
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16814)

Submission date: –

HOL: Derived Rules

In the lecture, standard and non-standard models of HOL have
been presented in informal notation based on ZF set theory.

On this basis, a small set of axioms is justified, which serve as
foundation of HOL. In this exercise, we will prove the basic logical
rules of Higher-order logic (hol) from these axioms and elementary
definitions.

1 Background

1.1 Higher-order Logic

We have seen in lecture “hol: Deriving Rules” how all well-known inference
rules for logical connectives and quantifiers can be derived in hol. We now
want to do some of these proofs in Isabelle. Those rules are available by default
since they are derived from the eight basic rules once and for all.

Of course, these rules are already proved in the standard Isabelle/hol library.
Nevertheless, do not to use library proofs for them and apply automated tactics
only with your own derived rules.

Following general convention, the syntax for function application in hol is function application
just f x instead of f(x) as in fol.

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/

2 Isabelle/HOL

2.1 Technicalities

As for fol you have to tell Isabelle that you want to work in hol; choose holhol

by selecting 〈Isabelle/Isar B 〈Logics B HOL〉〉. Within Isabelle/hol the
basic theory (on which you build your own theory) is called Main, thus yourMain

basic theory file for this exercise should look like:

theory ex7 = Main:
lemma fun cong: ”f=g =⇒f(x) = g(x)”

end

2.2 The Logical Foundation

True def : ”True ≡ ((λx::bool. x) = (λx. x))”
All def : ”∀ P ≡ (P = (λx. True))”
Ex def: ”∃ P ≡∀Q. (∀ x. P x −→Q) −→Q”
False def : ”False ≡ (∀P. P)”
not def : ”¬ P ≡P−→False”
and def: ”P ∧Q ≡∀R. (P−→Q−→R) −→R”
or def : ”P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R”
if def : ” If P x y ≡THE z::’a. (P=True −→z=x)

∧ (P=False −→z=y)”

eq reflection : ”(x=y) =⇒(x≡y)”

refl : ”t = (t::’a)”
subst : ”[[s = t; P(s)]] =⇒P(t::’a)”

ext : ”(
∧

x::’a. (f x ::’b) = g x) =⇒ (λx. f x) = (λx. g x)”

the eq trivial : ”(THE x. x = a) = (a::’a)”

impI: ”(P ≡Q) =⇒P−→Q”
mp: ”[[P−→Q; P]] =⇒Q”

iff : ”(P−→Q) −→(Q−→P) −→(P=Q)”
True or False : ”(P=True) ∨(P=False)”

2

The axiom of the THE-operator seems to be obviously true, but somewhat THE-operator
pointless. In each type τ there is a function assigned to this operator, that
chooses out of the set of possible values in the semantic domain of τ the element,
that is equal to a. However, since we may write THE x. P x, the THE-operator
may be used quite flexibly to define elements that are uniquely defined by a
predicate P; in other words: the use of the operator boils down to the proof of
uniqueness with respect to P.
2.3 Exercise 29

Derive the following rules:
1. f = g =⇒ f(x) = g(x) (fun cong)

2. x = y =⇒ f(x) = f(y) (arg cong)

2.4 Exercise 30

Derive the following rules presented in the lecture:
1. transitivity and symmetry

s = t =⇒ t = s (sym)
[[r = s; s = t]] =⇒ r = t (trans)

2. rules about iff :

[[P =⇒ Q;Q =⇒ P]] =⇒ P = Q (iffI)
[[P = Q;Q]] =⇒ P (iffD2)

3. rules about True:

True (TrueI)
P = True =⇒ P (eqTrueE)
P =⇒ P = True (eqTrueI)

4. rules about ∀:

(
∧

x.P x) =⇒ ∀x.P x (allI)

(∀x.P x) =⇒ P x (spec)

5. rules about False:

False =⇒ P (FalseE)
False = True =⇒ P (False neq True)
True = False =⇒ P (True neq False)

3

6. rules about ¬:

(P =⇒ False) =⇒ ¬P (notI)
[[¬P ;P]] =⇒ R (notE)

¬(True = False) (True Not False)

7. rules about ∃:

P (x) =⇒ ∃x.P x (exI)

[[(∃x.P x);
∧

x.P x =⇒ Q]] =⇒ Q (exE)

8. rules about ∧:

[[P ;Q]] =⇒ P ∧Q (conjI)
P ∧Q =⇒ P (conjEL)
P ∧Q =⇒ Q (conjER)

[[P ∧Q; [[P ;Q]] =⇒ R]] =⇒ R (conjE)

9. rules about ∨:

P =⇒ P ∨Q (disjIL)
Q =⇒ P ∨Q (disjIR)

[[P ∨Q;P =⇒ R;Q =⇒ R]] =⇒ R (disjE)

10. and finaly, exluded middle:

P ∨ ¬P (excluded middle)

2.5 Exercise 31

Prove the following properties:

[[P a;
∧

x.P x =⇒ x = a]] =⇒ (THE x.P x) = a (the equality)

2.6 Exercise 32

Prove the following two properties of the if−then−else:if−then−else

Q = True =⇒ (if Q then x else y) = x (ite then)
Q = False =⇒ (if Q then x else y) = y (ite else)

4

	Background
	Higher-order Logic

	Isabelle/HOL
	Technicalities
	The Logical Foundation
	Exercise 29
	Exercise 30
	Exercise 31
	Exercise 32

