
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16802)

Submission date: –

HOL: Axiomatic Classes and
Typed Set Theory

In this exercise, we will deepen our knowledge on a specific con-
cept of theory structuring in Isabelle, namely axiomatic classes. We
will extend conservative library constructions in typed set theory,
and will lay the groundwork for inductive definitions.

Technically, we will apply automated proof procedures, be it on
the level of rewriting or tableaux based procedures and combined
methods such as auto.

1 Isabelle

1.1 Axiomatic Classes

Languages like Haskell have popularized the notion of type classes. In its
simplest form, a type class is a set of types with a common interface: all types
in that class must provide the functions in the interface. Isabelle offers a similar
concept, called axiomatic type classes. An axiomatic type classes is something
like a type class with axioms, i.e., an axiomatic specification of a class of types,
thus a type ’a being in a class C (written ’a::C) must satisfy all axioms of C.
Furthermore, type classes can be organized in a hierarchy. Thus there is the

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/

notion of a class D being a sub class of a class C, written D < C. This is the D < C

case if all axioms of C are also provable in D.
Isabelle/hol already has a built-in type class ord that among others definesord

the <= symbol for orders. On top of ord we can introduce a type class reford<=

which requires reflexivity for the order relation:axclass

axclass reford < ord
reford refl : ”x <= y”

For types being in the type class reford we now have an antisymmetric order
and should be able to proof:

lemma ”(x::’a::reford) <= x”

But for now, there are no concrete types in the type class reford .

1.2 Instances

To bring life in our new type class reford we have to declare that a concrete
type is an instance of our type class and we also have to define the meaning ofinstance

<= over bool.
But first we prove that bool is an instance of the type class ord:

instance bool :: ord
apply(intro classes)
done

Where intro classes is a special method for doing “instance-proofs”, i.e., everyintro classes

proof of a type being a instance of a type class should start with applying
this method. Further, we define the meaning of our order <= over bool as
implication (−→):1

defs (overloaded)
leq bool def : ”p <= q ≡p −→ q”

and prove that bool is a instance of the type class reford :

instance bool :: reford
apply(intro classes)
apply(unfold leq bool def)
apply(rule imp refl)
done

1The (overloaded) keyword is used here because the syntax of <= is used in many different
contexts and we “overload” it with our definition.

2

1.3 Using the Simplifier

The simplifier uses a “current simplifier set” available in a proof context. This
can be modified in the isar-language by adding new rules (that must have
the format the simplifier may process; i.e. it must be a higher-order pattern
rule), deleting rules or by adding rules of a special format, e.g. splitter rules
or congruence rules, which we will discuss in the future.

Examples for the syntax of the simplifier method are:

apply(simp add: A B C)
apply(simp all del : B)
apply(simp only: A)
apply(simp addsplit : E)
apply(simp addcong: F)

2 Exercises

2.1 Exercise 33

1. Define an axiomatic class “qorder” of quasi-orderings (these are structures
with an ordering symbol op <= which are reflexive and transitive).

2. Define an axiomatic subclass “ linqorder ” of linear quasi-orderings which
enjoy the additional property A <= B ∨B <= A

Define the relation:

A ˜=˜ B == A <= B ∧B <= A

on it.

3. Show that linear quasi-orderings are equivalence relations and prove the
following properties (min is inherited from class ord):

lemma min cong: ”A ˜=˜ B =⇒min A B ˜=˜ B”
lemma linear order CE [dest !]:

”¬ (A::’a::linqorder) <= B =⇒B <= A”
lemma min com: ”min (A::’a::linqorder) B ˜=˜ min B A”
lemma min sym ”min (A::’a::linqorder) B ˜=˜ min B A”
lemma le split :

”(A::’a::linqorder) <= B =⇒¬(B <= A) ∨(A ˜=˜ B)”
lemma quasi refl: ”A ˜=˜ A”
lemma quasi sym: ”A ˜=˜ B =⇒B ˜=˜ A”
lemma ”[[A ˜=˜ B; B ˜=˜ C]]=⇒A ˜=˜ C”

3

4. Define the ordering op <= over pairs by conjoining the ordering on com-
ponents of the pairs and prove

lemma ”(a::(’a::qorder ∗ ’b::qorder)) ˜=˜ b =⇒b ˜=˜ a”

Hint: Lookup the definition of the axiomatic class order in the hol theory
(http://isabelle.in.tum.de/library/HOL/HOL.html) and modify it!

Hint: Use simp, fast , auto!

2.2 Exercise 34

1. Prove the following set-theoretic properties only using the simplifier (not
fast, not blast, not auto):

A ∪ (B ∪A) ⊆A ∪B
A = D =⇒A ∪(C ∪B) ∪D = C ∪B ∪A
F = B =⇒A ∩(B ∪C) = (C ∩A) ∪ (B ∩A ∩F)

2. Prove the following set-theoretic properties with methods of your choice:

Domain r = UNIV =⇒Id ⊆r\={} O r
Domain r 6= UNIV =⇒∃ x. (x, x) /∈ r\={} O r
∃ x∈ A. X ⊆B x =⇒X ⊆UNION A B

Hint: For the first task, set up the simplifier such that it computes ACI normal
forms.

2.3 Exercise 35

We define a (tiny) fragment of the specification language Z.2 Begin by defining
the type of relations as sets of products using the type synonym:

types (’a ,’ b) ”<=>” = ”(’a∗’b) set” (infixr 20)

Define the Z constructs notational equivalent:

syntax
dom :: ”(’a <=> ’b) => ’a set”
ran :: ”(’a <=> ’b) => ’b set”

2You can find more information about Z on the “Z Notation Website”: http://archive.

comlab.ox.ac.uk/z.html.

4

http://isabelle.in.tum.de/library/HOL/HOL.html
http://archive.comlab.ox.ac.uk/z.html
http://archive.comlab.ox.ac.uk/z.html

translations
”dom r” == ”Domain r”
”ran r” == ”Range r”

1. Define the following operators over sets A and B:

A <−−> B relation
A −|−> B partial function
A −−−> B total function
A >−|−> B partial injection
A >−−> B total injection
A −|−>> B partial surjection
A >−−>> B bijection

2. Define the operator override A (+)B that takes two relations and “com-
bines” them as follows:

a) any (x,y) :A is in the override, iff x ˜: dom B,

b) any (x,y) :B is in the override, iff x ˜: dom B.

3. Prove:

f : A −|−> B =⇒f : A <−−> B
f : A −−−> B =⇒f : A −|−> B
f : A >−|−> B =⇒f : A −|−> B
f : A >−−> B =⇒f : A −|−>> B =⇒f : A >−−>> B
A (+) A = A
(A (+) B) (+) C = A (+) (B (+) C)

Hint: Use simp, fast , auto as you like.

Hint: It might be useful to define a concept like “domain restriction” S <: A
(cutting down a relation A by erasing all pairs, whose first component is
in a given set S).

5

	Isabelle
	Axiomatic Classes
	Instances
	Using the Simplifier

	Exercises
	Exercise 33
	Exercise 34
	Exercise 35

