
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16814)

Submission date: –

PL in LF

In this exercise, we will use a very powerful meta-logic, intro-
duced under the name LF (“logical framework”). Its purpose is
to represent not only the syntax of propositional logics (PL), but
the deductive system in form of its natural deduction system. As a
consequence, we will deepen our understanding of notions like proof
objects and the propositions-as-types principle.

By encoding PL in LF, we also give an intuition into Isabelle
and its character as logical framework itself—at the end, Isabelle’s
built-in logic Pure is used to encode LF with the same techniques
as we are studying PL in LF.

1 Background

1.1 Revisiting LF

We briefly revisit the LF system as presented in the lecture. LF is defined as LF
a λ-calculus with dependent types; these were represented by a several mutual
recursive judgments formalizing signatures Σ and contexts Γ.

The basic theory http://www.infsec.ethz.ch/education/permanent/ LF.thy

csmr/material/LF.thy contains a shallow embedding of the raw terms—also shallow embedding
called: pseudo terms—of the λ-calculus (i.e. substitution and generation of free

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/material/LF.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/LF.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/LF.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/LF.thy


variables is done by Pure). However, the type-system is represented by axioms
that define the notion of signature and context. As in previous exercises, we
make no statement about the logical consistency of our presentation.

1.2 Signatures and Contexts

Generally, a signature specifies the “constant symbols” (as opposed to vari-signature
ables). A signature Σ is a sequence of pairs of the form c : τ , where c is a
constant symbol and τ is a type.

A context specifies the types of the variables used in an expression. A contextcontext
Γ is a sequence of pairs of the form x : A, where x ∈ Var and A is a raw term.

The axioms for signatures and contexts define inductively the subset of valid
signatures and contexts.

1.3 The judgments of LF

Valid signatures and contexts are defined via three (mutually recursive) kinds
of judgments:

1. judgments stating that a signature is valid, `sig Σ;

2. judgments stating that a context is valid, `con Γ;

3. judgments stating that a term has a certain type; this is a relation be-
tween a signature Σ, a context Γ and an expression of the form t : A,
written Γ `Σ t : A.

Note, however, that our implementation of LF in Isabelle differs from the
presentation in lecture in that there is no Σ and `Σ. Statements for them were
simulated by constant declarations and suitable axioms.

The judgments in LF are of the form x1 : X1 . . . xn : Xn ` x : X. An
example for a judgment is x:o y:o |− x:o.

The following table shows how the various syntactical entities of LF are
written in LF.thy:

LF LF.thy
ΠxA. b Prod(A, λx.B) or Pi x:A. B
A → B A−>B
λxA. b Abs(A, λx.B) or Lam x:A. B
F (a) (application) FˆA

The notations Prod(A, λx.B) and Abs(A, λx.B) may be parsed and printed al-
ternatively by Isabelle. There are also some differences between the LF pre-
sentation in the lecture and the way the rules are encoded in Isabelle:

2



• There is no assumption rule, since signatures are mimicked by contexts
and by theory extensions.

• The hypothesis rule requires that the type assignment to be proven is
the first in the context (which is implicitly assumed to be a set). In
Isabelle/LF, the context is more a list-like structure which makes the
introduction of a weakening-rule necessary.

2 Exercises

2.1 Exercise 24

Prove three of the following judgments in LF. To learn more, you might want
to try and guess the instantiation of the metavariable in advance:

1. i : Type ` Πxi.Type :?T

2. A : Type, B : Type ` A → B :?T

3. A : Type, B : Type ` λxA. A → B :?T

4. f : ΠxA. B, a : A ` f(a) :?T (note how Isabelle displays ΠxA. B!)

5. A : Type, P : A → Type, a : A ` P (a) :?T

6. A : Type, P : A → Type ` λaA. λbP (a). b :?T

2.2 Exercise 25

Encode syntax and deductive system of propositional logic (PL) and call the
resulting theory PL in LF. The cases for and and or are sufficient.

Example for the syntax:

consts
”o” :: ”term”
”imp” :: ”term”

axioms
o def : ”G|− o:Type”
imp def: ”G|− imp: o−>o−>o”

Example for the deductive system:

3



consts
”pr” :: ”term”

”impI” :: ”term”

axioms
pr def : ”G|− pr: o−>Type”

impI def : ”G|− impI:Pi A:o. Pi B:o. (prˆA−>prˆB)−>pr ˆ(impˆAˆB)”

Do not forget the impE-rule!
2.3 Exercise 26

Prove in PL in LF that ` Πxo.Πyo. pr (imp x y) → (pr x) → (pr y) : Type.
2.4 Exercise 27

Prove one of the following propositions in PL in LF:

1. a → a

2. a → b → a

Hints:

1. One states that a proof for the goal is a term of type pr(imp a a), and
gives a proof object for it, i.e. one states

a : o `?t : pr(imp a a)

for an appropriate, given t and proves this statement.

2. Alternatively, one synthesizes the ?t through the meta-level proof. Since
the unifications for the application-rule are highly ambiguous (Isabelle
may even be unable to find existing unifiers!), you will have to make
tricky explicit instantiations. An (unsafe and incomplete) alternative is
to use back until Isabelle has found the right unifier.

3. The proof object for the second exercise is:

impIˆaˆ(impˆbˆa)ˆ (Lam x: prˆa. impIˆbˆaˆ(Lam xa:prˆb. x))

The proof is difficult.

4



2.5 Exercise 28

Prove one of the following propositions in PL in LF:

1. a ∧ b → a

2. a → b ∨ a

5


	Background
	Revisiting LF
	Signatures and Contexts
	The judgments of LF

	Exercises
	Exercise 24
	Exercise 25
	Exercise 26
	Exercise 27
	Exercise 28


