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HOL: Well-founded and Primitive
Recursion

In this exercise, we will deepen our knowledge on well-founded or-
derings and induction as well as its applications in form of recursive
definitions.

1 Recursive Definitions

1.1 Primitive recursion

Isabelle provides a syntactic front-end for defining an important subclass of
well-founded recursions, namely primitive recursive functions, e.g.: primitive recursive

primrecprimrec
add 0: ”0 + n = n”
add Suc: ”Suc m + n = Suc (m + n)”

primrec
diff 0 : ”m − 0 = m”
diff Suc : ”m − Suc n = (case m − n of

0 => 0
| Suc k => k)”
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The general form of a primitive recursive definitions in Isabelle is:

primrec
name1: ”rule”

...
namen: ”rule”

where rule are reduction rules (as usual, the names name1. . .namen are op-reduction rules
tional). The reduction rules specify one or more equations of the form

f x1 . . . xn(C y1 . . . yn) z1 . . . zn = r

such that C is a constructor of the datatype (e.g. Suc in our first example), r
contains only free variables on the left-hand side, and all recursive calls in r
are of the form f . . . yi . . . for some i.

1.2 General Recursive Definitions

Isabelle also offers a way for declaring functions using general well-founded
recursion: recdef. Using recdef, you can declare functions involving nestedrecdef

recursion and pattern-matching, e.g. we can define the Fibonacci function:

consts fib :: ”nat ⇒ nat”
recdef fib ” less than ”

”fib 0 = 0”
”fib 1 = 1”
”fib (Suc(Suc x)) = (fib x + fib (Suc x))”

where les than is the “less than” on the natural numbers.
The general form of a recursive definitions in Isabelle is:

primrec function rule
congs ”rules”
simpset ”rules”

name1: ”rule”
...

namen: ”rule”

where function is the functions name and rule a hol expression for the well-
founded termination relation (Isabelle provides several built-in relations such
as less than or measure). With the to optional arguments congs and simpset
one can influence the set of congurences rules and the simpset used during
the termination proof. Finally, the rules are specifing the “computational”
recursive equations.

2



2 Exercises

2.1 Exercise 40

Prove the following consequences of well-founded orderings:

1. a well-founded ordering is not symmetric:

lemma wf not sym: ”wf(r) =⇒∀ a x. (a,x)∈r −→ (x,a)/∈r”

2. a well-founded ordering contains minimal elements:

lemma wf minimal: ”wf r =⇒∃ x. ∀ y. (y,x) /∈ rˆ+”

3. a subrelation of a well-founded ordering is well-founded:

lemma wf subrel: ”wf(p) =⇒∀ r . r ⊆p −→ (∃ x. ∀ y. (y,x) /∈ rˆ+)”

4. a well-founded ordering satisfies characterization (1):

lemma wf eq minimal2:
”wf(p) = (∀ r. (r 6={} ∧r ⊆p) −→ (∃ x ∈Domain r. (∀ y. (y,x) /∈ r )))”

Hint: Look up the various theorems about wellfounded orderings that Is-
abelle provides (wf induct, wf empty, wf subset, wf not sym, wf not refl ,
wf trancl , wf acyclic , and wfrec def) and use them as you like.

2.2 Exercise 41

1. Define a the recursor iter f n in terms of the well-founded recursor wfrec
and the theory of the natural numbers. Derive from your definition the
properties:

lemma iter 0 : ” iter 0 g = (λ x. x)”
lemma iter Suc : ” iter (Suc n) g = g ◦ ( iter n g)”

2. Define the addition add, the multiplication mult, the exponentiation exp
and the sumup operation sumup ( sumup 3 = 1 + 2 + 3) on natural

numbers.

Use in at least two definitions the iter -recursor and derive the usual com-
putational equations; in the other cases, you may use a primrec construct.
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2.3 Exercise 42 — ”The approximation theorem of lfp”

In lecture “hol: Fixpoints” we have seen the theorem:

(∀S. f(
⋃

S) =
⋃

(f ‘ S)) =⇒
⋃

n∈N

fn(∅) = lfp f

i.e. under a certain condition, a fix-point can be seen as a limit of an ap-
proximation process. This condition is also called continuity of f . Under an
obvious alternative constraint, namely that the fix-point must be reachable af-
ter finitely many steps, this principle is of practical importance, for example in
data-flow analysis algorithms (such as the Java Byte-code Verifier).

Prove one of the following versions of the approximation theorem:

1. lemma lfp approximable if finite :
[[mono f; ∃ m. f ( iter m f {}) = ( iter m f {})]]
=⇒ (UN n:UNIV. (iter n f {})) = lfp f

2. lemma lfp approximable if cont :
[[(

∧
S. f (Union S) = Union (f ‘ S))]]

=⇒ (UN n:UNIV. (iter n f {})) = lfp f

For the first option, we suggest the following intermediate lemmas:

1. mono f =⇒(UN n:UNIV . (iter n f {})) ≤ lfp f

2. [[mono f; ∃ m. f ( iter m f {}) = ( iter m f {})]]
=⇒ lfp f ≤ (UN n:UNIV. (iter n f {}))

For the second option, we suggest the following milestones:

1. mono f =⇒(UN n:UNIV . (iter n f {})) ≤ lfp f

2. (∀ S. f (Union S) = Union (f ‘ S)) =⇒mono f

3. (UN n:UNIV. iter (Suc n) f {}) = (UN n:{m. 0 < m}. (iter n f {}))

4. (UN n:UNIV. g (n::nat)) = (UN n:{m. 0 < m}. (g n))Un (g 0)

5. (∀ S. f (
⋃

S)=
⋃

f ‘S)
=⇒ f (

⋃
n iter n f {}) = (

⋃
n iter n f {})

6. (∀ S. f (Union S) = Union (f ‘ S))
=⇒ f (UN n:UNIV. (iter n f {})) = (UN n:UNIV. f (iter n f {}))
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7.
∧

S. f (Union S) = Union (f ‘ S))=⇒ lfp f ≤ (UN n:UNIV. (iter n f {})
)

Hint: Look up the various theorems about the inclusion operation that Is-
abelle provides (rev subsetD, lfp unfold , monoD, Un upper1, Un absorb1,
image Collect) and use them as you like.
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