z = x), ?b← y]
[?P← (λz. y = z), ?b← x]
[?P← (λz. y = x), ?b← t] (for any t)

We can simulate higher-order unification inside Lambda.thy on the basis of
?P ˆ ?x >=< add ˆ C3 ˆ C4.

1. Synthesize at least two solutions. You may use local substitutions or
back.

2. Try to unify lam x. add ˆ ?P ˆ C4 >=< lam x. add ˆ x ˆ C4 and lam x.
add ˆ (?P ˆ x) ˆ C4 >=< lam x. add ˆ x ˆ C4

4

A. Encoding the untyped λ-calculus in in Isabelle

1
2 theory Lambda = FOL:
3
4 (∗ common definition for both calculi ∗)
5 typedecl
6 ”term”
7
8 arities
9 ”term” :: logic

10
11 consts
12 Abs :: ”[term ⇒ term] ⇒ term” (binder ”lam ” 10)
13 ”ˆ” :: ”[term, term] ⇒ term” (infixl 20)
14
15 K :: ”term”
16 I :: ”term”
17 S :: ”term”
18
19 B :: ”term”
20
21 YC :: ”term”
22 YT :: ”term”
23
24 defs
25 K def: ”K ≡lam x. (lam y. x)”
26 I def : ”I ≡ lam x. x”
27 S def: ”S ≡lam x. (lam y. (lam z. xˆzˆ(yˆz)))”
28
29 B def: ”B ≡Sˆ(KˆS)ˆK”
30
31 YC def: ”YC ≡lam f. ((lam x. fˆ(xˆx))ˆ(lam x. fˆ(xˆx)))”
32 YT def: ”YT ≡(lam z. lam x. xˆ(zˆzˆx))ˆ(lam z. lam x. xˆ(zˆzˆx))”
33
34
35 (∗ reduction λ−calculus ∗)
36 consts
37 Red :: ”[term, term] ⇒ prop” (”(>−−>)”)
38
39 axioms
40 beta: ”(lam x. f(x))ˆa >−−> f(a)”
41 refl : ”M >−−> M”
42 trans: ”[[M >−−> N; N >−−> L]]=⇒M >−−> L”
43 appr: ”M >−−> N =⇒MˆZ >−−> NˆZ”
44 appl: ”M >−−> N =⇒ZˆM >−−> ZˆN”
45 epsi : ”[[!! x. M(x) >−−> N(x)]]=⇒(lam x. M(x)) >−−> (lam x. N(x))”
46
47 (∗ equational λ−calculus ∗)
48 consts
49 Conv :: ”[term, term] ⇒ prop” (”(>=<)”)
50
51 axioms
52 beta sym: ”(lam x. f(x))ˆa >=< f(a)”
53 refl sym: ”M >=< M”
54 symm sym: ”M >=< N =⇒N >=< M”
55 trans sym: ”[[M >=< N; N >=< L]]=⇒M >=< L”
56 appr sym: ”M >=< N =⇒MˆZ >=< NˆZ”
57 appl sym: ”M >=< N =⇒ZˆM >=< ZˆN”
58 epsi sym: ”[[!! x. M(x) >=< N(x)]]=⇒lam x. M(x) >=< lam x. N(x)”
59
60 (∗ syntax setup ∗)
61 syntax (symbols)
62 ”lam ” :: ”[idts , term] ⇒ term” (”(3λ ./)” [0, 10] 10)
63
64 end

5

	Isabelle
	The Context of this Exercise
	Automated Proof Search Tactics

	Exercises
	Exercise 18
	Exercise 19
	Exercise 20
	Exercise 21
	Exercise 22
	Exercise 23 (optional)

	Encoding the untyped -calculus in in Isabelle

