
Dipl.-Inf. Achim D. Brucker
Dr. Burkhart Wolff

Computer-supported
Modeling and

Reasoning
http://www.infsec.ethz.ch/

education/permanent/csmr/

(rev. 16802)

Submission date: –

HOL: Using Specifications for Code
Generation and Testing

This exercises describes two advanced techniques for using formal
specifications: code generation and random testing.

The former is a viable approach to achieve correct functional
programs and fast evaluation of complex expressions, the latter
may be used for early validations of definitions and formulas.

1 More on Isabelle

1.1 Isabelle’s Code Generator

Isabelle has an own code generator that attempts to convert many constructs
occurring in a specification (such as primrec or datatype definitions) into sml
code. Code generation out of verified theories for efficient datatype implemen-
tations is a viable approach to achieve correct, non-trivial (functional) programs
with Isabelle. For example, you can generate code for the term “ foldl op +
(0:: int ) [1,2,3,4,5] ” and store it in the file test.sml via generate code

generate code (”test.sml”)
test = ”foldl op + (0:: int ) [1,2,3,4,5] ”

1

http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/


The code generator can be configured both in more correctness oriented as
well as pragmatic ways; it is possible, for example, to map the datatype nat
on code resulting from the datatype definition in the theory Nat (thus on the
free datatype generated by 0 and Suc) or simply on the sml-datatype int (thus
reusing the machine integers based on two’s complement representation).

Theories can contain highly generic function definitions that are not repre-
sentable in a target programming language for a number of reasons:

1. a function may simply be not computable,

2. a function may have a type that is not representable in the target lan-
guage.

An example for the former is a function definition involving a Hilbert-operator,
an example for the latter is isord (’a :: ord) (’a tree ) which is not repre-
sentable in the sml type system but could be — in principle — represented
in Haskell (note, however, that isord (’a :: order) (’a tree ) could not even be
represented in Haskell). In practice, the types of formulas to be converted into
code must be sufficiently instantiated when configuring the code generator for
a theory. You have mainly three options for configuring the code generator:

1. associate type constructors with specific SML code, e.g.:types code

types code
”∗” (”( ∗/ )”)

2. associate constants with specific SML code, e.g.:consts code

consts code
”Pair” (”( ,/ )”)

3. register theorems for code generation. This can be done using the declare
statement, e.g.[code]

declare less Suc eq [code]

or the code attribute:

lemma [code]: ”((n::nat) < 0 ) = False” by(simp)

The used theorem should be either an equation (with only constructors
and distinct variables on the left-hand side) or a horn-clause (in the same
format as introduction rules of inductive definitions). The latter should
denoted by using [code ind].[code ind]

2



Finally note, if you omit the (”filename”) part of the generate +code state-
ment, the generated code will be immediately available within Isabelle’s ML-
environment.

1.2 Quickcheck

Inspired by the success of random testing tools (e.g. Quickcheck for Haskell) a
similar mechanism for testing lemmas was build into Isabelle: the quickcheck quickcheck

command. For example, if we try to prove

lemma rev append: ”rev (xs @ ys) = rev xs @ rev ys”

we will have a hard day (caused by a simple typo). Now we can try to find a
counter example:

lemma rev append: ”rev (xs @ ys) = rev xs @ rev ys”
quickcheck

Doing this, Isabelle will respond with:

Counterexample found:
xs = [0]
ys = [1]

Thus our lemma does not even hold for lists of length one. After fully un-
derstanding why this assignment is a counter-example, we can reformulate our
lemma:

lemma rev append: ”rev (xs @ ys) = rev ys @ rev xs”

and prove it.
Note that quickcheck uses internally the code generator which means that

quickcheck can only be used if the code generator is already configured cor-
rectly!

2 Exercises

2.1 Exercise 49

Create a version of your avl tree specification that works over integers, e.g.,
insert should have the type

consts
insert :: ”int ⇒ tree ⇒ tree”

and use it for code generation. Store your sml program in a file avl.sml.
Create a file avl-test.sml with the following content:

3



Control . Pr int . printDepth := 100 ; (∗ only f o r sml/NJ ∗)
Control . Pr int . pr intLength := 100 ; (∗ only f o r sml/NJ ∗)

use ” av l . sml” ;
val e lements = [ 1 , 5 , 3 , 4 , 8 , 2 , 4 , 6 ] ;
val t = f o l d l ( fn ( e , t ) ⇒ i n s e r t e t ) ET elements ;

Now start open a shell (i.e., in a xterm) and start the sml Interpreter by typing
sml and load your file by executing use "avl-test.sml". Try to understand
the shown tree representation and validate that your code produced a correct
avl tree with the elements 1, 2, 3, 4, 5, 6, 8. Note, that 4 should be only stored
once in your tree.

Hints:

• For datatype nat, please write Suc(n) instead of 1+n.

• The code generator will need some hints for the polymorphic max
function. Therefore prove the following two theorems and declare
them to the code generator:

lemma [code]: ”((x ::nat) <= y) = ((x < y) ∨(x=y))”
lemma [code]: ”(max (a::nat) b) = (if (a <= b) then b else a)”

• The first two lines in your avl-test.sml file configure the pretty
printer of New Jersey sml to show more details.

2.2 Exercise 50

Use the quickcheck command for testing your avl tree specification “test-
ing” your lemmas. Modify (i.e., introduce bugs) your specifications and try if
quickcheck finds it. Find at least one example for a bug

• where quickcheck finds a non-trivial counter-example.

• where quickcheck fails in detecting the bug.

4


	More on Isabelle
	Isabelle's Code Generator
	Quickcheck

	Exercises
	Exercise 49
	Exercise 50


