
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16802)

Submission date: –

HOL: Hoare Logic

With this exercise, we turn now to applications of Isabelle/hol
in the field of (theoretical) computer science. We will reuse an
existing encoding of an imperative toy-language for verifications
of imperative programs. From the theorem proving side, we will
introduce into structured proofs with isar.

1 More on Isabelle: Some ISAR Features

1.1 Structured Proofs with ISAR: An Introduction

Interactive theorem proving (as we introduced it in the course and as we —
the authors — still believe is easier to understand comprehensively) has been
dominated by a model of proof that goes back to the lcf system: a proof is a
sequence of commands that manipulate an implicit proof state.

This model is reflected in the syntactic structure:

(lemma | theorem) [name :] <proposition> <proof>

where <proof> has is a sequence of apply(<method>) commands followed by
done or just by(method).

Tactic-style proofs had been criticized for being very distinct from
mathematics-like texts, unstructured and hard to maintain. Therefore, isar

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/

has been conceived to allow a more declarative proof-style that is claimed to be
closer to mathematical texts (the reader may browse through the meanwhile
quite rich corpus of structured proofs in the library in order to decide if this
goal has really been achieved).

Structured proofs were introduced by a new alternative in the syntactic cat-
egory <proof> which introduces a block structure:fix

assume

from

this

show

have
note

let

<proof> ::= ...
| proof [<method> | −] <proof> {<statement>} qed

Here, a <statement> has the form:

<statement> ::= fix {name}
| assume [<fact>:] <propositions>
| [from {<fact>} | this} (show | have) <propositions>

<proof>
| note <fact> = <fact> | this
| let <meta−var> = ”term”

and can thus again contain sub-proofs.
In the following, we discuss <statement> in more detail. The <fix>-

statement serves as abstract means to introduce meta-quantified variables in a
local proof goal, the <assume>-statement is used (similarly to the <assumes
>-statement on the top-level) to introduce local assumptions and the <have>-
statement to introduce the conclusion of a local subgoal of a proof. Thus, within
a proof, local subgoals can be stated and proven. With the <note>-statement,
the previous proposition (referenced by <this>) can be bound to a name, and
in a <let> statement, a meta-variable may be bound to a particular term;
since this meta-variable may be used in subsequent propositions, this may be
used to reduce the size of local propositions and substitutions drastically. In
connection with a pattern-match construct possible in any:

<proposition> ::= ”term” [({is ”<string>”})]

(where in the string, meta-variables may be used that can also be used in
propositions and substitutions later), a means for systematic abbreviations in
proof texts is provided.

Note that with the proof-directive, the current proof state is implicitly bound
to a particular meta-variable ? thesis . Consequently, in order to conclude a sub-
proof successfully, a proof will typically have the form:

proof −
assume ”the−assm”
have ”concl” by (...)

2

note A = this
assume ”the−other−asm”
have ”the−other−concl” by(...)
note B = this
show ? thesis

<main proof>

Note that the − symbol stands for “do nothing”; if omitted, the default method
is application of certain introduction rules controlled by the context.

Obviously, isar has been reduced to a kind of core-language here; a large
number of abbreviations and syntactic variations exist. For example, there is
an implicit fact management (pretty much inspired by PEARL) that makes
most note-statements superfluous. We will describe some of these variations
in subsequent exercise sheets.

2 Exercises

This exercise is based on IMP, in particular VC, which is not a Isabellehol
built-in. You will need to extend Isabelle’s search path such that Isabelle will
be able to load the needed theory files at run-time. Therefore, start your theory
file like:

ML {∗
add path ”$ISABELLE HOME/src/HOL/IMP”;

∗}

theory HOL Hoare = VC:

2.1 Exercise 43

Verify the program for computing the integer square root (from the lecture)
in IMP from the lecture:

((tm :== (λs. 1));
((sum :== (λs. 1));
((i :== (λs. 0));

WHILE (λs. (s sum) <= (s a)) DO
((i :== (λs. (s i) + 1));
((tm :== (λs. (s tm) + 2));
(sum :== (λs. (s tm) + (s sum)))))))

Verify this program using
1. the tactic-based method language

3

2. the structured isar language.

and compare the resulting proof scripts.

Hints: • Use these given parenthesis’s; the syntax setup of IMP is not really
optimal this time !

• Do not forget to assume that the locations for i ,tm, sum and a are
pairwise distinct.

• Use update def in the simplifier set to handle updates.

2.2 Exercise 44

Verify the IMP-program of the previous exercise without using the Hoare-
calculus explicitly. The idea is to use the verification condition generator vc in
theory VC.thy running over an annotated program, i.e. the program enriched
by the crucial invariants.

(Here, we do not need an in-depth understanding of vc, we just apply it).
The abstract syntax of annotated programs is given in VC by the datatype:

datatype acom = Askip
| Aass loc aexp
| Asemi acom acom
| Aif bexp acom acom
| Awhile bexp assn acom

(The assn in the Awhile-case is the invariant).
Note: The crucial theorem vc sound allows for the reduction of the Hoare-

triple

|− {pre} squareroot tm sum i a {post a i}

to a hol-formula generated by vc.
Hints: • Do not forget to assume that the locations for i ,tm, sum and a

are pairwise distinct.

• Give the annotated program aprog first (the let-statement may help
here!).

• Prove the subgoal squareroot tm sum i a = astrip aprog, i.e. the an-
notated program must be the previously defined program squareroot
if the annotations are “stripped away”.

• Prove the subgoal pre = awp aprog (post a i), i.e. the weakest pre-
condition computed from the program is equivalent to the precon-
dition.

4

• apply theorem vc sound.

• compute and solve the verification condition.

• Use update def in the simplifier set to handle updates.

5

	More on Isabelle: Some ISAR Features
	Structured Proofs with ISAR: An Introduction

	Exercises
	Exercise 43
	Exercise 44

