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HOL: Inductive Data Types

In this exercise, we will study the concept of the least fix-point
operator lfp , its main theorems knaster tarski and lfp induct and lfp

its major application: providing semantics for inductive definitions.
The importance of the concept of inductive definition will be

revealed by applying it in three examples, ranging from closures,
finite sets to natural numbers.

1 More on Isabelle/HOL

1.1 Inductive Definitions

The general syntactic scheme of an inductive definition is: inductive

inductive ”expr”
intros
thmname 1: ”H 1 ∈ expr”
. . .
thmname m: ”[[ Cond 1(expr); . . .; Cond n(expr)]] =⇒H m ∈expr”

where expr must be a set of the form C var 1 . . .var k and where C is a previ-
ously declared, but not yet defined constant, and the list of variables var i may
be empty. After the keyword intros, introduction rules for the inductive set
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may be inserted, either with assumptions or not (both forms can be arbitrarily
mixed). The conditions Cond i may depend on expr or not.

Isabelle will process such statements and compile it to

1. a constant definition for C which can be referenced by C.defsC.defs

2. proofs for the introduction rules in the form given in the inductive state-
ment; the theorems can be referenced by their given name thmname i,
and

3. proofs for the induction rules which can be referenced by C.inductC.induct

Note that introducing theorems via the declare statement (see the isar Ref-declare

erence Manual1) allows to insert such rules once and for all into the appropriate
“slots” of the proof engine; there are more syntactic variants in the inductive
statement that have the same effect.

1.2 Constant Specifications

There is an alternative conservative extension scheme supported by Isabelle,
namely the constant specification. In contrast to the constant definition used soconstant specification
far, a “fresh” constant c may be specified by a syntacticly unlimited predicate
P in an axiom P x. Of course, this axiom must be justified by the proof of the
semantic side-condition ∃x.P x.

The overall syntactic scheme of a constant specification in the isar language
is:specification

specification (C)
thmname: ”P C”
. . .
done

where C is a previously declared, but not yet defined constant, P a character-
izing predicate that can be referenced by thmname, followed by a proof for the
side-condition.

2 Exercises

2.1 Exercise 36

Prove the Knaster-Tarski theorem

mono f =⇒ lfp f = f(lfp f)
1http://isabelle.in.tum.de/dist/Isabelle2004/doc/isar-ref.pdf
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using the presentation given in the lecture “hol: Fixpoints”, i.e., first prove
the claims 1–4. Use whatever proof methods you like, but you should no use
any theorem from the hol library.
2.2 Exercise 37

1. Define inductively the function “Fin:: ’a set ⇒ ’a set set” that pro-
duces the set of all finite subsets.

2. Prove the following properties over set of all finite subsets:

a) lemma ”{1,2}∈Fin{1,2,3}”
b) lemma ”[[a∈Fin A; b∈Fin A]]=⇒ (a∪b)∈ Fin A”

c) lemma ”[[(A ∈Fin X) ∨ (A ∈ Fin Y)]] =⇒A ∈ Fin (X ∪Y)”

d) lemma finite InI : ”[[ b∈ Fin A]] =⇒ (a∩b)∈ Fin A”

e) lemma ”[[A ∈Fin X]]=⇒Pow(A)∈Pow(Fin X)”

Remark: The elements 1, 2, etc. do not imply that we have already numbers;
they are constants in syntactic classes predefined in the library. As a
result, Fin{1,2,3} has the type (’a::{one,zero,number})set and not nat
set.

2.3 Exercise 38

1. Define the concept of a reflexive transitive closure as an inductive defini-
tion over the constant

consts
rtc :: ”(’a × ’a) set ⇒ (’a × ’a) set” (”( ˆ∗∗)” [1000] 999)

2. Prove the following properties, using the derived induction scheme (The
last two are optional.):

a) lemma rtc: ”
∧

p. p ∈ r ⇒ p ∈ rˆ∗∗”

b) lemma rtc induct pointwise:
assumes a: ”(a:: ’a, b) ∈ rˆ∗∗”
assumes base: ”P a”
assumes step: ”

∧
y z. [[(a, y) ∈ rˆ∗∗; (y, z) ∈ r ; P y]] =⇒P z”

shows ”P b”

c) lemma ctr trans: ”[[ (a,b)∈ rˆ∗∗;(b,c)∈ rˆ∗∗ ]] =⇒ (a,c)∈ rˆ∗∗”
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d) lemma rtc is closure : ”(rˆ∗∗)ˆ∗∗ = rˆ∗∗”
e) lemma rtc un distr: ”(Rˆ∗∗ ∪Sˆ∗∗)ˆ∗∗ = (R ∪S)ˆ∗∗”
f) lemma rtc un distr: ”Rˆ∗∗ O Rˆ∗∗ = Rˆ∗∗”

Hints:

1. Prove the lemmas in the given order.

2. You may unfold variables denoting pairs with the method: apply(
simp only: split tupled all )

3. The crucial alternative induction scheme needs an additional as-
sumption a = a −→P(b). You should add this assumption (using
subgoal tac) and prove it using the derived induction scheme with
the instance P = λx y. x = a −→P y.

2.4 Exercise 39

State the axiom of infinity

axioms infinity : ”∃ f::ind ⇒ ind . inj f ∧ ¬ surj f”

and build a conservative theory extension deriving the core of the natural
number theory, the Peano Axioms:

1. Declare the constants ZERO::ind and SUC::ind ⇒ind,

2. Use a constant specifications to specify ZERO and SUC appropriately, i.e.,
such that you can derive ZERO 6=SUC X and SUC X = SUC Y =⇒X = Y,

3. Define NAT as the inductive set built over ZERO and SUC

4. Show the ”induction” theorem on NAT.
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