Computer-supported

ETH Modeling and
Eidgendssische Technische Hochschule Ziirich Reasonlng
Swiss Federal Institute of Technology Zurich http://www.infsec.ethz.ch/
Dipl.-Inf. Achim D. Brucker education/permanent/csmr/
Dr. Burkhart Wolff] (rev. 16826)
Computer-supported

Modeling and Reasoning
— FExercises and Solutions —
(Isabelle 2004)

Achim D. Brucker Burkhart Wolft

{brucker,bwolff}@inf.ethz.ch

Information Security
ETH-Zentrum
CH-8092 Zirich
Switzerland


http://www.brucker.ch
http://www.infsec.ethz.ch/people/wolffb/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.infsec.ethz.ch/education/permanent/csmr/
http://www.brucker.ch/
http://www.infsec.ethz.ch/~wolff/




1 Propositional Logic

In this lecture you will deepen your knowledge about propositional logic, you
will prove your first theorems in an interactive theorem prover (Isabelle) and
see how paper-and-pencil proofs are related to interactive theorem proving. In
particular you will learn how to do forward-style and backward-style proofs
(using Isabelle) and how to combine these two techniques.

1.1 Isabelle in a Nutshell

Isabelle is an interactive theorem prover. During an Isabelle session, you will
construct proofs of theorems. A proof consists of a number of proof steps, and
the Isabelle system will ensure that each step is correct, and thus ultimately
that the entire proof is correct. Various degrees of automation can be realized
in Isabelle: you can write each step of a proof yourself, or you can let the system
do big subproofs or even the entire proof automatically. In the beginning, we
will do the former, because we want to understand in detail what a proof looks
like.

In the lecture we will use Isabelle 2004. F_-I The graphical user interface (an
instance of Proof General) is based on the editor (X)Emacs and can be started

by typingf]
Isabelle-2004

in a shell. An special configured (X)Emacs will start showing several Isabelle
and Proof General related menus.

Hint: For a nice rendering of mathematical symbols, you should enable the
X-Symbol package. For doing so, select the box (Proof-General >

sabelle is only supported on Unix-like operating systems (e.g. Linux, Solaris, MacOS
X). You can download Isabelle from http://isabelle.in.tum.del If you use Win-
dows and do not want to install Linux on your hard disk, we recommend IsaMorph
(http://www.brucker.ch/projects/isamorph/) which is a CD-based Linux that already
provides Isabelle.

2If you have installed Isabelle yourself or if you are using IsaMorph, just type Isabelle
instead of Isabelle-2004.

Proof General

X-Symbol
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FOL

Isabelle rule names

theory

symbol representation

(Options > X-Symbol)). Now select (Proof-General > (Options >
Save Options)) to enable X-Symbol automatically on every startup.

Isabelle supports a variety of different logics, thus, before we can prove our first
theorem, we have to choose the logic we want. As Isabelle does not provide a
special setup for propositional logic, we choose first-order logic (FOL) by select-
ing (Isabelle/Isar > (Logics > FOL)). FOL is a superset of propositional

logic.

Hint: If you do not want to use the “default” logic (normally higher-order

logic (HOL), you must select the logic on every startup of Isabelle.

We are now ready to prove theorems in propositional logic using Isabelle. While
doing so, we have to keep several things in mind:

1.2

The rule names for propositional logic used by Isabelle differ from the
names used in the lecture. For an overview of the rule names used by
Isabelle, see Tab.

Whenever we prove something in Isabelle (or in a paper and pencil fash-
ion), we do so in the context of a theory. The essential parts of a theory
are the definition of some syntax and judgments that are postulated to
be true. In Isabelle, this theory is contained in a file whose name ends
in .thy. We can start a new theory (building upon FOL) named ex1 by
creating a file with the first line

theory ex1 = FOL:

Isabelle uses several concrete syntaxes to represent mathematical symbols
(see Tab. . With enabled X-Symbol mode, you will see the the math-
ematical symbols in the output of Isabelle. You can enter these symbols
either by typing their ASCII representation (most of the symbols will be
automatically converted to their mathematical representation) or enter-
ing their internal name. Also selecting the symbols within the (X-Symbol
D> ...) menu is possible.

Our first theorem

Open a new ﬁlfﬂ simple.thy and enter the following skeleton of a theory file:

3Click on the menu (File > Open) and enter simple.thy into the (X)Emacs Minibuffer
(the very last line of the (X)Emacs window).
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Table 1.1: Propositional Logic in Isabelle
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\<exists>!
\<epsilon>
\<circ>
\<bar> \<bar>
\<1le>
\<times>
\<in>
\<notin>
\<subseteqg>
\<subset>
\<union>
\<inter>
\<Union>
\<Inter>
\<“sup>*
\<inverse>

Table 1.2: Mathematical Symbols, Their ASCII-Equivalents and Internal
Names



lemma

impI

implI
thm

Minibuffer

apply
rule

assumption

theory simple = FOL:
end

Hint: Isabelle requires, that the file name (without extension) is identical to
the theory name.

You can now start the Isabelle process by clicking on the (Next) button; after
a short startup time, the first line of your theory should be highlighted.

1.2.1 Backward-Style Reasoning in Isabelle

We will now prove A — (B — A) in backward style. Therefore we begin by
entering our proof goal

lemma first_theorem: "A ——> (B ——> A)

as second line of your theory and click on (Next) (this processes your theory
one step further). Now, Isabelle will also highlight this line and also will repeat
the proof goal in its output window. As you know from the lecture, we have to
apply —-I as first proof step. Using Tab. we see, that —-I is called impI
in Isabelle. You can look up Isabelle’s definition of impI by clicking on the
(Command) button and entering

impl
in the (X)Emacs Minibuffer (the very last line of the (X)Emacs window). Is-

abelle will print its version of the implication introduction rule in its output
area. We apply this rule to the current proof state by writing

apply (rule impl)

and processing the theory one step. Can you explain the proof step after
executing this rule? Applying impI resolves the rule impI and the previous
goal A — (B — A) to A= B — A. Put very suggestively, our current
state says: if we can prove B — A under the assumption A, we are done.

At the moment, you may find it difficult to understand the difference between
= and —, since both somehow seem to stand for implication. However, —
is a symbol of propositional logic, which is our object logic, i.e., the language we
are talking about. In contrast, = is a symbol of the meta-logic, i.e., Isabelle’s
built-in logic in which other object logics (PL, FOL, HOL, ...) are formalized.

Now apply impI a second time (by repeating the above line), you should
end up in a state where Isabelle requires to prove A under the assumption
“A B”. This holds trivially, in Isabelle, this is made explicit by the so-called
assumption (tactic) method. Type



apply (assumption)

and after executing this line, Isabelle should reply with No Subgoals which
means, there is nothing to prove anymore. The effect of the assumption method
is to remove the first (and in this case only) subgoal provided the conclusion to
be proven (in this case A) is one of the assumptions. This completes our proof
of A— (B — A). Try to see that we built the proof tree starting from the
bottom. We can now close the proof be entering

done

Now, My first theorem is a proven theorem which can be used in the same
way as any other rule, e.g. impI.
Summarizing, you should end up with the following theory file:

theory simple = FOL:
lemma "My first theorem”: "A ——> (B ——> A)"
apply (rule impl)
apply (rule impl)
apply (assumption)
done
end

1.2.2 Forward-Style Reasoning in Isabelle

We will now prove A — (B — A) using forward style; Forward proofs mirror
more or less directly the structure of a proof tree. Considering the proof tree
for A — (B — A), we conclude that applying impI twice is a valid proof.
Let’s start with: with

lemmas forward_proof = impl

Convince yourself by executing the thm forward proof that Isabelle is now
aware of this theorem. Now let’s undo the last step by clicking on undo and
change the above line to

lemmas forward_proof = impl [OF impl|

where OF takes a list of theorems and applies them to the premises of the first
impI. Again, check the result of this step by executing thm forward proof.
As you see, we are nearly done, we only have choose the right assignment for
the meta variables. This can be done by changing the above proof to

lemmas forward_proof = impl [OF impl, of A B A]

No Subgoals

done

lemmas

OF

of



discharging

This results in:
([A;B] =A) — A—B— A

where the first part of this formula is an artefact from discharging the assump-
tions (it says essentially that A has been introduced as assumption during the
proof and that possible “candidates for discharge” are A and B.)

A further version of this proof adds a particular clean-up that performs the
discharging;:

lemmas forward_proof = impl [OF impl, of A B A, simplified |

which completes the discharge:
([A; B] = True) = ...

but, unfortunately, has also the undesired effect to distroy also our conclusion
in this case:
([A; B] = True) = True

1.2.3 Combining Forward- and Backward-Style Reasoning

Note that one can arbitrarily mix forward- and backward-style reasoning in
Isabelle, e.g.

lemma third_proof: "A ——> (B ——> A)"
apply (rule forward_proof)
apply (assumption)
done

or even

lemma third_proof: "A ——> (B ——> A)"
apply (rule impl [OF impl, of A B A])
apply (assumption)
done

are valid proofs for A — (B — A).

1.3 Exercises
1.3.1 Exercise 1

Choose four of the following theorems and prove them

e using paper and pencil,



e in Isabelle using backward style, and
e in Isabelle using forward style.

Choose suitable names for the proven theorems, i.e. choose names based on the
exercise number, like ex1_1 for the first one.

1. A—B— A

2. ANB— BAA

3. ANB— AV B

4. AVB— BV A

5. AN(BANC)— ANC

6. A—B—C)— (A—B)— (A—(O)

7. (ANB)VC — (AVC)A(BVCO)

Answer to Exercise 1

1. Proving A — (B — A)
e using pencil and paper:

]!
B— A
A— (B— A)

)

—.|g

e in Isabelle using backward style:

lemma ex 1.1: "A —(B —A)"
apply(rule impl)
apply(rule impl)
apply(assumption)
done

e in Isabelle using forward style:

lemmas ex_1_1F = impl [OF impl, of A B A]

2. Proving AANB — BAA



10

e using pencil and paper:

[A A B)? [A A B)?
BAA M
B

AANB— BAA

e in Isabelle using backward style:

lemma ex 1.2: "A AB —B AA"
apply(rule impl)
apply(rule conjl)
apply(rule conjunct2)
apply(assumption)
(+ ... eliminated first subgoal ... *)
apply(rule conjunctl)
apply(assumption)
done

e in Isabelle using forward style:

lemmas ex_1_2F = impl [OF conjl, OF conjunctl conjunct2,
of "(A AB)" BABA]

3. Proving ANB — AV B

e using pencil and paper:

[AA B
T N-EL
AvB "

B

ANB— AV B

e in Isabelle using backward style:

lemma ex_1.3: "A AB —A VB"

e in Isabelle using forward style:

lemmas ex_1_3F = impl [OF disjI1[OF conjunctl],
of "(A AB)" A B B

4. Proving AVB — BV A



e using pencil and paper:

[A]° [B]°
4 V-IR V-IL
[AVB]* BVA BV A &
BV A -

AVB —BVA

e in Isabelle using backward style:

lemma ex_1.4:"A vB —B VA"

apply(rule impl)

apply(rule disjE)
apply(assumption)

apply(rule disjl2)
apply(assumption)

apply(rule disjll)
apply(assumption)

done

e in Isabelle using forward style:
lemmas ex_1_4F = impl [OF disjE [OF _ disjl2 disjl1 ],

5. Proving AN (BAC) — ANC

e using pencil and paper:

[AA(BAC)S
[AA(BAC)S Brc
—— A-EL A-ER
A C
N-T
ANC

AN(BAC) — ANC

e in Isabelle using backward style:

lemma ex_1.5: "A A(B AC) — A AC”

apply(rule impl)

apply(rule conjl)
apply(rule conjunctl)
apply(assumption)
apply(rule conjunct2)
apply(rule conjunct2)
apply(assumption)
done
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e in Isabelle using forward style:

lemmas ex_1_.5F = impl [OF conjl

[OF conjunctl conjunct2[OF conjunct?]],
of "AAN(BAC)" A"BAC" AB(]

6. Proving (A — B —(C)— (A— B)— A—C

e using pencil and paper:

[A— B—C]" [A] [A— B} [A]
B C —-E B —-E
—-E
C
A ¢ *
B

(A— B)— A—C
—-A

(A—B—(C)—(A—B)—A—C

e in Isabelle using backward style:

lemma ex.1.6: " (A —B —C) — (A —B)— (A —C)"

apply(rule
apply(rule
apply( rule
apply( rule
apply( rule

impl)
impl)
impl)
mp)
mp)

apply(assumption)
apply(assumption)

apply(rule

mp)

apply(assumption)
apply(assumption)

done

e in Isabelle using forward style:

lemmas ex_1_.6F = impl [OF impl[OF impl[OF mp[OF mp mp]]],

of "A —B —C""A—B"AABCA]

7. Proving ANBVC — (AVC)AN(BVC)



e using pencil and paper:

[AABM [A A B)*2
T A-EL [C]ll T N-ER
— V-IL V-IR ———— V-IL
[ANBVCO]'Y  AvC AvC o [ANBVC]'® BvC
AV C - BVC
A-1

(AVC)A(BVC)

—.fm
ANBVC — (AVC)AN(BVO)

e in Isabelle using backward style:

lemma ex_1.7:"((A AB) VC) — (A VC) A (B V()"
apply(rule impl)
apply(rule conjl)
(x this splits into two subgoals. We first ignore the second one x)
(+ and solve : (AANB)VC=AVC x)
apply(rule disjE)
apply(assumption)
apply(rule disjll)
apply(rule conjunctl)
apply(assumption)
apply(rule disjl2)
apply(assumption)
(x+ Now, we finish the other one subgoal in a similar way )
apply(rule disjE)
apply(assumption)
apply(rule disjll)
apply(rule conjunct2)
apply(assumption)
apply(rule disjl2)
apply(assumption)
done

e in Isabelle using forward style:

lemmas ex_1_7_auxl = disjE [of "A AB" C"A vC",
OF _ disjl1 [OF conjunctl] disjl2,
of B, simplified ]
ex_1_7_auxl

lemmas ex_1_7_aux2 = disjE [OF _ disjl1 [OF conjunct?] disjl2,

13



not_def

fold
unfold

oops

of "(AAB)" CA B C, simplified ]
"ex_1_7_aux2”

lemmas ex_1_7F = impl [OF conjl, OF ex_1 7 _auxl ex_1_7_aux2,
of "A AB Vv (", simplified |
"ex_1_TF"

1.3.2 Exercise 2

Look up the definition of = (hint: it’s called not_def) and execute step-by-step
the following proof script:

lemma "P A—-P —R”
apply (unfold not_def)
apply (fold not_def)
oops

Explain the proof script in detail. Here, oops just abandons our proof.
Now proof the following lemmas using Isabelle (either forward or backward
style):

1. PN\-P — R

2. (AvB)AN-A— B

3. (AvV-A) — ((A—B)—A) — A
Keep the last theorem in mind, it will be useful later.
Answer to Exercise 2

1. Proving PN (P — 1) — R

e using pencil and paper:

[PA(P— L) [PA(P— L)}
_P J_ N-ER P A-EL
—
—-E
1
E 1-E

14



e in Isabelle:

lemma "ex2_1":"P A—-P —R"
apply(unfold not_def)
apply(rule impl)
apply(rule FalseE)
apply(rule mp)
apply(rule conjunct2)
apply(assumption)
apply(rule conjunctl)
apply(assumption)
done

2. Proving (AVB)AN—-A — B

e using pencil and paper:

[(AV B) A =A]?
—|A N-ER [A]'?’
[(AV B) A —AJ? L o
N-EL — 1-E
AV B B EE
B
. >

(AvVB)AN—-A— B

e in Isabelle:

lemma ex_2.2: " (A VB) A—A —B"
apply(unfold not_def)
apply(rule impl)
apply(rule disjE)
apply(rule conjunctl)
apply(assumption)
apply(rule FalseE)
apply(rule mp)
apply(rule conjunct2)
apply(assumption)
apply(assumption)
apply(assumption)

done

3. Proving (AV-A) — (A—B) — A) — A

15



e using pencil and paper:

[-A]° AT

J_ —-E

E 1-E .

(A—B) — AP (A—B)

4 6 i
[(AV-A) (4] . 4 8
—-A

(A—B)—4)—4 .

(AV-A4) — (A—B) — A) — A

e in Isabelle:

lemma ex_ 2_3:
”(A \/—|A) —>(((A—>B)—>A)—>A)”
apply(unfold not_def)
apply(rule impl)
apply(rule impl)
apply(rule disjE)
apply(assumption)
apply(assumption)
apply(rule mp)
apply(assumption)
apply(rule impl)
apply(rule FalseE)
apply(rule mp)
apply(assumption)
apply(assumption)
done

1.3.3 Exercise 3

So far we only used rules of the intuitionistic propositional logic. We will now
add one further rule

4]

A

— classical

16



classical ~ to obtain classical propositional logic. The characteristic of classical logic is
that the principle of the excluded middle holds: PV —P.
We show that classical is equivalent to the principle of the excluded middle. excluded middle
As above, do the proofs both using paper and pencil and in Isabelle.

1. (+Q — P) — PV @ (hint: the main part of this proof is a proof of
P Vv @ using, among others, the assumption =(P V @), followed by an
application of classical).

2. Using the previous theorem, prove PV =P (hint: first prove =P V P).

3. Prove PV -P — ((-=P — P) — P) intuitionistically.

Answer to Exercise 3

1. Proving (-Q — P) — PV Q

e using pencil and paper:

[Q]3 V-IR
-(PVQP PvQ
Q@ — r' <
- -
P v Q V-IL
PV QO classicald

(-Q — P) — PV Q e

e in Isabelle:

lemma ex 3.1: "(-Q —P) —(P vQ)"
apply(rule impl)
apply(rule classical )
apply(rule disjll)
apply(rule mp)
apply(unfold not_def)
apply(assumption)
apply(rule impl)
apply(rule mp)
apply(assumption)
apply(rule disjl2)

17
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apply(assumption)

done

2. Proving =PV P

e using pencil and paper:

[P

P— P —-pPvP P—p T
(-PV P) — (PV—-P) ~PVP -
PV -P o

e in Isabelle:

lemma ex_3.2: "P v—P"

apply( rule
apply( rule
apply( rule
apply( rule
apply(rule

mp)
ex_1.4)

mp)
ex_3.1)

impl)

apply(assumption)

done

3. Instance of Exercise (noting the equivalence of —¢ and ¢ — 1).
Using Isabelle we have the problem is that to apply “ex2_3” we would
need to rewrite the first occurrence of P only. The solution is to prove
the following auxiliary statement:

lemma ex_3_3_aux: "(A V(A —False)) — ((A —B) —A) — A"
apply(fold not_def)
apply(rule ex_2_3)

done

lemma ex_3.3: "P V=P —((-P —P) —P)"
apply(unfold not_def)
apply(rule ex_3_3_aux)

done



1.3.4 Exercise 4

Prove the following classical theorem called Peirce’s law, both using paper and

pencil and in Isabelle:
(A—B) — 4) — 4
Hing: Use the proof of PV =P from Ex.

Answer to Exercise 4

Proving Peirce’s law

e using pencil and paper:

Ex. 23] Ex. BI2I
(Av-A) — ((A— B)— A) — A (AV-A)

(A—B)— A) — A

e in Isabelle:

lemma " Peirce Law”": " ((A —B) —A) —A"
apply(rule mp)
apply(rule ex_2_3)
apply(rule ex_3.2)
done

19
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2 First-Order Logic

In this lecture you will deepen your knowledge about first-order logic (FOL).
Theorem proving in FOL involves the issue of binding and substitution, which
we treat at a fairly pragmatic level for the moment. (The issue will be revisited
in the subsequent exercises on meta-theory and A-calculus). We will learn
to manage premises in backward proofs and tactic methods that manipulate
assumptions in backward proofs.

2.1 More on Isabelle

2.1.1 Isabelle System Architecture

For using Isabelle it is sometimes helpful if one has a broad overview of Is-
abelle’s system architecture (see Fig. . Isabelle is generic theorem prover
providing a simple meta logic; it is implemented the functional language “Stan-
dard ML” (SML). On top of the Isabelle core, a variety of Isabelle instances are
built, e.g. Isabelle/FoL (for first-order logic), Isabelle/HOL (for higher-order
logic), or Isabelle/zF (for Zermelo-Friankel set theory). Isabelle instances can
be programmed directly via programs written in SML or via the ISAR-proof lan-
guage, which also provides powerful documentation facilities. On top of this,
different user interfaces are provided. In this lecture, we use the most modern
interface, called “Proof General”, which itself builds upon the (X)Emacs editor
family.

2.1.2 Assumptions in Backward Proof

In backward proof, Isabelle allows two notions for introducing assumptions into
a proof context. For simple cases we can use

lemma name: "[ ai; ...; ap]=C"

The latter format introduces assumptions as named objects that can be refer-
enced identically to rules:

21
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assumes
and
insert

thm

LCS-style

Proof General

(X)Emacs-based User Interface

1

Isabelle/FOL

Isabelle Instance for FOL

|::>‘ SML-based User Interface

1

Isabelle

Generic Theorem Prover

1

Standard ML (SML)

Implementation Language

e

Figure 2.1: The System Architecture of Isabelle

lemma name:
assumes namei: "aq"

assumes name,: " a,
shows "C”

One can use the assumes or and to enumerate several assumptions. Using this
style, the assumptions are not automatically added to assumption list of the

lemma name:

assumes namei: "ay”

and name,: "an
shows "C"

goals. If needed, you can insert them with the command insert.

Assumptions, derived rules, rules, axioms, theorems are all the same in Is-
abelle and can be combined in arbitrary ways in forward and backward proof!
Remark: Internally, all these objects are represented as a particular abstract
data type thm. The Isabelle kernel is a collection of SML-modules that imple-
ment this data type (provers of this system architecture are often referred as

LCS-style-provers).

2.1.3 New FOL Rules

The distinctive feature of FOL compared to PL are the quantifiers V and 3. Note
that quantifiers have low priority, e.g., we have to write (Vz.p(z)) — (Jz.p(x)).

22



Recall the introduction and elimination quantifier rules from the lecture:

P@)  VeP@)  P() 3 P() R )

V. P(x) P(t) dz. P(x) R

where the side conditions are:
1. z is not free in any assumption on which P(x) depends.

2. x is not free in B or any assumption of the sub-derivation of B other
than A(z).

In Isabelle/FOL, these rules are represented (including the side conditions)
as follows:

(Az.P(z)) = (Vz.P(x)) auz (ANz.P(z)) = P(x) spec
P(z) = (Jz.P(x)) ext |[33:.P(x); Nz.P(z) = R]l = R e

Where A is the meta-level universal quantification. If a goal is preceded by
the meta-quantor A z...., this means that Isabelle must be able to prove the
subgoal in a way which is independent from =z, i.e., without instantiating x.
Another view on meta-level quantification is that they introduce “fresh free
variables” on the fly (in fact, variables bound by outermost meta-level quanti-
fiers were treated as free variables within substitutions).

Whenever an application of a rule leads to the introduction of meta vari-
ables in a goal preceded by /\, these introduced meta variables will be made
dependent on z. You may also say that those meta-variables will be Skolem
functions of x. When experimenting with rule applications introducing A’s,
you will notice that the order of these introductions is crucial.

2.1.4 Substitutions in Backward Proof

As mentioned in the lecture, Isabelle uses meta-variables 7X,?Y,.... These
meta-variables are logically treated as free variables, but may be instantiated
either interactively or automatically by Isabelle itself.

Sometimes the automatic instantiation is not appropriate for a proof; then
the user must provide it interactively. In forward proof, this can be done by
the of command you have already got to know.

In backward proof, variants of proof commands were provided. Instead of

23
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erule

drule

frule

insert

erule_tac
drule_tac
frule_tac

apply(rule name)

we might give several substitution during rule application :

apply( rule_tac of z1="term;" and ...and x,= "term;" in rule)

Where rule_tac may contain syntactic elements and free variables of the proof
context. Note that

apply( rule_tac of x = "term" in rule)

is not the same as

apply(rule [of ..."term” ...])

Can you figure out why?

2.1.5 Manipulating Assumptions in Backward Proof

So far, we never changed the assumptions a; of a goal [ay;...;a,] = C. The
command rule instantiates its argument rule such that its conclusion becomes
equal to the conclusion C' of the goal.

A collection of Isabelle tactic methods follows a different strategy:

1. erule rule constructs an instantiation such that the first assumption b;
of rule becomes equal to an a;, and that the conclusion of rule becomes
equal to an C. a; is erased from the assumptions.

2. drule rule constructs an instantiation such that the first assumption by
of rule becomes equal to an a;, and that the conclusion of rule becomes
a new assumption. a; is erased from the assumptions.

3. drule rule works like drule rule but does not erase a;.

Moreover, with the command insert, an arbitrary theorem or assumption can
be added to the assumption list.

Note that for some of these tactic methods are variants with explicit substi-
tutions available: erule_tac, drule_tac, and frule_tac .
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2.2 Exercises
2.2.1 Exercise 5

Derive the following rules in Isabelle:

P.Q) @ [P
PAQ R P—QP R 1 PP
R R -P R
conjE, impE
notI, notE

Answer to Exercise 5

lemma conjE: assumes major: " P AQ" assumes prem: " [P; Q [=R"
shows "R”
apply(rule prem)
apply(rule conjunctl[OF major])
apply(rule conjunct2[OF major])
done

lemma impE: assumes major: "P —Q"

assumes preml: "P”
assumes prem2: "Q —R"
shows "R"

apply(rule prem?2)

apply(rule mp [OF major])

apply(rule preml)

done

lemma notl: assumes prem: " (P =—>False)" shows " —P"
apply(unfold not_def)
apply( rule impl)
apply(assumption)
done

lemma notk: "[ -P; P] = R
apply(unfold not_def)
apply(erule FalseE [OF mp])
apply(assumption)
done
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2.2.2 Exercise 6

Prove the following theorems using erule and disjE and conjE wherever pos-
sible.

1. ANB)AC — AANBAC
2. (ANB)AN(CAND)— (BANC)N(DANA)
3. AvB)vV(CVD)— (BVC)V(DVA)
Compare the first two proofs with the proofs without erule in Ex. 1.

Answer to Exercise 6
1. Proving (ANB)ANC — ANBAC:

lemma ex6_1: " (A AB) AC —A AB AC"

apply(rule impl)

apply(erule conjE)

apply(erule conjE)

apply(rule conjl)

apply(assumption)

apply(rule conjl)

apply(assumption)

apply(assumption)

done

lemma ex6_1_wo_erule: "(A AB) AC — A AB AC"
apply(rule impl)
apply(rule conjl)
apply(rule conjunctl)
apply(rule conjunctl)
apply(assumption)
apply(rule conjl)
apply(rule conjunct2)
apply(rule conjunctl)
apply(assumption)
apply(rule conjunct2)
apply(assumption)
done

2. Proving (AAB)AN(CAD) — (BAC)AN(DAA):
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lemma ex6_2: " (A AB) A(CAD) —(B AC) A(D AA)”
apply(rule impl)

apply(erule conjE)
apply(erule conjE)
apply(erule conjE)
apply(rule conjl)
apply(rule conjl)
apply(assumption)
apply(assumption)
apply(rule conjl)
apply(assumption)
apply(assumption)
done

lemma ex6_2_wo_erule: " (A AB) A (CAD) —(B AC) A(D AA)”
apply(rule impl)
apply(rule conjl)
apply(rule conjl)
apply(rule conjunct2)
apply(rule conjunctl)
apply(assumption)
apply(rule conjunctl)
apply(rule conjunct2)
apply(assumption)
apply(rule conjl)
apply(rule conjunct2)
apply(rule conjunct2)
apply(assumption)
apply(rule conjunctl)
apply(rule conjunctl)
apply(assumption)
done

3. Proving (AVB)V (CVD)— (BVC)V(DVA):

lemma ex6_3: " (A VB) v(CvD) —(B VvC) V(D VA)”
apply(rule impl)
apply(erule disjE)
apply(erule disjE)
apply(rule disjl2)



apply(erule disjl2)
apply(rule disjll)

apply(rule disjll)

apply(assumption)

apply(erule disjE)

apply(rule disjll)
apply(erule disjl2 )
apply(rule disjl2)
apply(erule disjll)
done

2.2.3 Exercise 7

Derive the rule

4] (5]
B A
A+~—— B

in Isabelle. Recall that «— is defined by:
P—Q=(P—Q)NQ—P)
Use erule and drule wherever you can.

Answer to Exercise 7

lemma iffl: assumes pl: "A =—-B”"
assumes p2: "B =-A"
shows "A «——B"
apply(unfold iff_def )
apply(rule conjl)
apply( rule impl)
apply(erule pl)
apply( rule impl)
apply(erule p2)
done

2.2.4 Exercise 8

iff _def

Prove the following theorems of first-order logic in Isabelle:
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What about: (Vz.(p(z)Vq(z))) — ((Vz.p(x)) V (Vz.q(x)))? Can you prove it?

Answer to Exercise 8

1. Proving (Vz.p(z)) — Jz.p(x)

lemma ex8_1: " (Vx. p(x)) — (I x. p(x))”
apply(rule impl)
apply(rule exl)
apply(erule spec)
done

2. Proving ((Vz.p(z)) V (Vz.q(x))) — (Va.(p(z

lemma ex8.2: " (Vx. p(x)) V(Vx. q(x)) — (
apply(rule impl)
apply(rule alll')
apply(erule disjE)
apply(rule disjll)
(
(

< N—

X <

s =

2 &
N—

< SN—

o)

—~~

X

N—r

N—r

apply(rule spec)
apply(assumption)
apply(rule disjl2)
apply(rule spec)
apply(assumption)
done

3. Proving ((Vz.p(z)) A (Vo.q(2))) «— (Vo.(p(x) A q(2)))

lemma ex8.3: " (Vx. p(x)) A(Vx. q(x)) «—(Vx. p(x) Aq(x))"
apply(rule iffl )
apply(rule alll')
apply(rule conjl)
apply(erule conjE)
apply(erule spec)

—_— e~~~
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apply(erule conjE)
apply(erule spec)
(+ Other direction of iff x)

apply(rule conjl)
apply(rule alll')
apply(erule allE)
apply(erule conjE)
apply(assumption)
apply(rule alll')
apply(erule allE)
apply(erule conjE)
apply(assumption)
done

4. Proving (Fz.Vy.p(z,y)) — (Vy.3z.p(z,y))

lemma ex8.4: " (Ix. Vy. p(x,y)) — (Vy. Ix. p(x,y))"

apply(rule impl)

apply(erule exE)

apply(rule alll')

apply(rule exl)

apply(rule spec)

apply(assumption)

done

5. Proving (3z.p(f(x))) — (3z.p(x))

lemma ex8.5: " (Ix. p(f(x))) — (Ix. p(x))”
apply(rule impl)
apply(erule exE)
apply(erule exl)
done

2.2.5 Exercise 9

Prove

all_distr
(Vz.A — B(z)) «— (A — Va2.B(7))
in Isabelle. Reuse Exercise [7l
In lecture ‘1.5 FOL: Natural Deduction” it was said that in the above theorem
it is crucial that “A does not contain = freely”. How does Isabelle take this
into account? Try to prove: p(z) — Vz.p(x)
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Answer to Exercise 9

lemma all distr: "(Vx. A —B(x)) «——(A — (Vx. B(x)))"
apply(rule iffl )
apply(rule impl)
apply(rule alll')
apply(rule mp)
apply(erule spec)
apply(assumption)
apply(rule alll)
apply( rule impl)
apply(rule spec)
apply(erule mp)

apply(assumption)

done

2.2.6 Exercise 10

Prove the following theorem of first-order logic in Isabelle:

s (5 (s (s (zero)))) = four N p(zero) A (Ya.p(z) — p(s(s(z)))) — p(four)

Answer to Exercise 10

lemma ex8: "s(s(s(s(zero)))) = four A p(zero) A (Vx. p(x)
— p(s(s(x)))) — p(four)”

apply( rule impl)

apply(erule conjE)

apply(erule conjE)

apply(erule subst)

apply(rule mp)

apply( rule_tac x ="s (s (zero))" in spec)

apply(assumption)

apply(rule mp)

apply( rule_tac x = "zero" in spec)

apply(assumption)

apply(assumption)

done

31



32



3 Naive Set Theory

In this exercise, we will study a particular version of a set theory, called Naive
Set Theory, originally proposed by Frege and still implicitly used by many
mathematicians. We introduce some of its axioms, notation and, properties.
At the end, we use a Paradox due to Russel in order to show that Naive Set
Theory is inconsistent.

3.1 More on Isabelle

3.1.1 Backward Proof Control Structures

Revising our first proof scripts, it becomes clear that proof-scripts contain
considerable repetition. Thus, more automation can be achieved by introducing
control structures in the 1ISAR-language. These are:

1. MM’ sequential composition: try tactic M; if it succeeds try tactic M'.
2. M|M alternative: try tactic M; if it fails try tactic M'.
3. M7 option: try tactic M; if it fails report success.

4. M+ repetition: try tactic M and repeat as long as no failure occurs.
For example, instead of:

apply(rule X)
apply(erule Y)

we may write:
apply(rule X, rule Y)

Further, instead of:

apply(drule mp)
apply(assumption)
apply(assumption)
apply(erule disjE)
apply(drule mp)
apply(drule conjunctl)
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defer n
prefer n

rotate_tac n

naive_set.thy

ext
Collect
naive_set.thy

?181122113?0)5%1011 I{nge?l’l}e Usual notation | Isabelle
c E o AUB A Un B
¢ - ACB A<=B

' A\ B A Minus B
{y | P(y)} {y. P(y)} 77(\/1) Pow(A)
ANB A lnt B

Table 3.1: Notations used in naive_set.thy

we may write:

apply(drule mp,(assumption|erule disjE | drule conjunctl))+

3.1.2 Proof-State Massage

The standard apply-command usually effects only the first subgoal. Thus, it
may be desirable to rotate the list of subgoals in a proof state. The defer n or
prefer n commands move a subgoal to the last or the first position.

For the choice of unifiers, the order of assumptions in a subgoal may be rele-
vant. rotate_tac n rotates the assumptions of the first subgoal by n positions:
from right to left if n is positive, and from left to right otherwise. The default
value is one.

3.2 Naive Set Theory

(Naive) set theory has been formalized in Isabelle in the theory naive_set.thy
(see allso Appendix . Tab. shows some hints on the syntax used in this
theory.

In lecture “Naive Set Theory”, we have seen four elementary rules of set
theory

P(t) te{z| P(z)}
_— e — €-E
te{z| P(z)} P(1)
V:E.:13€A<—>:EEB7_I A=DB .
A=B - Vere A—xeB

In the provided Isabelle theory, instead of those inference rules, we have two
axioms ext and Collect which have been encoded and derived in Isabelle.
For_this exercise _download the http: //www_infsec.ethz.ch/education/
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permanent/csmr/material/naive_set.thy file and install it in the same di-
rectory where you store your work. Use the following template as starting point
for your own Isabelle file:

theory exercise2 = naive_set .thy:

end

3.3 Exercises
3.3.1 Exercise 11

Prove in Isabelle that the subset relation is a partial order, i.e., it is reflexive,
transitive and antisymmetric.

Answer to Exercise 11
1. Reflexivity:

lemma ex11_1: "A <= A"
apply(unfold subset_def)
apply(rule alll')
apply(rule impl)
apply(assumption)
done

2. Transitivity:

lemma ex11.2: " (A <= B) A(B <= C) —(A <= Q)"
apply(unfold subset_def)
apply(rule impl)
apply(rule alll')
apply(rule impl)
apply(erule conjE)
apply(rule mp, erule spec)+
apply(assumption)
done

3. Anti-symmetry:

lemma ex11.3: "(A <= B AB <= A) —A = B"

apply(rule impl)
apply(rule equalsl)
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apply(rule alll')

apply(unfold iff_def )
apply(rule conjl)

apply( rule_tac x ="x" in spec)
apply(fold subset def)
apply(erule conjunctl)

apply( rule_tac x ="x" in spec)
apply(fold subset_def)
apply(erule conjunct2)

done

3.3.2 Exercise 12
Prove AN(BUC) = (AN B)U(ANC) in Isabelle.

Answer to Exercise 12

lemma ex12: " (A N(B UQC)) = ((A NB) U(A NC))"
apply(rule equalsl)
apply(rule alll')
apply(rule iffl )
apply(unfold Int_def Un_def)
apply(rule inl)
apply(erule inE)
apply(erule conjE)
apply(erule inE)
apply(erule disjE)
apply(rule disjll)
apply(rule inl)
apply(rule conjl)
apply(assumption)+
apply(rule disjl2)
apply(rule inl)
apply(rule conjl)
apply(assumption)+
apply(rule inl)
apply(rule conjl)
apply(erule inE)
apply(erule disjE)
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erule inE, erule conjunctl)+
erule inE)

rule inl)

erule disjE)

erule inE)

rule disjl1 )

erule conjunct?)

rule disjl2)

erule inE)

erule conjunct2)

apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
done

3.3.3 Exercise 13
Prove P(A) C P(B) « A C B in Isabelle

e R N N N N T

Answer to Exercise 13

lemma ex13: "Pow(A) <= Pow(B) «+—A <= B"
apply(rule iffl )
apply(unfold Pow_def subset_def)
apply(rule alll')
apply(rule impl)
apply(erule allE)
apply(erule impE)
apply(rule inl)
apply(rule alll')
apply(rule impl)
apply(assumption)
apply(erule inE)
apply(erule allE)
apply(erule mp)
apply(assumption)
(xsecond halfx)
apply(rule alll')
apply( rule impl)
apply(rule inl)
apply(rule alll')
(
(
(

NN AN AN AN AN AN AN AN A S

apply(rule impl)
apply(erule inE)
apply(erule allE, erule impE)+



apply(assumption)+
done

3.3.4 Exercise 14

Show that NSet is inconsistent, i.e., that L can be derived in it. You should
start like this:

lemma ex14: " False”
apply( rule_tac P ="{A. A ¢A} €{A. A ¢A}" in notE)

The rule classical_dual will be useful.

Answer to Exercise 14

lemma aux_lemma: assumes prem: " (A =-(A—B))" shows "(A— B)"
apply( rule impl)
apply(rule mp)
apply(erule prem)
apply(assumption)
done

lemma classical_dual : assumes prem: " (A =>(—A))" shows "—-A"
apply(unfold not_def)
apply(rule aux_lemma)
apply(fold not_def)
apply(erule prem)
done

lemma ex14: " False”

apply( rule_tac P ="{A. A ¢A} ¢{A. A ¢A}" in notE)
apply(rule classical_dual )
apply(erule inE) ;
apply(assumption)
apply(rule inl)
apply(rule classical_dual )
apply(erule inE) ;
apply(assumption)
done

And now, proving gets much more easier, e.g., re-doing the proof of Ex. 12:
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lemma "ex12": " (A N(B UQC)) = ((A NB) U (A NC))"
apply (insert ex14, erule FalseE)
done
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3.4 Encoding Naive Set Theory in

theory naive_set = FOL:

nonterminals i

types set =i

Isabelle

arities i :: "term”
consts
»» s »gr
A i)
" {}r set O
insert 7[i, set] = set”
Yop 7 7[i, set] = o” ”(-/ : -)” [50, 51] 50)
P<=" i "[set, set] = o” (infixl 50)
Collect :: "[i = o] = set”
INTER :: 7[set, i = set] = set”
UNION :: 7 [set, i = set] = set”
Minus : 7[set, set] = set” (infixl 65)
Int it 7 [set, set] = set” (infixl 70)
Un it 7 [set, set] = set” (infixl 65)
Compl :: ”set = set”
Pow ”set = set”
UNIV set
Ball 7 [set, i = o] = o”
Bex 7 [set, i = o] = o”
syntax
Yop 7 7 [i,set] = o” (
Yop 77 7[i,set] = o” ( -)” [50, 51] 50)
Yop 77 i 7[i,set] = o” ( ”)
”@Collect” ;1 7 [pttrn, o] = set” (& / P
” @Finset” ”args => set” (
?@INTER” :: ”[pttrn, set, set] = set” ( -./ -)” 10)
?@QUNION?” :: ”[pttrn, set, set] = set” ( / -)” 10)
”«Ball” ” [pttrn, set, o] = o” ( ./ -)” [0, 0, 10] 10)
” «Bex” ” [pttrn, set, o] = o” (”(3EX ./ -)” [0, 0, 10] 10)
translations
7 UNIV” == "Compl({})”
Px Tioy” =="" (x:y)”
7 {x, xs}” >insert(x, {xs})”
7 {x}” == Vinsert(x, {})”
" {x. P}” == ”Collect(Ax. P)”
»INT x:A. B” == "INTER(A, (Ax. B))”
"UN x:A. B” == "UNION(A, (Ax. B))”
?ALL x:A. P” == "Ball(A, (Ax. P))”
PEX x:A. P” == "Bex(A, (Ax. P))”
axioms
ext: 7A =B «——(Vx. ((x:A) —(x:B)))”
Collect:  "(t : { x. P(x) }) «—(P(t))”
syntax (”” output)
? _setle” i: 7[set, set] = o” ("op <="
” _setle” ” [set, set] = o” (7 (-/ <= -)” [50, 51] 50)
” _setless” ? [set, set] = o” ("op <7)
” _setless” ” [set, set] = o” (" (-/ < -) [50, 51] 50)
syntax (symbols)
_setle” = o7 ("op C7)
7 _setle” = o7 (”(-/ C.)” [50, 51] 50)
” _setless” = o” (Pop C”)
? _setless” = o” (”(-/ Cc-)” [50, 51] 50)
“op Int” = set” (infixl ”A” 70)
”op Un” = set” (infixl ”U” 65)
"op i - o” ("op €7)
"op 7 = o ("(-/ € ) [50, 51] 50)
"op "7 - o” ("op ¢7)
Yop 77 = o” (- / ¢ -)” [50, 51] 50)
»UN » - o” (38U -/ )7 10)
7INT ” = o” 3N -/ -) 10)
”?@UNION1” ” [pttrn, set] = set” @BU -/ -) 10)
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74 ?@QINTER1” :: ”[pttrn, set] = set” 3N -/ -) 10)

75 ?”@QUNION”  :: ”[pttrn, set, set] = set” (”(3 -€-./ -)” 10)

76 ?@INTER” :: 7 [pttrn, set, set] = set” (”7(3() -€-./ -)” 10)

7 ” _Ball” :: 7 [pttrn, set, o] = o” (”(3V -e-./ -)” [0, 0, 10] 10)
78 »_Bex” i 7 [pttrn, set, o] = o” ("(33 _e-./ J)” [0, 0, 10] 10)
79

80 translations

81 7op C” == "op <= :: [ set, _ set] => 0"

82

83

84 defs

85 subset_def: "A <= B =Vx. xEA —x€EB”

86 empty_def: 7 {} = {x. False}”

87 Minus_def: ”A Minus B ={x. x €A Ax ¢ B}”

88 Un_def: ”A Un B ={x. x €A vx € B}”

89 Int_def: ”A Int B ={x. x €A Ax € B}”

90 Ball_def: ”Ball(A, P) V x. x€EA —P(x))”

91 Bex_def: ”Bex(A, P) =(3 x. x€A AP(x))”

92 Compl_def: ”Compl(A) ={x. -x:A}”

93 INTER._def: ”INTER(A, B)
94 UNION_def: ”UNION(A, B)

{y. ALL x:A. y:B(x)}”
{y. EX x:A. y:B(x)}”

95 insert_def : ” insert (a, B) ={x. x=a} Un B”
96 Pow_def: ?Pow(A) ={B. B <= A}”
97

98

99 lemma inl: " (P(t)) =(t € { x. P(x) })”

100 apply (rule iffD2)

101 apply(rule Collect)

102 apply (assumption)

103 done

104

105 lemma ”inE2”: 7 (t €{ x. P(x) }) =P(t)”

106 apply(rule iffD1)

107 apply(rule Collect)

108 apply (assumption)

109 done

110

111  lemma inE: assumes pl: ”(t €{ x. P(x) })” assumes p2: "P(t) =R” shows "R”
112 apply(rule p2)

113 apply(rule inE2)

114 apply(rule p1)

115 done

116

117  lemma equalsl: 7 (Vx. x€EA «—x€B) =A = B”
118 apply (rule iffD2)

119 apply (rule ext)

120 apply (assumption)

121 done

122

123 lemma equalsE2: A = B = (V x. x€EA «——x€B)”
124 apply(rule iffD1)

125 apply(rule ext)

126 apply (assumption)

127 done

128

129 lemma equalsE: assumes pl: 7A = B” assumes p2: " (V x. x€EA «——x€B) =-R”
130 shows "R”

131 apply(rule p2)

132 apply(rule equalsE2)
133 apply(rule pl)

134 done

135

136 end
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4 FOL with Equality: Equational
Reasoning

In this exercise, we will study elementary equational reasoning for groups and
orders, and learn how to combine this with reasoning via case distinction. The
technical level is deliberately rather low since elementary fall-back techniques
are necessary if more automated tactics fail.

4.1 More on Isabelle

4.1.1 Backward Proof Control Structures

Revising our first proof scripts, it becomes clear that proof-scripts contain
considerable repetition. Thus, more automation can be achieved by introducing

control structures in the 1ISAR-language. These are: control structures
ISAR
1. MM’ sequential composition: try tactic M; if it succeeds try tactic M'. sequential composition

()

2. MIM alternative: try tactic M; if it fails try tactic M'. ,
alternative (|)

3. M7 option: try tactic M; if it fails report success. option (?)
4. M+ repetition: try tactic M and repeat as long as no failure occurs. repetition (+)

For example, instead of:

apply(rule X)
apply(erule Y)

we may write:
apply(rule X, rule Y)

Further, instead of:

apply(drule mp)

apply(assumption)
apply(assumption)
apply(erule disjE)
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equality = =y

refl

trans
sym
subst

case_tac

subst

A-expression

symmetric

apply(drule mp)
apply(erule disjE)

we may write:

apply(drule mp,(assumption|erule disjE)+)+

4.1.2 FOL with Equality

In lecture, first-order logic with equality has been introduced as a logical system
where the equality z = y has been defined as a predicate on terms which rep-
resents a congruence relation. This is covered in Isabelle/FOL by the following
rules:

refl : "a=a"

trans: " x=z; x=y | = y=2"
sym: "y=x = x=y"

subst: "[ a=b; P(a) ] = P(b)"

Note that the substitutivity rule in Isabelle does not distinguish between “for-
mulas” and “terms” as described in the lecture.

4.1.3 New Tactics

We introduce two new tactical commands for case splitting reasoning and per-
forming one rewrite step. Both can be understood as abbreviation of previously
introduced commands and/or rules. These are:

1. case_tac " <form>" where <form> is a splitting formula. It is equivalent
to: insert excluded_middle[of " <form>"], erule disjE

2. subst rule, where rule is a (conditional) equation performed left-to-right.
It is equivalent to: rule subst[OF sym[OF rule]]

Note that the subst chooses an arbitrary “position” where to perform a rewrite
step; this lack of control may be sometimes undesirable. In such cases there may
be no alternative to providing a more concrete substitution for meta variables,
for example like rule.tac P ="Xz. ?X x z = €" in subst[OF rule]. Here, the
A-expression denotes a function that generates a term (with a “hole” 7X). In
general, giving too special substitutions is tedious and makes proof-scripts less
robust; giving too general substitutions may result in a dead end of a proof.
By the way, sym[OF rule] is also equivalent to rule [symmetric].
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4.1.4 New Declaration Elements

In an 1SAR theory file, proofs can be mixed with other syntactic elements such
as type declarations, constant declarations, definitions and axioms (here only
used as exercise!). Consider:

typedecl <T>
arities <T> :: "term”

Here, the type <T> is declared; since Isabelle has a two-staged type system
with “types of types” called type classes, the new type is declared to the class
term introduced in the IFOL theory.

A standard constant declaration is given by an example:

consts
if = o, i, i] =" ('(if (0)/ then (_)/ else (_))" [10] 10)

Here, If is declared to have type [0, i, i] = i which is notationally equivalent
too = i = i = i. The final phrase is a pragma to the Isabelle parser: the
user is allowed to write if P then Q else R instead of If (P,Q,R).

There are two ways of possibilities to define declared constant. One is by
azrioms as in the following example:

axioms
if P:  "P = (if Ptheny else z) =y"
if_notP: "—P =(if P theny else z) = 2"

The other possibility is by a special type of axioms, called definitions:

defs
if_def : "(if Ptheny else z) = <E>"

where <E> is a closed expression not containing the constant If (we do not
have the semantic means to give a useful definition for If at the moment).
Use analogies to declarations in the IFOL and FOL theories of the Isabelle dis-
tribution. You can find these theories nicely formatted on the Isabelle website:
http://isabelle.in.tum.de/library/FOL/index.html

4.1.5 Proof-State Massage

The standard apply-command usually effects only the first subgoal. Thus, it
may be desirable to rotate the list of subgoals in a proof state. The defer n or
prefer n commands move a subgoal to the last or the first position.

For the choice of unifiers, the order of assumptions in a subgoal may be rele-
vant. rotate_tac n rotates the assumptions of the first subgoal by n positions:

45

type declarations

constant declarations
definitions
axioms

defer n
prefer n

rotate_tac n


http://isabelle.in.tum.de/library/FOL/index.html

from right to left if n is positive, and from left to right otherwise. The default
value is one.

4.2 Exercises
4.2.1 Exercise 15

Derive the symmetry and transitivity rules for =

sym — trans

y=x T=2z

using only applications of refl and subst.

Answer to Exercise 15
1. Proving symmetry:

lemma ex15_1: "x=y =y=x"
apply(erule subst)
apply(rule refl)
done

2. Proving transitivity:

lemma ex15.2: " [x=y;y=z] =>x=2"
apply(rule subst [of "y"])
apply( frule refl )+
done

4.2.2 Exercise 16

Prove the following group properties from the lecture without using the tactic
command subst.
rlxrz=candzxe=2x
Hint: Declare a type i of sort term in Isabelle/FOL and the constants _~!, % _
and e over i in your theory! (use analogies to declarations in the theories
FOL and IFOL.

Hint: Take the “axioms” of group theory, namely associativity, right identity
and right inverse as named assumptions in a backward proof.
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Answer to Exercise 16
1. Declaration:
typedecl i

arities i :: "term”

consts
e SR
inv 2=
i S T (‘infixr 55)

2. Proving right-inverse:

lemma ex16_1 :

assumes assoc @ "V xyz. x * (y xz) = (xxy) * 2"
assumes neutral : "V x. x * e = X"

assumes inverse : "V x. X x inv(x) =e"

shows "inv(x) * x =¢"

apply( rule_tac P ="Xz. ?X x z = €" in subst|OF spec[OF neutral]])
apply( rule_tac x1 = "inv(x)"

in subst[OF spec[OF inverse]])
apply( rule_tac x4 ="x"

in subst[OF sym [OF spec[OF spec[OF spec [OF assoc]]]]])
apply( rule_tac x2 ="x"

in subst|OF sym[OF spec[OF inverse]]])
apply( rule_tac x4 = "inv(x)"

in subst|OF sym [OF spec[OF spec[OF spec [OF assoc]]]]])
apply( rule_tac a = "inv(x)"

in subst[OF sym[OF spec[OF neutral]]])
apply(rule refl)
done

3. Proving right-neutral:

lemma ex16_2 :

assumes assoc : "V xyz. x % (yxz) =(xxy) x 2"
assumes neutral : "V x. x x e = X"

assumes inverse : "V x. x x inv(x) = ¢€"

shows "ex x =X

apply( rule_tac x1 = "x" in subst[OF spec[OF inverse ||)

apply( rule_tac x3 = "x
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in subst[OF spec[OF spec[OF spec [OF assoc]]]])
apply(rule subst[OF sym[OF ex16_1[OF assoc neutral inverse]]])
apply(rule spec[OF neutral])
done

An alternative, slightly more backward, slightly more automatic proof
would be:

lemma ex16_2_alt :

assumes assoc : "'V xyz. x % (yxz) =(xxy) x 2"
assumes neutral : "V x. x x e = X"

assumes inverse : "V x. x x inv(x) = e"

shows "ex x =X

apply( insert inverse assoc)
apply(erule allE)+
apply( rule_tac b ="e
apply(assumption)

apply( rule_tac b =" (?x2 * inv(?x2)) * x" in subst)
apply(assumption)

in subst)

apply( rule_tac b = "inv(7x2) % X" in subst)
apply(rule sym[OF ex16_1])
prefer 4

apply( insert neutral)

apply(erule allE)+

apply(assumption)

apply( insert assoc neutral inverse ,assumption)+
done

4.2.3 Exercise 17

Declare a predicate - <= _of type i = i = o (similar to equality). Formalize
that _ <= _is total or antisymmetric and use this as assumption at need in
the proofs.

Prove that:

1. ax <=y==>y<=x
2. "y <=x==>x<=y
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4.y <=x==>x=yV(x<=y)
Hint: Use subst and case_tac whenever possible.

Hint: Consider derived rules of classical logic like swap, contrapos and swap
contrapos2. contrapos

contrapos?

Answer to Exercise 17

1. Declaration:

consts <=" 2 i, 1] = 0" (infixr 50)

2. Proving 1.:

lemma ex17_1:
assumes total: "V xy. x <=y Vy <= x"
shows Tx <=y =y <=X'
apply( insert total)
apply(erule allE)+
apply(erule disjE | assumption | erule notE)+
done

3. Proving 2.:

lemma ex17_2:
assumes total: "V xy. x <=y Vy <= X"
shows Ty <= x =x <=Y"
apply( insert total )
apply(erule allE)+
apply(erule disjE | assumption | erule notE)+
done

4. Proving 3.:

lemma ex17_3:
assumes antisymmetry: "V xy. x <=y Ay <=x —x =Yy’
shows "oy =x =(x <=y) Vo(y <= x)"
apply( insert antisymmetry)
apply(erule swap)
apply(erule allE)+
apply(erule impE)
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prefer 2

apply(assumption)

apply(rule conjl)

apply(erule swap)

apply(rule disjl2 , assumption)
apply(erule swap)

apply(rule disjll , assumption)
done

5. Proving 4.:

lemma ex17_4:

assumes antisymmetry: "V xy. x <=y Ay <=x —x =Yy’
shows "y <=x=x=y V(x<=y)

apply(case_tac "y = x")

apply(rule disjll | rule sym, assumption)

apply(drule ex17_3[OF antisymmetry])

apply(erule disjE)

apply(rule disjl2 , assumption)

apply(erule notE, assumption)

done

4.2.4 Exercise 18

Declare the constant If (presented syntactically in mix-fix notation) and define
it via the axioms:

if_P: "P = (if Ptheny else z) =y"

if_notP: "—P =(if P theny else z) =2"
Assume in the sequel that -~ <= _is a partial order (i.e. reflexive, transitive,
antisymmetric).

Declare and define the operation max based on - <= _ and If.
Prove that max is

1. idempotent,
2. commutative
3. and left-idempotent (i.e. max(x,max(x,y)) = max(x,y))

Hint: Use subst and case_tac whenever possible.

50



Answer to Exercise 18

1. Declaration:

consts
If "o, i, 0] =0 ("(if (-)/ then (-)/ else (-))
max s U, i =0
axioms
if_P: "P = (if Ptheny else z) =y"
if_notP: "—P =(if Ptheny else z) =2"

defs
max_def: "max(x,y) =(if x <=y theny else x)"

2. Proving idempotence:

lemma ex18_1 :
assumes transitivity : "V xyz. x <=y Ay <=z —x<=7"

assumes reflexivity : "V x. x <= X"

assumes antisymmetry: "V xy. x <=y Ay <=x —x =y"
assumes total: "V xy. x <=y Vy<=x'

shows "max(x,x) = X"

apply(unfold max_def)
apply(subst if_P)
apply(insert reflexivity )
apply(erule allE, assumption)
apply(rule refl)

done

3. Proving commutativity:

lemma ex18.2 :
assumes transitivity : "V xy z. x <=y Ay <=z —x <=7"

assumes reflexivity : "V x. x <= X"

assumes antisymmetry: "V xy. x <=y Ay <=x —x =y"
assumes total: "V xy. x <=y Vy<=X"

shows "max(x,y) = max(y,x)"

apply(case_tac "x =y")
apply( rule_tac b ="y" in subst)
apply(assumption)
(

apply(rule refl)

o1

" [10] 10)
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apply(unfold max_def)
apply(case_tac "x <=1y")
(x corresponds to:

apply( insert excluded_middle[of "x <= y"], erule disjE) )
apply( frule ex17_4[OF antisymmetry])
apply(erule disjE)
apply(erule notE, rule sym, assumption)
apply(subst if_notP)
(* corresponds to:

apply(rule subst [OF sym[OF if-notP]]) )
apply(assumption)
apply(subst if_P, assumption, rule refl)
apply( frule ex17_2[OF total])
apply(subst if P, assumption)
apply(subst if_notP, assumption, rule refl)
done

4. Proving left-idempotence:

lemma ex18.3 :
assumes transitivity : "V xy z. x <=y Ay <=z —x <=7"

assumes reflexivity : "V x. x <=x"
assumes antisymmetry: "V xy. x <=y Ay <=x —x =Yy"
assumes total: "V xy. x <=y Vy<=X"
shows "max(x,max(x,y)) = max(x,y)"
apply(case_tac "x =y")
apply( rule_tac b ="y" in subst, assumption)

apply(subst ex18_1[OF transitivity reflexivity antisymmetry total])
apply(subst ex18_1[OF transitivity reflexivity antisymmetry total |)
apply(rule refl)

apply(case_tac "x <=1y")

apply(unfold max_def)

apply(subst if P, assumption)+

apply(rule refl)

apply(subst if_notP, assumption)+

apply(subst if_P, rule spec [OF reflexivity ])

apply(rule refl)

done



5 M-Calculus

In this exercise, we will will use Isabelle as a prototype tool to describe cal-
culi (including binding) and to perform computations in them by using tactics
involving backtracking. This will also deepen our understanding of the unifi-
cation procedures used by Isabelle.

We will also introduce the concept of (parametric) Polymorphism which can
be used to encode object languages including their type system.

5.1 Isabelle

5.1.1 The Context of this Exercise

In lecture “The A-Calculus”, we defined the syntax of the untyped A-calculus
by the following grammar:

e u= x|c|(ee)]| (Az.e)

together with conventions of left-associativity and iterated A’s in order to avoid
cluttering the notation. Later, we defined a substitution on this raw syntax,
and congruence relations on A-terms such as a-, 8- and 1 congruences.

In this exercise, we will use a particular representation technique for
the untyped A-calculus called shallow embedding. It can be found in the-
ory.__htton://uww._infsec ethz. ch/education/permanent./csmr/material/
Lambda.thy (which is based on FOL for purely technical reasons - the dec-
laration part can be loaded even in Pure, the meta logic of Isabelle itself). In-
stead of e, we declare one universal type term — the presented calculus is thus
untyped. The application is represented by the constant declaration """ :: "
[term, term] = term”, consequently. Instead of defining an own substitution
function, however, we define the abstraction as a constructor of a function;
thus, it gets the type Abs :: "[term = term] = term” where = is the function
space inherited from Pure. The notation lam x. P x is equivalent to Abs(\x
. P x); recall that A is the internal abstraction inherited from Isabelle/Pure.
Thus, whenever we want to substitute a term into the body of an abstraction,
we can just use the [-reduction provided by Isabelle/Pure (one also speaks
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untyped A-calculus

shallow embedding

Lambda.thy
term

Abs

lam x. P x


http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy
http://www.infsec.ethz.ch/education/permanent/csmr/material/Lambda.thy

higher-order abstract
syntax

safe rules

unsafe rule

fast intro
fast elim

of an “internalized” substitution provided by the shallow embedding of our
language; or of using higher-order abstract syntax).

Our theory for the untyped A-calculus also provides the G-reduction relation
and the (-congruence by a set of axioms; note that we make no claims on the
logical consistency of this exercise!

Further, it provides definitions for the standard combinators K,S and I and
two versions of Y combinators.

In lecture it was said that the untyped A-calculus is Turing-complete. We
will show two core ingredients for such a proof: namely that data types (in
particular: natural numbers) and fix-point combinators (enabling the presen-
tation of recursive functional programs) can be represented inside the untyped
A-calculus.

5.1.2 Automated Proof Search Tactics

As mentioned in the lecture “Proof Search”, Isabelle can organize proof-states
in a tree-like fashion, which can therefore be searched according to depth-first
or breadth-first strategies. The tactic command fast performs the former,
according to introduction and elimination rules given to it. Introduction and
Elimination rules are both subdivided into two classes:

1. safe rules, which transform a proof state into an equivalent one,

2. unsafe rule, which may transform a proof state into a logically weaker
one.

Unsafe rules where tried in a limited way after safe rules did not succeed, and
assumption is applied after no more unsafe rule applications are possible. Some
syntactic variants for fast-commands are:

fast intro: rules
fast elim: rules

If the full context of assumptions should be included as well, one can append
a ! to intro, elim, and dest, e.g.:

fast intro I: rules
5.2 Exercises

5.2.1 Exercise 18

As a warm-up, reduce the following terms to S-normal form in Isabelle.
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1. SKK

2. SKS

Hint: Start with

lemma ex18_1: "S"K"K >——> 7X"

In the end, the metavariable ?x should be instantiated to a term in -
normal form.

Hint: Do the proofs without using fast.

Answer to Exercise 18
1. Reducing SKK:

lemma ex18_1: "S"K"K >——> 7"

apply(rule trans)

apply(unfold K_def S_def)

apply(rule appr)

apply(rule beta)

apply(rule trans)

apply(rule beta)

apply(rule trans)

apply(rule epsi)

apply(rule appr)
apply(rule beta)
apply(rule trans)
apply(rule epsi)
apply(rule beta)
apply(fold 1_def)
apply(rule refl)
done

2. Reducing SKS:

lemma ex18_2: "S"K"S >——> X"
apply(unfold K_def S_def)
apply(rule trans)
apply(rule appr)
apply(rule beta)
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apply(rule trans)
apply(rule beta)
apply(rule trans)
apply(rule epsi)
apply(rule appr)
apply(rule beta)
apply(rule trans)
apply(rule epsi)
apply(rule beta)
apply(fold 1_def)
apply(rule refl)
done

5.2.2 Exercise 19

Automate the proofs from Ex. using fast and the ISAR control structures.
Thanks to automation, you should be able to show also the following reductions
using the identical “proof script”:

1. SKKISS

2. SKIKISS

Answer to Exercise 19

First we define a set of lemmas we want to apply

lemmas red_cs_isar = beta appl appr epsi

using fast we can now show SK K with the following script:

lemma "S"K"K >——> 7x"
apply(unfold S_def K_def)
apply(rule trans, fast intro!: red_cs.isar )+
apply(fold 1_def)
apply(rule refl)
done

This “script” also works for the other examples:

1. Reducing SKKISS:
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lemma ex19_1: "S"K"K"I"S"S >——>7t"
apply(unfold S_def K_def)
apply(rule trans, fast intro!: red_cs.isar )+
apply(fold S_def K_def |_def)
apply(rule refl)
done

2. Reducing SKIKISS:

lemma ex19.2: "S"K"I"K"I"S"S >——>7t"
apply(unfold S_def |_def K_def)
apply(rule trans, fast intro!: red_cs_isar )+
apply(fold 1_def S_def K_def )
apply(rule refl)
done

5.2.3 Exercise 20

Now show in Isabelle that for both Y-combinator versions enjoy a fix-point
property, i.e. prove that:

1. Y F >=< F(YTF) and
2. YoF >=< F(YcF).

Is it possible to show Yy F-->F(YrF) and Yo F-->F (Yo F)?

Answer to Exercise 20
1. Y F >=< F(YTF)

lemma ex_20_1: "YTF >=< F*(YT"F)"
apply(unfold YT _def)
apply(rule trans_sym)
apply(rule appr_sym)
apply(rule beta_sym)
apply(rule beta_sym)
done

2. YoF >=< F(YcF):

o7



lemma ex20_2: "YC'F >=< F*(YC"F)"

apply(unfold YC_def)

apply(rule trans_sym)

apply(rule beta_sym)

apply(rule trans_sym)

apply(rule beta_sym)

apply(rule symm_sym)

apply(rule appl_sym)

apply(rule beta_sym)

done

5.2.4 Exercise 21

Following a proposal by Alonzo Church, natural numbers n were encoded as
the term

Mo f(f .. (fx)--),
times

which we abbreviate by writing Afx. f"x. The successor function and addition
are given by the A-terms:

suce = Aufx. f(ufzx)
add A fr.uf(vfx)

Write a theory of the Church-Numerals with constants for C'0,C'1,C2 and
succ and add.

Convince yourself that succ and add are indeed the successor and addi-
tion function, by evaluating them symbolically (i.e, on “terms” Afz. f"x and
Afz. fMx) under a suitable assumption.

Answer to Exercise 21

consts
(x Church numerals *)
Co o "term”
C1 w Tterm”
C2 = term”
C3 o term”
C4 © "term”
C5 : "term”
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tt o "term”
ff o "term”
(* primitive recursive functions )
zero o "term”
succ = "term”
add © "term”
IF o "term”
mult o "term”
pred = "term”
tuple o "term”
first o "term”
second : "term”
tup_succ : "term”
next_tup :: "term”
defs
tt_def : "tt =lam x. lamy. x
ff_def : "ff =lam x. lamy. y"
CO_def: "CO =lam f. lam x. X"
Cl_def: "Cl =lam f. lam x. f™x"
C2.def:  "C2 =lam f. lam x. f*(f"x)"
C3_def: "C3 =lam f. lam x. f*(f*(f"x))"
C4_def:  "C4 =lam f. lam x. f(f*(f"(f"x)))"
C5_def: "C5 =lam f. lam x. f*(f*(f*(f*(f"x))))"
zero_def: "zero =lam x. x"(lamy. ff)"tt”
succ_def: "succ =lam x. lamy. lam z. y*(x"y"z)"
add_def: "add =lam u. lam v. lam f. lam x. u™f"(v"f"x)"
if def : " IF =lam b. lam m. lam n. b"m™n"
mult_def: "mult =lam u. lam v. lam f. u"(v"f)"
tuple_def : "tuple =lam x. lamy. lam f. f"x"y"
first_def : " first =lam t. t7tt"”
second_def: "second =lamt. t"ff"

tup_succ_def: "tup_succ =lam

t. tuple”(succ™( first “t))"(succ”(second”t))"
"next_tup =lam

t. tuple”(second”t)"(succ”(second”t))

(+(0,0) — (0,1). (01) — (1,2). (1,2) — (2,3) etc.x)

next_tup_def:



pred_def: "pred =lam u. first “(u”next_tup”(tuple”C0"C0))"
5.2.5 Exercise 22

Reduce the following terms:
1. succ Cy

2. add 03 02

Answer to Exercise 22

1. suce Cy
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apply(unfold CO_def succ_def)

apply(rule
apply(rule
apply(rule
apply( rule
apply( rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( fold

apply(rule
done

2. add 03 02

trans_sym)
beta_sym)
trans_sym)
epsi_sym)-+
appl_sym)
appr_sym)
beta_sym)
trans_sym)
epsi_sym)+
appl_sym)
beta_sym)
C1_def)
refl_sym)

apply(unfold C2_def C3_def add_def)

apply( rule
apply(rule
apply( rule
apply(rule
apply( rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( rule

trans_sym)

appr_sym)

beta_sym, rule trans_sym)-+
epsi_sym)+

appr_sym)

beta_sym)

trans_sym)

epsi_sym)-+

beta_sym)

trans_sym)



apply(rule
apply( rule
apply(rule
apply( rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( rule
apply(rule
apply(rule
apply(rule
apply( fold

apply( rule

epsi_sym)+
appl_sym)
appl_sym)
appl_sym)
appr_sym)
beta_sym)
trans_sym)
epsi_sym)+
appl_sym)
appl_sym)
)
)

beta _sym
C5_def)
refl_sym )

done

5.2.6 Exercise 23 (optional)

When applying a rule, Isabelle uses a process that is called higher-order uni-
fication for finding instantiations for meta-variables. Consider the unification
problem

7P(?b) =apy y=x

which has the solutions:

[7P «— (Az. 2z =x), 7b < y]
[P — (A\z.y = 2), 7b < ¥]
[7P «— (Az. y =x), Tb « {] (for any t)

We can simulate higher-order unification inside Lambda.thy on the basis of
P " ?x >=<add " C3 "~ C4.

1. Synthesize at least two solutions. You may use local substitutions or
back.

2. Try to unify lam x. add © 7P " C4 >=< lam x. add " x ©~ C4 and lam x.

add * (7P " x) " C4 >=<lam x. add " x ~ C4
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Answer to Exercise 23

1. Synthesize unifiers:

lemma ex_23.1_1: "7X"?7Y >=< add"C3"C2"
apply(rule appr_sym)
apply(rule refl_sym)
done
(+ corresponds to X —> add"C3 and Y —> C2, i.e. first order
unification solution . )

lemma ex 23.1.2: "?7X"?Y >=< add"C3"C2"
apply(rule appr_sym)
apply(rule beta_sym)
done
(x artefact : (lam x. x) " (add ~ C3) ~ C2 >=< add " C3 " C2 %)

lemma ex_23.1.3: "?X"?Y >=< add"C3"C2"
apply(rule beta_sym)
back
done

(* (lam x. add ~ C3 " x) " (2 >=< add "~ C3 ~ C2 %)

lemma ex_23_1.4: "?X"?Y >=< add"C3"C2"
apply(rule beta_sym)back back
done

lemma ex 23.1.5: "?7X"?Y >=< add"C3"C2"
apply(rule beta_sym)
back
back
back
done

2. Unification under binding:

lemma ex 23.2.1: "lam x. add ~ 7P ©~ C3 >=< lam x. add " x ~ C3"
apply(rule epsi_sym)
apply(rule appr_sym)
apply(rule appl_sym)
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(x "apply(rule refl_sym)” does not work:
since 7P does not depend on x and any substitution would
produce a name—capture wrt. to x bound by meta—quantifier.
Thus, 7P specifies a pattern that does not contain x! *)
oops

lemma ex_23.2.2: "lam x. add * (?P " x) " C3 >=<lam x. add " x ~ C3"
apply(rule epsi_sym)
apply(rule appr_sym)
apply(rule appl_sym)
apply(rule beta_sym)
done
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5.3 Encoding the untyped A-calculus in in Isabelle

theory Lambda = FOL:

(x common definition for both calculi *)

typedecl
?term”
arities
term” :: logic
consts
Abs :: 7 [term = term] = term” (binder ”lam ” 10)
R ;i 7 [term, term] = term” (infixl 20)
K i "term”
I i "term”
S it 7term”
B i "term”
YC i "term”
YT i "term”
defs
K_def: 7K =lam x. (lam y. x)”
I_def: ”I =lam x. x”
S_def: 7S =lam x. (lam y. (lam z. x"z"(y"z)))”

B.def: "B =S"(K"S)"K”

YC._def: ”YC =lam f. ((lam x. £"(x"x))"(lam x. £ (x"x)))”
YT def: ”YT =(lam z. lam x. x"(z"z"x)) " (lam z. lam x. x"(z"z"x))”

(* reduction \—calculus *)

consts

Red :: 7 [term, term] = prop” O >==>))
axioms

beta: ?(lam x. f(x))"a >——> f(a)”

refl : "™M >——> M”

trans: "[M>-—=>N;N>——>L]—M >——>1L"

appr: "M >——>N=M"Z >——> N"Z”

appl: "M >——> N =Z7Z"M >——> Z"N”

epsi: [ Mx. M(x) >——> N(x) [=(lam x. M(x)) >——> (lam x. N(x))”

(* equational A—calculus *)
consts

Conv :: ”[term, term] = prop” (- >=< ")
axioms

beta_sym: ?(lam x. f(x))"a >=< f(a)”

refl_sym: ™M >=< M”

symm-sym: "M >=< N =N >=< M”
trans_sym: [ M >=< N; N >=< L |[—M >=< L”

appr-sym: "M >=< N =M"Z >=< N Z”
appl-sym: "M >=< N =Z7Z"M >=< Z"N”
epsi_sym: P[Mx. M(x) >=< N(x) [=lam x. M(x) >=< lam x. N(x)”

(* syntaz setup *)
syntax (symbols)
?lam ” :: 7 [idts, term] = term” (7 (3A-./ -)” [0, 10] 10)

end
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6 PL in LF

In this exercise, we will use a very powerful meta-logic, introduced under the
name LF (“logical framework”). Its purpose is to represent not only the syntax
of propositional logics (PL), but the deductive system in form of its natural
deduction system. As a consequence, we will deepen our understanding of
notions like proof objects and the propositions-as-types principle.

By encoding PL in LF, we also give an intuition into Isabelle and its character
as logical framework itself—at the end, Isabelle’s built-in logic Pure is used to
encode LF with the same techniques as we are studying PL in LF.

6.1 Background

6.1.1 Revisiting LF

We briefly revisit the LF system as presented in the lecture. LF is defined as
a A-calculus with dependent types; these were represented by a several mutual
recursive judgments formalizing signatures 3 and contexts T.

The_basic_theory _htto://wwu_infsec ethz ch/education/permanent./
csmr/material/LF.thy contains a shallow embedding of the raw terms—also
called: pseudo terms—of the A-calculus (i.e. substitution and generation of free
variables is done by Pure). However, the type-system is represented by axioms
that define the notion of signature and context. As in previous exercises, we
make no statement about the logical consistency of our presentation.

6.1.2 Signatures and Contexts

Generally, a signature specifies the “constant symbols” (as opposed to vari-
ables). A signature Y is a sequence of pairs of the form ¢ : 7, where ¢ is a
constant symbol and 7 is a type.
A context specifies the types of the variables used in an expression. A context
I" is a sequence of pairs of the form x : A, where x € Var and A is a raw term.
The axioms for signatures and contexts define inductively the subset of valid
signatures and contexts.
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6.1.3 The judgments of LF

Valid signatures and contexts are defined via three (mutually recursive) kinds
of judgments:

1. judgments stating that a signature is valid, g4 X;
2. judgments stating that a context is valid, F¢op I

3. judgments stating that a term has a certain type; this is a relation be-
tween a signature X, a context I' and an expression of the form ¢ : A,
written I bxy ¢ : A.

Note, however, that our implementation of LF in Isabelle differs from the
presentation in lecture in that there is no ¥ and Fy. Statements for them were
simulated by constant declarations and suitable axioms.

The judgments in LF are of the form 1 : X1 ... x, : X;, F 2z : X. An
example for a judgment is x:0 y:o |— x:o.

The following table shows how the various syntactical entities of LF are
written in LF.thy:

LF | LF.thy
z?. b Prod(A, Ax.B) or Pi x:A. B
A— B A—>B
Az b Abs(A, Ax.B) or Lam x:A. B

F(a) (application) | F*A

The notations Prod(A, Ax.B) and Abs(A, Ax.B) may be parsed and printed al-
ternatively by Isabelle. There are also some differences between the LF pre-
sentation in the lecture and the way the rules are encoded in Isabelle:

e There is no assumption rule, since signatures are mimicked by contexts
and by theory extensions.

e The hypothesis rule requires that the type assignment to be proven is
the first in the context (which is implicitly assumed to be a set). In
Isabelle/LF, the context is more a list-like structure which makes the
introduction of a weakening-rule necessary.

6.2 Exercises
6.2.1 Exercise 24

Prove three of the following judgments in LF. To learn more, you might want
to try and guess the instantiation of the metavariable in advance:
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1. i : Type - IIz*. Type :?T

2. A: Type,B: Type - A — BT

3. A: Type,B : Type - \z*. A — B 2T

4. f Tz B,a: AF f(a) :?T (note how Isabelle displays ITz4. B!)
5. A: Type, P: A — Type,a: AF P(a) 7T

6. A: Type, P : A — Type - Na?. \bF(@) b 2T

Answer to Exercise 24
1. i : Type + Iz, Type 27"

lemma ex24 1: "i: Type |— (Pi x:i. Type) : ?T";
apply(rule formation)
apply(rule hypothesis)
apply( rule axiom)
done

2. A: Type,B: Type - A — B :7T"
lemma ex24_2: " A:Type B:Type |- A —> B :7T"

apply(rule
apply(rule
apply( rule
apply(rule
apply( rule
done

formation)

hypothesis)
weakening)
weakening)
hypothesis)

3. A: Type, B : Type - \z*. A — B T
lemma ex24_3: "A:Type B:Type |— Lam x:A. (A —> B) :7T"

apply( rule
apply(rule
apply( rule
apply( rule
apply( rule
apply( rule
apply(rule
apply( rule

abstraction )
formation)
weakening)
hypothesis)
weakening)
weakening)
weakening)
hypothesis)
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apply(rule formation)
apply(rule hypothesis)
apply(rule axiom)
done

4. f:Tz?. B,a: AF f(a) :?T (note how Isabelle displays ITz4. B!):

lemma ex24_4: "f:(Pi x:A. B) a:A |- f"a:?T"
apply(rule application )
apply(rule hypothesis)
apply(rule weakening)
apply(rule hypothesis)
done

5. A: Type, P: A — Type,a: At P(a) :7T:

lemma ex24 5: "A: Type P: A —> Typea: A|— P a: ?T"

apply(rule application )

apply(rule weakening)

apply(rule hypothesis)

apply( rule weakening)

apply(rule weakening)

apply(rule hypothesis)

done

6. A: Type, P: A — Type,a: At P(a) :7T:

lemma ex24 6: "A : Type P: A —> Type |— Lam a: A. Lam b : P"a. b : ?T"
apply(rule abstraction )
apply(rule abstraction )
apply(rule hypothesis)
apply(rule formation)
apply(rule application )
apply(rule weakening)
apply(rule weakening)
apply(rule hypothesis)
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apply(rule
apply( rule
apply(rule
apply( rule

hypothesis)
application )
weakening)
weakening)
weakening)



apply(rule
apply( rule
apply( rule
apply( rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( rule
apply(rule
apply(rule
apply(rule
apply( rule
apply(rule
apply( rule
apply( rule
apply(rule
apply( rule
done

hypothesis)
weakening)
hypothesis)
formation)
hypothesis)
formation)
application )
weakening)
weakening)
hypothesis)
hypothesis)
application )
weakening)
weakening)
weakening)
hypothesis)
weakening)
hypothesis)

6.2.2 Exercise 25

Encode syntax and deductive system of propositional logic (PL) and call the
resulting theory PL_in_LF. The cases for and and or are sufficient.

Example for the syntax:

consts
"o" o "term”
"imp” o "term”
axioms
o_def: "G|— o:Type”
imp_def: "G|— imp: 0—>0—>0"

Example for the deductive system:

consts
" pr” - "term"
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"impl” 2 "term”

axioms
pr_def : "G|— pr: o—>Type"

impl_def: " G|— impl:Pi A:o. Pi B:o. (pr"A—>pr"B)—>pr “(imp~A"B)"
Do not forget the impE-rule!
Answer to Exercise 25
theory PL_in_LF = LF:
(x soorrprrrrsrssok kRO kR Rk ok ok % )

(*+ Encoding the syntax for PL in LF * )

(* Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskokokoskok kR R KR SR R R R R Rk sk oskosk sk skoskoskoskoskoskoskoskeskokoskoskoskosk *)

consts
"o" "term”
"imp"” = "term”
"and"” = "term”
"or" = "term”
axioms
o_def: "G|— o:Type”
imp_def: "G|— imp: 0o—>0—>0"
and_def:  "G|— and: 0o—>0—>0"
or_def : "G|— or: 0o—>0—>0"

(% sorrskksssksskksksksksk sk sk skttt RRskskskskkkk sk skttt ks sRsRsRskkskokokok % )
(* Encoding the deductive system for PL in LF * )
(% sorrstsskskkskskskskskk sk skttt RRskkskskkkk sk skttt s ssRsRkkkskokokok % )

consts
" or” . term”
"impl” o "term”
"impE" = "term”
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"andl” o "term”

"andEl" o "term”
"andE2" o "term”
"orll” o "term”
"orl2" o "term”
"orE" o "term”
axioms
pr_def : "G|— pr: o—>Type"

impl_def: " G|— impl:Pi A:o. Pi B:o. (pr"A—>pr"B)—>pr “(imp"A"B)"
impE_def: " G|— impE:Pi A:o. Pi B:o. pr*(imp"A"B)—>pr"A—>pr"B"

andl_def: "G|— andl:Pi A:o. Pi B:o. pr"A—>pr"B—>pr~(and"A"B)"

andEl_def: "G|— andE1:Pi A:o. Pi Bio. pr°(and”A"B)—>pr"A”

andE2_def: "G|— andE2:Pi A:o. Pi B:o. pr*(and”A"B)—>pr"B"

orll_def: "G|— orll:Pi A:o. Pi B:o. pr"A—>pr*(or"A"B)"

orl2.def:  "G|— orl2:Pi A:o. Pi B:o. pr"B—>pr"(or"A"B)"

orE_def: "G|— orE:Pi A:o. Pi B:o. Pi Cio.
pr-(or"A"B)—>(pr"A—>pr"C)—>(pr"B—>pr"C)—> pr"C"

end

6.2.3 Exercise 26

Prove in PL_in_LF that - IIz°. Iy°. pr (imp x y) — (pr ) — (pr y) : Type.

Answer to Exercise 26
lemma ex26: "|— Pi x:0. (Pi y:o0. pr*(imp™x~y)—> pr"x —> pr’y): Type"

apply(rule formation, rule o_def )+

apply( rule formation)

apply(rule application )

apply(rule pr_def)

apply(rule application )

apply(rule application )

apply(rule imp_def)
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apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply( rule formation)
apply(rule application )
apply(rule pr_def)
apply(rule weakening)

apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply(rule application )
apply(rule pr_def)

apply(rule weakening)

apply(rule hypothesis | (rule weakening, rule hypothesis) )+
done

6.2.4 Exercise 27

Prove one of the following propositions in PL_in_LF:
l.a—a
2.a—b—a
Hints:

1. One states that a proof for the goal is a term of type pr(imp a a), and
gives a proof object for it, i.e. one states

a:ob:pr(imp aa)
for an appropriate, given t and proves this statement.

2. Alternatively, one synthesizes the 7t through the meta-level proof. Since
the unifications for the application-rule are highly ambiguous (Isabelle
may even be unable to find existing unifiers!), you will have to make
tricky explicit instantiations. An (unsafe and incomplete) alternative is
to use back until Isabelle has found the right unifier.

3. The proof object for the second exercise is:

impl“a”(imp~“b~a)” (Lam x: pr*a. impl”b"a”(Lam xa:pr”b. x))

The proof is difficult.
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Answer to Exercise 27

l.a—a
(x+ Version with all crucial substitutions made explicit ... x)
lemma ex27_1a: "a:o0 |— impl“a“a”(Lam y:pr*a. y) : pr*(imp~a”a)”

apply( rule_tac A ="pr*a —> pr"a” and
B ="%u. pr(imp~a“a)”
in application )
apply( rule_tac a ="a" and
A="0" and
B ="%u. (pr"a —> pr*u) —> pr*(imp~a”u)”
in application )
apply( rule_tac a ="a" and
A ="0" and
B ="7X"
in application )
apply(rule impl_def)
apply(rule hypothesis)+

(

(
apply(rule
apply(
apply(rule
apply( rule
apply(rule
apply( rule
apply( rule
apply( rule
apply( rule
apply( rule
done

abstraction )
hypothesis)
formation)
application )
pr_def)
hypothesis)
application )
pr_def)

weakening)

hypothesis)

(* version more relaxed wrt. explicit substitutions ... *)
lemma ex27_1b: "a:0 |— impl”“a”a”(Lam y:prta. y) : pr*(imp~a“a)”

apply(rule application )

apply( rule_tac B ="%u. ?A2(u) —> pr*(imp~a“u)”

in application )

apply(rule application )

apply(rule impl_def)

apply(rule hypothesis)+



apply(rule
apply( rule
apply(rule
apply( rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( rule

apply(rule
done

(x synthetic

abstraction )
hypothesis)
formation)
application )
pr_def)
hypothesis)
application )
pr_def)
weakening)
hypothesis)

version )

lemma ex27_1c: "a:0 |— ?T : pr™(imp~a”“a)”
apply( rule_tac B = "%u. pr*(imp~a”a)” in application)
apply( rule_tac B = "%u. ?A3(u) —> pr”(imp~a”u)" in application)
apply( rule_tac B = "%u. Pi ua : 7A8(u).
Pi uaa: ?A7(u, ua).
pr”(imp~“u~ua)” in application)

apply(rule
apply(rule
apply(rule
apply(rule
apply(rule
apply(rule
apply( rule
apply(rule
apply( rule
apply(rule
apply( rule

apply(rule
done

2.a—b— a:

impl_def)
hypothesis)+
abstraction )
hypothesis)
formation)
application )
pr_def)
hypothesis)
application )
pr_def)
weakening)
hypothesis)

lemma ex27_2:

"a:o b:o

|— impl®a”(imp~b~a)”

(Lam x: pria. impl”b"a”(Lam xa:pr”b. x)) :



pr™(imp~a”(imp~b~a))”
apply( rule_tac A="pr “a —>pr " (imp ~ b~ a)" and
B ="% u. pr’(imp~a”(imp”b~a))"
in application )
apply( rule_tac A ="0" and
a ="imp"b"a" and
B ="%x. (pr"a —> pr'x) —> pr"(imp~a”"x)"
in application )
apply( rule_tac A ="0" and
a ="a" and
B = "%xa. Pix:o. ((pr ~ xa —> pr " x)
—> pr"(imp~xa”x))"
in application )
apply(rule impl_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply(rule application )
apply(rule application )
apply(rule imp_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply(rule abstraction )

apply(rule application )
apply(rule application )
apply(rule application )
apply(rule impl_def)
apply( rule weakening)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply(rule abstraction )
apply(rule weakening)
apply(rule hypothesis) (x the discharge x)
apply(rule formation)
apply(rule application )
apply(rule pr_def)
apply(rule weakening)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply(rule application )
apply(rule pr_def)
apply(rule weakening)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
apply(rule formation)



apply(rule application )
apply(rule pr_def)
apply(rule hypothesis)
apply(rule application )
apply(rule pr_def)
apply(rule weakening)
apply(rule application )+
apply( rule imp_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
done

6.2.5 Exercise 28

Prove one of the following propositions in PL_in_LF:
1. aANb—a

2. a—bVa

Answer to Exercise 28
1. anNb— a:

(x+ Version with all crucial substitutions made explicit ... x)
lemma ex28_1a:
"a:o b:o |—impl " (and " 7a * ?b) " 7a "
(andE1 " ?7a ~ ?b) : pr”(imp”~(and”a”b)"a)"
apply( rule_tac A ="pr"(and”a"b) —> pr"a” and
B ="%u. pr~ (imp "~ (and "~ a "~ b) " a)"

in application )
apply( rule_tac a ="a" and
A ="0" and
B ="%u. (pr"(and”a”b) —> pr*u) —> pr”(imp~(and"a”b)"u)"
in application )
apply( rule_tac a ="and " a ~ b” and
A="0" and

B = "%xa. Pixwo. ( (pri(xa) —> pr'x)
—> pr™(imp”(xa)"x))"
in application )
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apply(rule impl_def)
apply(rule application )
apply(rule application )
apply(rule and_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+

apply( rule_tac B = "%u. Prod(pr " (and " a ~ u), %uu. pr "~ a)"
in application )
apply(rule application )

apply(rule andE1_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
done

(+ version more relaxed wrt. explicit substitutions ... x)
lemma ex28_1b: "a:0 b:o |— ?T : pr*(imp~(and”a”b)"a)”
apply( rule_tac B ="%u. pr * (imp "~ (and " a "~ b) ~ a)”

in application )
apply( rule_tac B ="%u. ?A3(u) —> pr " (imp " (and " a "~ b) " u)”
in application )

apply(rule application) back back

apply(rule impl_def)
apply(rule application )
apply(rule application )
apply(rule and_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+

apply( rule_tac B = "%u. pr*(and”a”u) —> pr*a”
in application )
apply(rule application ) back back

apply(rule andE1_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+
done

2. a—bVa:

lemma ex28_2: "a:o b:o |- ?T : pr™(imp~“a”(or"b"a))
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apply( rule_tac B ="%u. pr * (imp~a”(or*b”a))"

in application )
apply( rule_tac B ="%u. ?A3(u) —> pr”(imp~a~u)”
in application )

apply( rule_tac B="%u. Pi ua:?X1(u). (?X2(u,ua) —> pr*(imp~u~ua))”
in application )
apply(rule impl_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+

apply(rule application )+
apply(rule or_def)
apply(rule hypothesis | (rule weakening, rule hypothesis) )+

apply( rule_tac B ="%u. pr"u —> pr*(or"b*u)"
in application )

apply( rule_tac B = "%u. Pi ua:?X1(u). (prua —> pr”(or"u”ua))”
in application )

apply(rule orl2_def)

apply(rule hypothesis | (rule weakening, rule hypothesis) )+
done



7 HOL: Derived Rules

In the lecture, standard and non-standard models of HOL have been presented
in informal notation based on ZF set theory.

On this basis, a small set of axioms is justified, which serve as foundation
of HOL. In this exercise, we will prove the basic logical rules of Higher-order
logic (HOL) from these axioms and elementary definitions.

7.1 Background

7.1.1 Higher-order Logic

We have seen in lecture “HOL: Deriving Rules” how all well-known inference
rules for logical connectives and quantifiers can be derived in HOL. We now
want to do some of these proofs in Isabelle. Those rules are available by default
since they are derived from the eight basic rules once and for all.

Of course, these rules are already proved in the standard Isabelle/HOL library.
Nevertheless, do not to use library proofs for them and apply automated tactics
only with your own derived rules.

Following general convention, the syntax for function application in HOL is
just f x instead of f(x) as in FOL.

7.2 Isabelle/HOL

7.2.1 Technicalities

As for FOL you have to tell Isabelle that you want to work in HOL; choose HOL
by selecting (Isabelle/Isar > (Logics > HOL)). Within Isabelle/HOL the
basic theory (on which you build your own theory) is called Main, thus your
basic theory file for this exercise should look like:

theory ex7 = Main:
lemma fun_cong: " f=g =f(x) = g(x)"

end
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THE-operator

7.2.2 The Logical Foundation

True_def: "True = ((Ax::bool. x) = (Ax. x))"
All_def : "V P =(P = (Mx. True))"

Ex_def: "3 P =VQ. (Vx. Px —Q) — Q"
False_def: " False =(VP. P)"

not_def: "= P =P—False”

and_def: "PAQ =VYR. (P—Q—R) —R"

or_def : "PVQ =VR. (P—R) —(Q—R) —R"
if_def : "If Pxy =THE z::'a. (P=True —z=x)

A (P=False —z=y)"

eq_reflection : " (x=y) = (x=y)"

refl : t = (t:'a)"
subst: "[ s =t P(s) ] = P(t:'a)"
ext: "(Ax:a. (f x :'b) = gx) = (M. f x) = (M. g x)"

the_eq_trivial : "(THE x. x = a) = (a::"a)"”

impl: "(P=Q) =P—Q"
mp: "TP—Q P] =Q"
iff - "(P—Q) —(Q—P) —(P=Q)"

True or_False : " (P=True) V(P=False)"

The axiom of the THE-operator seems to be obviously true, but somewhat
pointless. In each type 7 there is a function assigned to this operator, that
chooses out of the set of possible values in the semantic domain of 7 the element,
that is equal to a. However, since we may write THE x. P x, the THE-operator
may be used quite flexibly to define elements that are uniquely defined by a
predicate P; in other words: the use of the operator boils down to the proof of

uniqueness with respect to P.
7.2.3 Exercise 29

Derive the following rules:
I f=g— f(z) = g(x) (fun_cong)

2. x=y= f(z) = f(y) (arg-cong)
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Answer to Exercise 29
1. fun_cong:

lemma fun_cong: "f=g =f(x) = g(x)"
apply(erule subst)
apply(rule refl)
done

2. arg_cong:

lemma arg_cong: "x=y =f(x) = f(y)"
apply(rule subst [of x])
apply(assumption)
apply(rule refl)
done

7.2.4 Exercise 30

Derive the following rules presented in the lecture:
1. transitivity and symmetry

s=t=t=s (sym)
[r:s;s:t]]:T‘:t (trans)
2. rules about iff:
[P—=Q:Q = P]—= P=Q (iffT)
[P=Q:Q] =P (iff D2)
3. rules about True:
True (Truel)
P = True= P (eqTrueE)
P = P = True (eqTruel)
4. rules about V:
(/\ x.Px) = Vaz.Px (alll)
(Vz.Px) = Px (spec)
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10.

82

rules about Fualse:

False = P (FalseE)
False = True = P (False_neq_True)
True = False = P (True_neq-False)

rules about —:

(P = Fualse) = —~P (notl)

[-P;P]= R  (notE)
—(True = False) (True_Not_False)

rules about 3:

P(z) = Jz.Px
[(3z.P z); /\a:.PJ: = Q]=Q

rules about A:

[PQ]l = PAQ

PANQ =P

PANQ=Q
[PAQ;[P;Ql = R] = R

rules about V:

P=PVQ
Q= PVQ
[PVQ;P— R;Q— R] — R

and finaly, exluded middle:

PV =P (excluded middle

(exI)
(exE)

conjl)
conjEL)
conjER)
conjE)

~~ I~

(disfIL)
(disjIR)
(disjE)

)



Answer to Exercise 30

1.

lemma sym: "s=t =t=s"
apply(erule subst)
apply(rule refl)
done

lemma trans: assumes prl: "r=s" and pr2:"s=t" shows "r=t"

apply(rule_tac t ="t" and s ="s" in subst)

apply(rule pr2)

apply( rule_tac t ="r" and s ="s" in subst)
apply(rule sym)

apply(rule prl)

apply(rule refl)

done

lemma iffl: assumes prl: "P=—=-Q" and pr2:"Q=—-P" shows "P=Q"

apply(rule mp)
apply(rule mp)
apply(rule iff)
apply(rule impl)
apply(erule prl)
apply(rule impl)
apply(erule pr2)
done

lemma iffD2: " [P=Q;Q] =P"
apply(rule subst)
apply(rule sym)
apply(assumption)+
done

lemma Truel: " True”
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apply(unfold True_def)
apply(rule refl)
done

lemma eqTrueE: "P=True =—=-P"
apply(rule iffD2)
apply(assumption)
apply(rule Truel)
done

lemma eqTruel: " P=—=P=True"
apply(rule iffl )
apply(rule Truel)
apply(assumption)
done

lemma alll: assumes prem: " (/\ x. P x)" shows "Vx. P x"
apply(unfold All_def )
apply(rule ext)
apply(rule eqTruel)

apply(rule prem)
done

lemma spec: "(ALL x. P x) =P x"
apply(unfold All_def)
apply(rule eqTrueE)
apply(erule fun_cong)
done

lemma FalseE: "False =—P"
apply(unfold False_def)
apply(erule spec)
done

lemma False_neq_True: "False = True =—=-P"



apply(rule FalseE)
apply(erule eqTrueE)
done

lemma True_neq_False: " True = False =—-P"
apply(rule FalseE)
apply(rule eqTrueE)

apply(erule sym)
done

lemma notl: assumes prem: " (P=-False)’
apply(unfold not_def)
apply(rule impl)
apply(erule prem)
done

lemma notE: "[ =P; P [=Q"
apply(unfold not_def)
apply(rule FalseE)
apply(rule mp)
apply(assumption)+
done

lemma True_not_False: " —(True = False)”
apply(rule notl)
apply(erule True_neq-False)
done

lemma existsl: "P x =-dx. P X"
apply(unfold Ex_def)
apply(rule alll')
apply(rule impl)
apply(rule mp)
apply(erule spec)
apply(assumption)

shows " —P"
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done

lemma existsE: assumes pl: "(Ix. P x)" and p2: "Ax. P x =Q"
shows " Q"
apply(rule pl [unfolded Ex_def, THEN spec, THEN mp])
apply(rule impl [THEN alll ])
apply(erule p2)
done

lemma conjl: assumes pl: "P" and p2: "Q" shows "P AQ"
apply(unfold and_def)
apply(rule alll')
apply(rule impl)
apply(rule mp)
prefer 2
apply(rule p2)
apply(rule mp)
prefer 2
apply(rule pl)
apply(assumption)
done

lemma conjEL: assumes prem: "P AQ" shows "P”

apply(rule mp)
prefer 2

apply(rule prem)
apply(rule impl)
apply(unfold and_def)
apply(rule mp)
apply( rule_tac x ="P" in spec)
apply(assumption)
apply( rule impl)+
apply(assumption)
done

lemma conjER: assumes prem: "P AQ" shows " Q"
apply(rule mp)



prefer 2

apply(rule prem)

apply(rule impl)

apply(unfold and_def)
apply(rule mp)

apply( rule_tac x ="Q" in spec)
apply(assumption)

apply(rule impl)+
apply(assumption)

done

lemma conjE: assumes pl: "P AQ" and p2: "[P;Q]=R"
shows "R"
apply(rule p2)
apply(rule conjEL)
apply(rule pl)
apply(rule conjER)
apply(rule pl)
done

lemma disjlL: assumes prem: "P" shows "P vQ"
apply(rule mp)
prefer 2
apply(rule prem)
apply(rule impl)
apply(unfold or_def)
apply(rule alll')
apply(rule impl)+
apply(rule mp)
prefer 2
apply(assumption)+
done

lemma disjIR: assumes prem: "Q" shows "P vQ"

apply(rule mp)
prefer 2

apply(rule prem)
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apply(rule impl)
apply(unfold or_def)
apply(rule alll')
apply( rule impl)+
apply(rule mp)
prefer 2
apply(assumption)+
done

lemma disjE: assumes pl:"P VQ" and p2: "P=-R"” and p3: "Q=R"
shows "R"
apply(rule mp)
prefer 2
apply(rule pl)
apply(rule impl)
apply(unfold or_def)
apply(drule spec)
apply(rule mp)
apply(rule mp)
apply(assumption)
apply(rule impl)
apply(rule p2)
apply(assumption)
apply(rule impl)
apply(rule p3)
apply(assumption)
done

lemma excluded_middle: "P v—-P"
apply( rule_tac P = "P=True" and Q = "P=False” in disjE)
apply(rule True_or_False)
apply(drule eqTrueE)
apply(rule disjlL)
apply(assumption)
apply(rule disjIR)
apply(unfold not_def)
apply( rule_tac t ="P" and s = "False" in subst)



apply(rule sym)
apply(assumption)
apply(rule impl)
apply(assumption)
done

7.2.5 Exercise 31

Prove the following properties:
[P a; /\:r.P x = x=ua] = (THE z.P z) = a (the_equality)
Answer to Exercise 31

lemma the_equality: assumes prema: "P a" and premb: " Ax. P x =x=a"
shows " (THE x. P x) = a”

apply(rule trans)

prefer 2

apply(rule the_eq_trivial )

apply( rule_tac f="The" in arg_cong)

apply(rule ext)
apply(rule iffl )
apply(erule premb)
apply(erule ssubst)
apply(rule prema)
done

7.2.6 Exercise 32

Prove the following two properties of the if —then—else: if —then—else
Q = True = (if Q then x else y) = = (ite_then)
Q = False = (if Q thenzelsey ) =y (ite_else)

Answer to Exercise 32

lemma ite_then: "Q= True =>(if Q then x else y) = x"
apply(unfold if_def )

apply(rule the_equality )

apply(rule conjl)
(

apply(rule impl)
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rule refl)

rule impl)

drule sym)

rotate_tac 1)

drule trans )
assumption)

erule True_neq_False)
erule conjE)

erule impE)
assumption)+

apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
done

lemma ite_else: "Q = False =>(if Q then x else y) =y"
apply(unfold if_def )
apply(rule the_equality )
apply(rule conjl)
apply( rule impl)
apply(drule sym)
apply( rotate_tac 1)
apply(drule trans)
apply(assumption)
apply(erule False_neq_True)
apply( rule impl)
apply(rule refl )

apply(erule conjE)

apply( rotate_tac —1)

apply(erule impE)

apply(assumption)+

done
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8 HOL: Axiomatic Classes and
Typed Set Theory

In this exercise, we will deepen our knowledge on a specific concept of theory
structuring in Isabelle, namely axiomatic classes. We will extend conserva-
tive library constructions in typed set theory, and will lay the groundwork for
inductive definitions.

Technically, we will apply automated proof procedures, be it on the level of
rewriting or tableaux based procedures and combined methods such as auto.

8.1 Isabelle

8.1.1 Axiomatic Classes

Languages like Haskell have popularized the notion of type classes. In its
simplest form, a type class is a set of types with a common interface: all types
in that class must provide the functions in the interface. Isabelle offers a similar
concept, called axiomatic type classes. An axiomatic type classes is something
like a type class with axioms, i.e., an axiomatic specification of a class of types,
thus a type 'a being in a class C (written "a::C) must satisfy all axioms of C.
Furthermore, type classes can be organized in a hierarchy. Thus there is the
notion of a class D being a sub class of a class C, written D < C. This is the
case if all axioms of C are also provable in D.

Isabelle/HOL already has a built-in type class ord that among others defines
the <= symbol for orders. On top of ord we can introduce a type class reford
which requires reflexivity for the order relation:

axclass reford < ord
reford_refl : "x <=y"

For types being in the type class reford we now have an antisymmetric order
and should be able to proof:

lemma " (x::'a::reford) <= x"

But for now, there are no concrete types in the type class reford.
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instance

intro_classes

8.1.2 Instances

To bring life in our new type class reford we have to declare that a concrete
type is an instance of our type class and we also have to define the meaning of
<= over bool.

But first we prove that bool is an instance of the type class ord:

instance bool :: ord
apply( intro_classes )
done

Where intro_classes is a special method for doing “instance-proofs”, i.e., every
proof of a type being a instance of a type class should start with applying
this method. Further, we define the meaning of our order <= over bool as
implication (—>)EI

defs (overloaded)
leq_bool_def : "p <=q=p —q"

and prove that bool is a instance of the type class reford:

instance bool :: reford
apply( intro_classes )
apply(unfold leq_bool_def)
apply(rule imp_refl )
done

8.1.3 Using the Simplifier

The simplifier uses a “current simplifier set” available in a proof context. This
can be modified in the 1SAR-language by adding new rules (that must have
the format the simplifier may process; i.e. it must be a higher-order pattern
rule), deleting rules or by adding rules of a special format, e.g. splitter rules
or congruence rules, which we will discuss in the future.

Examples for the syntax of the simplifier method are:

apply(simp add: A B C)
apply(simp_all del: B)
apply(simp only: A)

apply(simp addsplit: E)
apply(simp addcong: F)

!The (overloaded) keyword is used here because the syntax of <= is used in many different
contexts and we “overload” it with our definition.
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8.2 Exercises
8.2.1 Exercise 33

1. Define an axiomatic class “qorder” of quasi-orderings (these are structures
with an ordering symbol op <= which are reflexive and transitive).

2. Define an axiomatic subclass “ linqorder” of linear quasi-orderings which
enjoy the additional property A <= B VB <= A

Define the relation:

A'="B==A<=BAB<=A
on it.

3. Show that linear quasi-orderings are equivalence relations and prove the
following properties (min is inherited from class ord):

lemma min_cong: "A "="B =min AB "=" B"
lemma linear_order_CE [dest !]:

"= (A:'a:lingorder) <= B =B <= A"
lemma min_com: "min (A::'a::linqorder) B "=" min B A"
lemma min_sym "min (A::'a::linqorder) B "=" min B A"
lemma le_split:

"(Ar'azlingorder) <= B =—(B <= A) V(A "=" B)"
lemma quasi_refl: "A =" A"
lemma quasi_sym: "A "="B =B "=" A"
lemma”"[A"="B;B"="C]=A"="("

4. Define the ordering op <= over pairs by conjoining the ordering on com-
ponents of the pairs and prove

lemma " (a::("a::qorder x 'b::qorder)) "="b =b "="a

Hint: Lookup the definition of the axiomatic class order in the HOL theory
(http://isabelle.in.tum.de/library/HOL/HOL.html) and modify it!

Hint: Use simp, fast, auto!
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Answer to Exercise 33
1. Defining a quasi-order:

axclass qorder < ord
qorder_refl [iff |1 "x <x"
qorder_trans [trans]: "x < y =y <z =x < 7’

2. Defining a linear quasi-order:

axclass linqorder < qorder
lingorder_linear : " A <B VB <A”

3. Defining an equivalence relation:

constdefs

2 " [ auqorder, 'a] = bool” (
"A"="B =A<BAB A"

4. Proving basic properties:

lemma min_cong: "A "="B =—=min AB "=" B"
apply(unfold "op “="_def" min_def)
apply(simp)
done

lemma linear_order_CE [dest !]:
" = (A:'a:lingorder) <B =B <A”
by (insert lingorder_linear , auto)

lemma min_com: "min (A::'a::linqorder) B "=" min B A"
apply(unfold "op “="_def" min_def)
apply(auto)
done

lemma linear_order_simp:
" (= (A:a:lingorder) <B) — (B <A)”

apply (auto)
done

lemma min_sym: "min (A::'a::linqorder) B "=" min B A"
apply(unfold "op “="_def" min_def)
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apply(simp)
apply(blast)
done

lemma le_split: "(A:'a:linqorder) <B = —(B <A) V(A

apply(unfold "op “="_def" min_def)

apply (auto)
done

lemma quasi_refl: "A =" A"
apply(unfold "op “="_def")
apply(auto)
done

lemma quasisym: "A "="B =B "=" A"
apply(unfold "op “="_def")
apply(auto)
done

lemma"[A"="B;B"="C]=A"="(C"
apply(unfold "op "="_def")
apply(auto)
apply(erule qorder_trans ,simp)
apply(erule qorder_trans ,simp)
done

. Extending the quasi-order to pairs:

instance x :: (ord, ord) ord
by( intro_classes )

defs (overloaded)

leg_prod_def: "p <=q =fst p<=fstq A snd p <=sndq"

instance % :: (qorder, qorder) qorder
apply( intro_classes )
apply(unfold leq_prod_def "op “="_def")
apply(auto)
apply(erule qorder_trans)
apply(assumption)

apply(erule qorder_trans)
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apply(assumption)
done

lemma " (a::('a::qorder x 'b::qorder)) "="b =—=b "=" a"
apply (rule quasi_sym)
apply (assumption)
done

8.2.2 Exercise 34

1. Prove the following set-theoretic properties only using the simplifier (not
fast, not blast, not auto):
AU(BUA) CAUB
A=D=AU(CUB)UD = CUBUA
F=B=AN(BUC)=(CNA)U(BNANF)

2. Prove the following set-theoretic properties with methods of your choice:

Domain r = UNIV =Id Cr\={} O r
Domain r # UNIV =-3x. (x, x) ¢ r\={} Or
Ixe A, XCBx=X CUNION A B

Hint: For the first task, set up the simplifier such that it computes ACI normal
forms.

Answer to Exercise 34

1. Using the simplifier:
lemma ex34.1.1: "A U(B UA) CA UB”
apply(simp add: Un_ac)
done

lemma ex34.1.2: "A =D =A U(C UB) UD = C UB UA”
apply(simp add: Un_ac)
done

lemma ex34.1.3: "F = B =A N(B UC) = CNA UB NA NF"
apply(simp add: Un_ac Un_Int_distrib2 )

apply(auto)
done
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2. Using full automation:

lemma ex34_4: "Domain r = UNIV =Id Cr 1 O ¢

apply(auto)
done

lemma ex34_5: "Domain r ZUNIV =3x. (x, x) ¢r-1 O r"

apply(auto)
done

lemma ex34.6: "dxeA. X CB x =X CUNION A B”

apply(auto)
done

8.2.3 Exercise 35

We define a (tiny) fragment of the specification language ZE| Begin by defining
the type of relations as sets of products using the type synonym:

types ("a,’b) "<=>" ="("ax'b) set”  (infixr 20)

Define the Z constructs notational equivalent:

syntax
dom " ("a <=>"'b) => "a set”
ran 2" ("a <=>'b) => b set”

translations
"dom r" == "Domain r"
"ran r" == "Range r"

1. Define the following operators over sets A and B:

A<——>B relation
A—-|->B partial function
A———>B total function

A >—|—> B  partial injection
A>——>B total injection
A —|—>> B partial surjection
A>——>>B bijection

2You can find more information about Z on the “Z Notation Website”: http://archive.
comlab.ox.ac.uk/z.htmll
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bines” them as follows:

a) any (x,y):A is in the override, iff x ~: dom B,
b) any (x,y):B is in the override, iff x “: dom B.

. Prove:

f:A-]-—>B=f: A<—>B
f:A——>B=f:A—-|—>B
f:A>-|->B=f:A—-|-—>B
f:A>-—>B=f:A—-|->>B=f:A>-——>>B
A(H)A=A

(A (+) B) (+) C = A (+) (B (+) ©)

Hint: Use simp, fast, auto as you like.

2. Define the operator override A (+)B that takes two relations and “com-

Hint: It might be useful to define a concept like “domain restriction” S <: A
(cutting down a relation A by erasing all pairs, whose first component is

in a given set S).

Answer to Exercise 35
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1. Defining basic Z operators:

constdefs

rel " ['a set, 'b set] = ("a <=>'b) set” ("- <——> _"[54,53] 53)

"A <——> B =Pow {(x, y). x €A Ay € B}"

consts
dom_res::"['a set , 'a <=>'b] =>"a <=>"b" ("_ [71,70] 70)
ran_res ::" ['a <=>'b, 'bset] =>'a <=>"'b" ("_:>_" [65,66] 65)
dom_sub::"['a set , 'a <=>'b] => "'a <=>"b" ("_ <—: "[71,70] 70)
ranssub::"['a <=>'b, 'bset] =>"'a<=>'b" ("_-:—> _" [65,66] 65)
pfun " [a set,'b set] => ('a <=> 'b) set” ("_ —|—> " [54,53] 53)
tfun " [a set,'b set] => ("a <=> 'b) set” (" ———> _" [54,53] 53)
pinj " [a set,'bset] => ('a<=> b) set” ("_ >—|—> "[54,53] 53)
tinj :"['a set,' b set] => ('a <=> "b) set” (" >——> ,” [54,53] 53)
psurj [a set,'b set] => ('a <=> b) set” ("- —|—>> _"[54,53] 53)
tsurj " ['a set,'b set] => ("a <=>'b) set” ("_ ——>> _" [54,53] 53)



bije " ['a set,' b set] => ("a <=> 'b) set” ("_ >——>> "[54,53] 53)

defs
pfun_def: "S —|—>R={f. f €eS<——>R
A (Vxyly2. (x,yl)ef
A (x,y2)ef —yl =y2)}"

dom_res def: "S <: R ={(x, y). (x, y) ERAx €S}"

ranresdef: "R:>S  ={(x, y). (x, y) ERAy €S}’

dom_sub_def: 'S <—: R ={(x, y). (x, y) ERAx ¢S}"

ransubdef: "R:—>S ={(x, y). (x, y) ERAy ¢S}"
defs

tfundef: "S ———> R ={s. s €S —|-> R Adom s =S}"

pinjdef: "S>—|->R={s.s€S —-|->R

A (Vx1 x2y. (x1,y)€s

A (x2,y)es —x1 = x2)}"
tinjdef: "S>——>R=(S>-|->R)N(S ———>R)"
tsurjdef: "S ——>>R=(S —|->>R)N(S ———>R)"
psurjdef: "S —|]—->> R ={s.s:S —|—-> R Arans =R}’
bijedef: "S>——>>R=((S ——>> R) N(S >——> R))"

2. Defining overwrite:

consts

override ::" ['a <=>"'b, 'a <=> 'b] => ("a <=>"b)"("- '(+')
[55,56] 55)

defs

override_def :"S (+) R =(dom R <—: S) UR"

3. Proving some properties:

lemma "feA —|—> B =fcA <——> B"
apply(auto simp: pfun_def)

done

lemma "feA ———> B =feA —|—> B"
apply(auto simp: tfun_def pfun_def)
done
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lemma "feA >—|—> B =fcA —|—> B"
apply(auto simp: pinj_def pfun_def)
done

lemma "fe(A >——> B) =fe(A —|—>> B) =f ¢(A >——>> B)"
apply(auto simp: bije_def tinj_def tsurj_def )
done

lemma "A (+) A= A"
apply(unfold override_def )
apply(auto simp: override_def dom_sub_def)
done

lemma”"(A(+)B)(+) C=A(+) (B (+) O)"
apply(auto simp: override_def dom_sub_def)
done
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9 HOL: Inductive Data Types

In this exercise, we will study the concept of the least fix-point operator Ifp
, its main theorems knaster_tarski and Ifp_induct and its major application: Ifp
providing semantics for inductive definitions.

The importance of the concept of inductive definition will be revealed by
applying it in three examples, ranging from closures, finite sets to natural
numbers.

9.1 More on Isabelle/HOL

9.1.1 Inductive Definitions

The general syntactic scheme of an inductive definition is: inductive

inductive "expr”
intros
thmname_1: "H_1 €expr”

thmname_m: " [ Cond_1(expr); ...; Cond_n(expr)] =-H_-m €cexpr”

where expr must be a set of the form C var_1 ...var_k and where C is a previ-
ously declared, but not yet defined constant, and the list of variables var_i may
be empty. After the keyword intros, introduction rules for the inductive set
may be inserted, either with assumptions or not (both forms can be arbitrarily
mixed). The conditions Cond_i may depend on expr or not.

Isabelle will process such statements and compile it to

1. a constant definition for C which can be referenced by C.defs C.defs

2. proofs for the introduction rules in the form given in the inductive state-
ment; the theorems can be referenced by their given name thmname.i,
and

3. proofs for the induction rules which can be referenced by C.induct C.induct

Note that introducing theorems via the declare statement (see the ISAR Ref-  declare
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constant specification

specification

erence Manuaﬂ) allows to insert such rules once and for all into the appropriate
“slots” of the proof engine; there are more syntactic variants in the inductive
statement that have the same effect.

9.1.2 Constant Specifications

There is an alternative conservative extension scheme supported by Isabelle,
namely the constant specification. In contrast to the constant definition used so
far, a “fresh” constant ¢ may be specified by a syntacticly unlimited predicate
P in an axiom P x. Of course, this axiom must be justified by the proof of the
semantic side-condition dz.P x.

The overall syntactic scheme of a constant specification in the ISAR language
is:
specification (C)

thmname: "P C”

done
where C is a previously declared, but not yet defined constant, P a character-

izing predicate that can be referenced by thmname, followed by a proof for the
side-condition.

9.2 Exercises
9.2.1 Exercise 36

Prove the Knaster-Tarski theorem

mono f=>lfp f = f(lfp f)

using the presentation given in the lecture “HOL: Fixpoints”, i.e., first prove
the claims 1-4. Use whatever proof methods you like, but you should no use
any theorem from the HOL library.

Answer to Exercise 36
lemma claiml: "f A CA —=Ifp f CA”

apply(auto simp: Ifp_def )
done

"http://isabelle.in.tum.de/dist/Isabelle2004/doc/isar-ref .pdf
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lemma claim2: " (Vx. fx Cx — A Cx) = A C Ifp "
apply(auto simp: Ifp_def )
done

lemma claim3: "mono f =f(Ifp f) Clfp f"
apply( rule claim2)
apply(rule alll')
apply( rule impl)
apply(rule order_trans)
prefer 2
apply(assumption)

apply(erule monoD)
apply(auto dest: claiml)
done

lemma claim3’: "mono f =f(Ifp f) Clfp f"
apply( rule claim2)
apply(rule alll , rule impl)
apply( rule_tac y="f x" in order_trans)
apply(auto elim!: monoD dest: claim1)
done

lemma claim4: "mono f =>1Ifp f Cf (Ifp )"
apply( rule claiml)
apply( frule monoD)
prefer 2
apply(assumption)
apply(erule claim3)
done

lemma claim4’: "mono f =-1Ifp f Cf (Ifp f)”
apply( rule claiml)
apply( frule_tac A="f (Ifp )" and B="Ifp f’ in monoD)
apply(auto elim!: claim3)
done
lemma KnasterTarski: "mono f =-Ifp f = f(Ifp f)"
apply(auto dest: claim4 claim3)
done
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9.2.2 Exercise 37

1. Define inductively the function “Fin:: 'a set = 'a set set” that pro-
duces the set of all finite subsets.

2. Prove the following properties over set of all finite subsets:

a) lemma "{1,2}€Fin{1,2,3}"
lemma "[acFin A; beFin A]J=(aUb) € Fin A"

)
)
) lemma "[(A €Fin X) vV (A €Fin Y)] = A €Fin (X UY)"
)
)

o o

(oW

lemma finite_Inl: "[ be Fin A] = (anb) € Fin A”

e) lemma " [A €Fin X]== Pow(A)& Pow(Fin X)"

Remark: The elements 1, 2, etc. do not imply that we have already numbers;
they are constants in syntactic classes predefined in the library. As a
result, Fin{1,2,3} has the type ('a::{one,zero,number})set and not nat
set.

Answer to Exercise 37
1. Defining Fin:

consts Fin :: "'a set = 'a set set "

inductive " Fin(A)"
intros
emptyl [simp, intro !]:  "{} € Fin(A)"
insertl [simp, intro !]: "[ a€A; beFin(A) [=> insert a b € Fin(A)"

2. Proving properties over Fin:

lemma "{1,2} €Fin {0,1,2}"

apply(simp)
done

lemma ex37_laux : "mono (AS. {x. x = {} V(Ja b. x = insert a b
Aa € {0::('a::{zero,one,number}), 1::'a, 2::'a}
Ab eS)})”
apply(auto intro I: HOL.monol)
done
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lemma " {1,2} €Fin {0,1,2}"
apply(unfold Fin.defs)
apply(subst Ifp_unfold [OF ex37_laux])
apply(subst Ifp_unfold [OF ex37_laux])
apply(subst Ifp_unfold [OF ex37_laux])
apply(auto)
done

lemma finite_Unl: "[ a€Fin A; beFin A] =>(aub) €Fin A”
apply (erule Fin.induct)

apply (auto)
done

lemma "[(A €Fin X) vV (A €Fin Y)] = A €Fin (XUY)"
apply(auto intro: Fin.induct)
done

lemma finite_Inl: " [beFin A] =(anb) €Fin A"
apply(erule Fin.induct)
apply(simp)
apply(subst Int_insert_right )

apply(auto)
done

lemma " [A €Fin X] =-Pow(A) €Pow(Fin X)"

apply(erule Fin.induct)
apply(simp)
apply(subst Pow_insert)
apply(auto)

done

9.2.3 Exercise 38

1. Define the concept of a reflexive transitive closure as an inductive defini-
tion over the constant

consts
rtc 0 "("a x'a) set = ("a x'a) set” ("(-"xx)" [1000] 999)
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2. Prove the following properties, using the derived induction scheme (The

last

two are optional.):

a) lemma rtc: "Ap. p €r = p € rixx"

b) lemma rtc_induct_pointwise:

Hints:

Answer

assumes a: "(a:: 'a, b) € rix«"

assumes base: "P a”

assumes step: "A'yz. [(a, y) €r’sx; (y, z) €r; Py] =P 2"
shows "P b"

lemma ctr_trans: "[ (a,b)e€ r xx;(b,c)€ rxx | = (a,c)€ r"xx"
lemma rtc_is_closure : " (r"sx) Mok = "k
lemma rtc_un_distr: " (R%s% US™s#x) %% = (R US) "

lemma rtc_un_distr: "R™#%x O R™sx = R %x"

. Prove the lemmas in the given order.

. You may unfold variables denoting pairs with the method: apply(

simp only: split_tupled_all )

. The crucial alternative induction scheme needs an additional as-

sumption a = a —P(b). You should add this assumption (using
subgoal_tac) and prove it using the derived induction scheme with
the instance P = Ax y. x =a —Py.

to Exercise 38

1. Defining rtc:

consts

rtc

inductive " r"xx

2 "("a x'a) set = ("a x'a) set” ("(_"xx)" [1000] 999)

intros

rtc_refl s (e, a) T
rtc_compose : "[(a, b) : r*xx; (b, ¢) : r] = (a, ¢) : rTxx

2. Proving properties over rtc:
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lemma rtc [intro]: "A p. p €r ==> p er’xx”
apply(simp only: split_tupled_all )
apply(erule rtc_refl [THEN rtc_compose])
done

lemma rtc_induct_pointwise :
assumes a : "(a:'a, b) € rix«"
assumes base : "P a"
assumes step : "Ay z. [(a, y) €r"sx; (y, z) €r; Py] =P 2"
shows "P b"
apply(subgoal_tac "a = a —P(b)")
apply(blast)
apply(rule_tac P ="Axy. x =a —Py" in rtc.induct[OF a])
apply(auto intro: base step)
done

lemma ctr_trans : "[ (a,b)er’xx;(b,c)er’xx | = (a,c)er’ "
apply(erule_tac b = cin rtc_induct_pointwise )
apply(blast intro !: rtc_.compose)+
done

lemma rtc_is_closure : " (r"sk) Tk = rTax "
apply(auto)

apply(erule rtc.induct)

apply(rule rtc_refl )

apply(blast intro: ctr_trans)

done

lemma rtc_un_distr: " (R™sx US %) sk = (R US) "
oops

lemma rtc_un_distr: "R™#x O R™#x = R %"
oops

9.2.4 Exercise 39

State the axiom of infinity
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axioms infinity : "3 fiind = ind. inj f A= surj "

and build a conservative theory extension deriving the core of the natural
number theory, the Peano Axioms:

1. Declare the constants ZERO::ind and SUC::ind =-ind,

2. Use a constant specifications to specify ZERO and SUC appropriately, i.e.,
such that you can derive ZERO #SUC X and SUC X = SUCY =X =,

3. Define NAT as the inductive set built over ZERO and SUC

4. Show the "induction” theorem on NAT.
Answer to Exercise 39
axioms infinity : "3 f:irind = ind. inj f A= surj "
consts

ZERO :: ind
SUC :: "ind = ind”

specification (SUC)
SUC_charn: "inj SUC A—surj SUC”
by (rule infinity )

specification (ZERO)

ZERO_charn: "ZERO #SUC X"
by (insert SUC_charn, auto simp: surj_def)

lemma SUC.inj : "SUCX =SUCY =X =Y"
by( insert SUC_charn, auto elim:injD)

consts NAT :: "ind set”
inductive "NAT"
intros
ZERO_l: "ZERO eNAT"
SUCLI : "[ xeNAT ]=SUC x eNAT"

lemmas "induction” = NAT.induct
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10 HOL: Well-founded and
Primitive Recursion

In this exercise, we will deepen our knowledge on well-founded orderings and
induction as well as its applications in form of recursive definitions.

10.1 Recursive Definitions

10.1.1 Primitive recursion

Isabelle provides a syntactic front-end for defining an important subclass of
well-founded recursions, namely primitive recursive functions, e.g.: primitive recursive

primrec primrec

add_0: "04+n=n"
add_Suc: "Suc m + n = Suc (m + n)"

primrec
diff 0: "m—-0=m"
diff Suc: "m — Suc n = (case m — n of
0 =>0
| Suck => k)"

The general form of a primitive recursive definitions in Isabelle is:

primrec
namesy: " rule”

namey: " rule”
where rule are reduction rules (as usual, the names namej...name, are op- reduction rules
tional). The reduction rules specify one or more equations of the form
faxr .. 2(Cyr oo yp) 21 oon 2 =T

such that C' is a constructor of the datatype (e.g. Suc in our first example), r
contains only free variables on the left-hand side, and all recursive calls in r
are of the form f ... y; ... for some 3.
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recdef

10.1.2 General Recursive Definitions

Isabelle also offers a way for declaring functions using general well-founded
recursion: recdef. Using recdef, you can declare functions involving nested
recursion and pattern-matching, e.g. we can define the Fibonacci function:

consts fib "nat = nat”
recdef fib " less_than”
"fib 0 =0"
"fib 1 =1"

"fib (Suc(Suc x)) = (fib x + fib (Suc x))"

where les_than is the “less than” on the natural numbers.
The general form of a recursive definitions in Isabelle is:

primrec function rule
congs  "rules”
simpset " rules”
namey: " rule”

name,: " rule”

where function is the functions name and rule a HOL expression for the well-
founded termination relation (Isabelle provides several built-in relations such
as less_than or measure). With the to optional arguments congs and simpset
one can influence the set of congurences rules and the simpset used during
the termination proof. Finally, the rules are specifing the “computational”
recursive equations.

10.2 Exercises
10.2.1 Exercise 40

Prove the following consequences of well-founded orderings:

1. a well-founded ordering is not symmetric:

lemma wf_not_sym: "wf(r) =Va x. (a,x)er — (x,a)¢r"

2. a well-founded ordering contains minimal elements:

lemma wf_minimal: "wf r =3x. Vy. (y,x) ¢ r"4"

3. a subrelation of a well-founded ordering is well-founded:
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lemma wf_subrel: "wf(p) =V r. r Cp — (I x. Vy. (y,x) ¢r"+)"

4. a well-founded ordering satisfies characterization (1):

lemma wf_eq_minimal2:
"wf(p) = (V r. (r#{} Ar Cp) — (3 x € Domainr. (V y. (y,x) ¢r)))"

Hint: Look up the various theorems about wellfounded orderings that Is-
abelle provides (wf_induct, wf_empty, wf_subset, wf_not_sym, wf_not_refl ,
wf_trancl, wf_acyclic, and wfrec_def) and use them as you like.

Answer to Exercise 40

1. a well-founded ordering is not symmetric:

lemma wf_not_sym: "wf(r) =Va x. (a,x)er — (x,a)¢r
apply(rule alll')
apply( rule_tac a = "a" in wf_induct)
apply(assumption)
apply(blast)
done

2. a well-founded ordering contains minimal elements:

lemma wf_minimal: "wf r =3 x. Vy. (y,x) ¢ r"4"
apply( rule_tac r ="r"+" in wf_induct)

apply(erule wf_trancl)

apply(rule disjE)

prefer 2

apply(assumption)

apply( rule_tac [2] FalseE)

apply(auto)

done

3. a subrelation of a well-founded ordering is well-founded:

lemma wf_subrel: "wf(p) =V r. r Cp — (I x. Vy. (y,x) ¢r*+)"
apply(rule alll')
apply(rule impl)
apply(rule wf_minimal)
apply(erule wf_subset)
apply(assumption)
done
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4. a well-founded ordering satisfies characterization (1):

lemma wf_eq_minimal2:
"wf(p) = (Vr. (r#{} ArCp) —(Ix€Domain r. (Vy. (y,x)¢r)))"
apply(subst wf_eq_minimal)
apply(unfold Domain_def)
apply(auto)
apply(erule_tac x =" (Domain r) Un (Range r) " in allE)
prefer 2
apply(erule_tac x ="p Int { (x,y) .x €Q}" in allE)
apply(auto)
done

10.2.2 Exercise 41

1. Define a the recursor iter f nin terms of the well-founded recursor wfrec
and the theory of the natural numbers. Derive from your definition the
properties:

lemma iter 0 : "iter 0 g = (A x. x)"

lemma iter_Suc : " iter (Sucn) g = go (iter ng)’

2. Define the addition add, the multiplication mult, the exponentiation exp
and the sumup operation sumup ( sumup 3 =1+ 2 4+ 3) on natural
numbers.

Use in at least two definitions the iter -recursor and derive the usual com-
putational equations; in the other cases, you may use a primrec construct.

Answer to Exercise 41
1. Defining iter:
constdefs
iter :: "[nat, 'a = "a] = 'a="a"
"iter n g =(wfrec pred_nat (A f x. if x = 0 then (A x. x)
else g o (f(THE y. x = Sucy)))) n”

lemma iter 0 [simp]: "iter 0 g = (A x. x)"

apply(auto simp: iter_def )
apply(simp add: wfrec [OF wf_pred_nat])
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done

lemma iter_Suc [simp] : "iter (Sucn) g = go (iter ng)
apply(auto simp: iter_def )
apply(simp add: wfrec [OF wf_pred_nat])
apply auto
apply( rule_tac f =" (Ax. g o x)" in arg_cong)
apply(rule trans)
apply(rule cut_apply)
apply(simp only: pred_nat_def)
apply auto
apply(simp add: wfrec [OF wf_pred_nat])

in arg_cong)

~ N~

(
apply( rule_tac f ="(A\x. g o x)
apply(rule trans)
apply(rule cut_apply)
apply(simp only: pred_nat_def)
apply auto
apply(simp add: wfrec [OF wf_pred_nat])
done

lemma iter 0’ [simp] : "iter 0 g x = X’
by (simp)

lemma iter_Suc’ [simp] : "iter (Sucn) gx = g (iter n g x)
by (simp)

. Defining operations on natural numbers:

constdefs
add :: "[nat, nat] = nat”
"add n m =(iter n Suc) m

lemma add_0 : "add 0 x = X"
by (simp add: add_def)

lemma add_Suc : "add (Suc x) y = Suc (add x y)”
by (simp add: add_def)
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constdefs
mult :: "[nat, nat] = nat”
"mult n m =(iter n (A x. add m x)) 0"

lemma mult_0 : "mult 0 x = 0"
by (simp add: mult_def)

lemma add_Suc : "mult (Suc x) y = add y (mult x y)"
by (simp add: mult_def)

consts exp :: "[nat,nat] = nat”
primrec
exp0: "expk0=1"

exp-Suc : "exp k (Suc x) = mult k (exp k x)"
consts sumup :: "nat = nat”

primrec
sumup0: "sumup 0 = 0"
sumup_Suc : "sumup (Suc x) = add (Suc x) (sumup x) "

10.2.3 Exercise 42 — ”The approximation theorem of Ifp”

In lecture “HOL: Fixpoints” we have seen the theorem:

vs. rUs=Jr s = ro=ipr

neN

i.e. under a certain condition, a fix-point can be seen as a limit of an ap-
proximation process. This condition is also called continuity of f. Under an
obvious alternative constraint, namely that the fix-point must be reachable af-
ter finitely many steps, this principle is of practical importance, for example in
data-flow analysis algorithms (such as the Java Byte-code Verifier).

Prove one of the following versions of the approximation theorem:

1. lemma Ifp_approximable_if_finite :
[mono f; I m. f (iter mf {}) = (iter mf {})]
= (UN n:UNIV. (iter n f {})) = Ifp f
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2. lemma Ifp_approximable_if_cont :
[(AS. f (Union S) = Union (f © S))]
= (UN n:UNIV. (iter n f {})) = Ifp f

For the first option, we suggest the following intermediate lemmas:
1. mono f =>(UN n:UNIV . (iter n f {})) <Ifp f

2. [mono f; A m. f (iter mf {}) = (iter mf {})]
= Ifp f <(UN n:UNIV. (iter n f {}))

For the second option, we suggest the following milestones:
1. mono f =>(UN n:UNIV . (iter n f {})) <Ifp f

2. (VS. f (Union S) = Union (f * S)) = mono f

(
3. (UN n:UNIV. iter (Suc n) f {}) = (UN n:{m. 0 < m}. (iter n f {}))
(UN n:UNIV. g (n::nat)) = (UN n:{m. 0 < m}. (g n))Un (g 0)
5. (VS. £ (US)=Uf*S)

= f (Uniter n f {}) = (Uniter n f {})
6. (VS. f (Union S) = Union (f © S))
= f (UN n:UNIV. (iter n f {})) = (UN n:UNIV. f (iter n f {}))

7. AS. f (Union S) = Union (f ¢ S))== Ifp f <(UN n:UNIV. (iter n f {})
)

Hint: Look up the various theorems about the inclusion operation that Is-
abelle provides (rev_subsetD, Ifp_unfold , monoD, Un_upperl, Un_absorbl,
image_Collect) and use them as you like.

Answer to Exercise 42
1. Option (1):

(+ Option 1: the finite case *)
lemma union_below_Ifp_1:
"mono f =>(UN n:UNIV . (iter n f {})) <Ifp "
apply(auto)
apply(erule rev_subsetD)
apply(induct_tac "n")
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apply(simp_all)
apply(subst Ifp_unfold )
apply(simp)

apply( erule_tac monoD)
apply(simp)

done

lemma Ifp_below_union_if_finite 2 :
"[mono f; I m. f (iter mf {}) = (iter mf {})]
= Ifp f <= (UN n:UNIV. (iter n f {}))"
apply(auto)
apply( rule_tac x ="m" in exl)
apply(erule rev_subsetD)
apply(rule Ifp_lowerbound)

apply(auto)
done

lemma Ifp_approximable_if_finte :
"[mono f; I m. f (iter mf{}) = (iter mf {})]
= (UN n:UNIV. (iter n f {})) = Ifp "
by(auto elim!: union_below_Ifp_1  Ifp_below_union_if_finite 2 )

2. Option (2):

(x Option 2: continuation )
lemma union_below_Ifp_1:
"mono f =>(UN n:UNIV . (iter n f {})) <lIfp f"
apply(auto)
apply(erule rev_subsetD)
apply(induct_tac "n")
apply(simp_all)
apply(subst Ifp_unfold )
apply(auto elim!: monoD)
done

lemma distr_implies_mono_2:
"(VS. f (Union S) = Union (f ¢ S)) = mono {"
apply(rule monol)
apply(erule_tac x = "{A,B}" in allE)
apply(auto simp:Un_eq_Union [symmetric] Un_upperl Un_absorbl image_Collect)
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done

lemma shift_successor_3:

"(UN n:UNIV. iter (Suc n) f {}) = (UN n:{m. 0 < m}. (iter n f {}))"

apply(auto)

apply( rule_tac x ="n — 1" in exl|)

apply( rule_tac t ="f (iter (n — 1) f {}) " in subst)
apply(rule iter_Suc')

apply(auto)

done

lemma split_universal_union_4 :
"(UN n:UNIV. g (n::nat)) = (UN n:{m. 0 < m}. (g n)) Un (g 0)"
by(auto, case_tac "n=0",auto)

lemma cont_f_distributes_over_ UN_5:
"(V S. f (Union S) = Union (f ¢ S))
= f (UN n:UNIV. (iter n f {})) = (UN n:UNIV. f (iter n f {}))"
apply( rule_tac a = "f (Union {x . (3 n. x = iter n f {})})" and

b="(Union {fx | x. (3 n.x=iter nf {})})"

in box_equals)
apply(subst image_Collect [symmetric])
prefer 2
apply( rule_tac f ="f" in arg_cong)

apply(auto)
done

lemma union_is_fixpoint_6 :
(VS f(US)=UfS)

=f (Uniternf {}) = (Uniternf {})
apply(rule trans)

apply(erule cont_f_distributes_over_UN_5 )
apply(simp only:iter_Suc’ [symmetric])
apply(rule trans)

apply(rule Un_empty_right [symmetric])

apply( rule_tac P="%x. 72X Un x = ?Y" in subst)
apply( rule_tac g="f" in iter0")
apply(simp only: shift_successor 3  split_universal_union_ 4 )
done
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lemma Ifp_below_union_7:
"(ALL S. f (Union S) = Union (f © S))
= Ifp f <= (UN n:UNIV. (iter n f {}))"
apply (rule Ifp_lowerbound)
apply (simp add: union_is_fixpoint_6 )
done

lemma Ifp_approximable_if_cont :
"I(A'S. f (Union S) = Union (f * S))]
= (UN n:UNIV. (iter n f {})) = Ifp {"
apply(rule subset_antisym)
apply(rule union_below_Ifp_1)
apply(rule distr_implies_mono_2 ,simp)
apply(rule Ifp_below_union_7 ,simp)
done
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11 HOL: Hoare Logic

With this exercise, we turn now to applications of Isabelle/HOL in the field
of (theoretical) computer science. We will reuse an existing encoding of an
imperative toy-language for verifications of imperative programs. From the
theorem proving side, we will introduce into structured proofs with ISAR.

11.1 More on Isabelle: Some ISAR Features

11.1.1 Structured Proofs with ISAR: An Introduction

Interactive theorem proving (as we introduced it in the course and as we —
the authors — still believe is easier to understand comprehensively) has been
dominated by a model of proof that goes back to the LCF system: a proof is a
sequence of commands that manipulate an implicit proof state.

This model is reflected in the syntactic structure:

(lemma | theorem) [name :] <proposition> <proof>

where <proof> has is a sequence of apply(<method>) commands followed by
done or just by(method).

Tactic-style proofs had been criticized for being very distinct from
mathematics-like texts, unstructured and hard to maintain. Therefore, ISAR
has been conceived to allow a more declarative proof-style that is claimed to be
closer to mathematical texts (the reader may browse through the meanwhile
quite rich corpus of structured proofs in the library in order to decide if this
goal has really been achieved).

Structured proofs were introduced by a new alternative in the syntactic cat-
egory <proof> which introduces a block structure:

<proof> 1= ...
| proof [<method> | —] <proof> {<statement>} qed

Here, a <statement> has the form:

<statement> ::= fix {name}
| assume [<fact>:] <propositions>
| [from {<fact>} | this} (show | have) <propositions>
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<proof>
| note <fact> = <fact> | this
| let <meta—var> = "term"

and can thus again contain sub-proofs.

In the following, we discuss <statement> in more detail. The <fix>-
statement serves as abstract means to introduce meta-quantified variables in a
local proof goal, the <assume>-statement is used (similarly to the <assumes
>-statement on the top-level) to introduce local assumptions and the <have>-
statement to introduce the conclusion of a local subgoal of a proof. Thus, within
a proof, local subgoals can be stated and proven. With the <note>-statement,
the previous proposition (referenced by <this>) can be bound to a name, and
in a <let> statement, a meta-variable may be bound to a particular term;
since this meta-variable may be used in subsequent propositions, this may be
used to reduce the size of local propositions and substitutions drastically. In
connection with a pattern-match construct possible in any:

<proposition> :="term” [({is " <string>"})]

(where in the string, meta-variables may be used that can also be used in
propositions and substitutions later), a means for systematic abbreviations in
proof texts is provided.

Note that with the proof-directive, the current proof state is implicitly bound
to a particular meta-variable ? thesis. Consequently, in order to conclude a sub-
proof successfully, a proof will typically have the form:

proof —
assume "the—assm”
have "concl” by (...)
note A = this
assume "the—other—asm”
have "the—other—concl” by(...)
note B = this
show 7thesis
<main proof>

Note that the — symbol stands for “do nothing”; if omitted, the default method
is application of certain introduction rules controlled by the context.

Obviously, 1SAR has been reduced to a kind of core-language here; a large
number of abbreviations and syntactic variations exist. For example, there is
an implicit fact management (pretty much inspired by PEARL) that makes
most note-statements superfluous. We will describe some of these variations
in subsequent exercise sheets.
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11.2 Exercises

This exercise is based on IMP, in particular VC, which is not a IsabelleHOL
built-in. You will need to extend Isabelle’s search path such that Isabelle will

be able to load the needed theory files at run-time. Therefore, start your theory
file like:

ML {x
add_path "$ISABELLE_HOME/src/HOL/IMP";
*}

theory HOL Hoare = VC:

11.2.1 Exercise 43

Verify the program for computing the integer square root (from the lecture)
in IMP from the lecture:

(( tm == (Xs. 1));
(( sum == (Xs. 1));
(i == (s 0))
WHILE (Xs. (s sum) <= (s a)) DO
(i ==(s(si)+1))
((tm == (Xs. (s tm) + 2));
(sum == (Xs. (s tm) + (s sum)))))))

Verify this program using
1. the tactic-based method language

2. the structured 1ISAR language.
and compare the resulting proof scripts.

Hints: e Use these given parenthesis’s; the syntax setup of IMP is not really
optimal this time !

e Do not forget to assume that the locations for i,tm, sum and a are
pairwise distinct.

e Use update_def in the simplifier set to handle updates.

Answer to Exercise 43

1. Using tactic-based method language:
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constdefs

squareroot :: "[loc,loc,loc,loc] => com”
"squareroot tm sumia ==
(( tm == (Xs. 1));
(( sum == (Xs. 1));
((i == (As. 0));
WHILE (Xs. (s sum) <= (sa))D
(i ==s(si)+ )),
((tm == (Xs. (s tm) + 2

(sum == (Xs. (s tm) + (s sum)))))))

)"
constdefs

pre 1 assn

"pre == Ax. True"

post : "[loc,loc] = assn”

"posta i == As. (s i)x(s i)<(sa) Asa<(si + 1)x(si + 1)

lemma sqrt_verify:
assumes no_alias : "sum #i A i Fsum Atm #sum A
sum #tm Asum #a Aa Fsum A
tm #£i Ai F#tm Atm #a Aa #tm A
a#i A #a"
shows " |— {pre} squareroot tm sum i a {post a i}"
apply(unfold squareroot_def)
apply(rule conseq)
prefer 2
apply(rule semi, rule ass)+
apply(rule conseq)
prefer 2
apply( rule_tac P="Xs. (si + 1) % (s i +1) =ssum A
stm=(2x*(si) +1)A
(s i)+ (s 1) <=(sa)"
in While)
prefer 4
apply(simp_all only: pre_def post_def)
prefer 5
apply(rule alll , rule impl, assumption)
prefer 4

apply(arith)
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prefer 3
apply(rule alll , rule impl, assumption)
apply(simp add: update_def no_alias)
apply( rule_tac Q="Xs. (si) * (s i) =ssum A
stm+2=02x(si) +1)A
(si)x(si)<=(sa)+(2=x(si)) +1)A
(si)*(si)<=(sa)

in  semi)
apply(rule conseq)
prefer 2
apply(rule ass)
prefer 2
apply(rule alll , rule impl, assumption)
apply(simp add: update_def no_alias)
apply(arith)
apply(rule.tac Q="Xs.si*s i =ssumAstm =2x*si + 1A

si*xsi<sa-+2xsi-+1
A (s i) * (s i) <=(sa)" insemi)

apply(rule conseq)
prefer 2
apply(rule ass)
prefer 2
apply(rule alll , rule impl, assumption)
apply(simp add:update_def no_alias)
apply(arith)
apply(rule conseq)
prefer 2
apply(rule ass)
prefer 2
apply(rule alll | rule impl, assumption)
apply(simp add: update_def no_alias)
apply(arith)
done

2. Using structured ISAR language:

lemma sqrt_verify_structured :
assumes no_alias : "sum #i A i F#sum Atm #sum A
sum #tm Asum #a Aa Fsum A
tm #i A F#tm Atm #a Aa #tm A
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aFi Ni #a"
shows "|— {pre} squareroot tm sum i a {post a i}"
proof —
let ?inv ="Xs(s i +1)*(s i +1)=ssum
Astm= (2 (s i) + 1)
= (s

A(s i) *(si) < a)’
let ?post.tm ="MXs. s tm = 1"
have " |— {pre} tm :== (Xs. 1) {?post_tm}”

apply(unfold pre_def)
apply(rule conseq)
prefer 2
apply( rule_tac P="XAs. stm = 1" in ass)
apply(simp_all add: update_def no_alias)
done
note init_tm=this
let ?post_sum ="As. ssum =1 As tm = 1"
have " |— {Xs. s tm = 1} sum :== (As. 1) {?post_sum}”
apply(rule conseq)
prefer 2
apply( rule_tac P="7post_sum” in ass)
apply(simp_all add: update_def no_alias)

done

note init_sum=this

let ?posti ="Xs.s i =0As sum=1Astm=1"

have " |- {)s. s sum =1 Astm = 1} i :== (Xs. 0) {?post_i }"
apply(rule conseq)
prefer 2

apply( rule_tac P="7post.i" in ass)
apply(simp_all add: update_def no_alias)

done
note init_i =this
have " |— {Xs. (?inv s) A s sum <s a}
i == As.si +1; (tm:==AXs.stm + 2;sum :== As. stm + s sum )
{?inv}”
proof —
let ?posti ="As.(s i) x (s i) = ssum
Astm+2=(2x*(si) +1)
Alsi—1Dx(si—1)<=(sa)A0<(si) A
s sum <s a "
have " |— {Xs. (?inv s) A s sum <s a}
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== AXs.si +1

{?post_i }"

apply( rule
prefer 2

apply( rule_

conseq)

tac P="7post_i" in ass)

apply(simp_all add: update_def no_alias)

done

note while_i =this
let ?post.tm = "As. (s i) * (s i) =ssum

Astm—2= (2% (si)—1)
Alsi =1 x(si—1)<=(sa)
A0 <(si)) A(1 <(stm)) A s sum <s a"

have " |— {7post.i}

tm

‘== As.stm + 2

{?post_tm}"

apply( rule
prefer 2

apply( rule

conseq)

tac P="7post_tm” in ass)

apply(simp_all add: update_def no_alias)

done

note while_tm = this
have " |— {?post_tm}
sum == As. s tm + s sum

(Zinv}”

apply( rule
prefer 2

apply( rule

conseq)

tac P="7?inv" in ass)

apply(simp_all add: update_def no_alias)
apply(arith)

done

note while_sum = this
show ?thesis

ged

apply(rule
apply( rule
apply( rule
apply( rule
apply( rule
done

semi)
while_i)
semi)
while_tm)
while_sum)
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note whilelnv = this

show ?thesis (x main proof *)
apply(unfold squareroot_def)
apply(rule conseq)
prefer 2
apply(rule semi)
apply(rule init_.tm)
apply(rule semi)
apply(rule init_sum)
apply(rule semi)
apply(rule init.i )
apply(rule conseq)
prefer 2
apply( rule_tac P="7inv"" in While)
apply(rule whilelnv)
apply(simp_all add: pre_def post_def update def no_alias)
prefer 2
apply(rule alll , rule impl, assumption)
apply(arith)
done

ged

11.2.2 Exercise 44

Verify the IMP-program of the previous exercise without using the Hoare-
calculus explicitly. The idea is to use the verification condition generator vc in
theory VC.thy running over an annotated program, i.e. the program enriched
by the crucial invariants.

(Here, we do not need an in-depth understanding of vc, we just apply it).

The abstract syntax of annotated programs is given in VC by the datatype:
datatype acom = Askip

| Aass loc aexp

| Asemi acom acom

| Aif  bexp acom acom
| Awhile bexp assn acom

(The assn in the Awhile-case is the invariant).
Note: The crucial theorem vc_sound allows for the reduction of the Hoare-
triple

|— {pre} squareroot tm sum i a {post a i}
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to a HOL-formula generated by vc.
Hints: e Do not forget to assume that the locations for i,tm, sum and a
are pairwise distinct.

e Give the annotated program aprog first (the let-statement may help
here!).

e Prove the subgoal squareroot tm sum i a = astrip aprog, i.e. the an-
notated program must be the previously defined program squareroot
if the annotations are “stripped away”.

e Prove the subgoal pre = awp aprog (post a i), i.e. the weakest pre-
condition computed from the program is equivalent to the precon-
dition.

e apply theorem vc_sound.

e compute and solve the verification condition.

e Use update_def in the simplifier set to handle updates.

Answer to Exercise 44

e a structured verification proof for the annotated squareroot-program:

lemma sqrt_verify_vc:
assumes no_alias : "sum #i A i Fsum Atm F#sum A

sum #tm Asum #a Aa #sum A
tm #i Al #tm Atm #a Aa #tm A

aZi ANi #a”

shows "|— {pre} squareroot tm sumia {post a i}"
proof —
(*+ composing the annotated program

let
let
let
let
let
let
let
let

let

sl =
752 =
7s3 =
?init
7s4 =
7sh =
756 =

step by step *)

"Aass tm (As. 1)”

" Aass sum(As. 1)"

"Aass i (As. 0)"

" Asemi ?s1 (Asemi ?s2 7s3)"

"Aass i (Xs. (s i) + 1)

"Aass tm (As. (s tm) + 2)"

"Aass sum (Xs. (s tm) + (s sum))”

?body = " Asemi 7s4 (Asemi 7s5 7s6)"
(+ here comes the crucial invention : x)

?inv

="Xs.(si+1)*x(si+1)=ssumA
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stm=(2x*(si) +1)A
(si)*(si)<=(sa)”
let ?cond ="M\s. (s sum) <= (s a)"
let ?aprog = "Asemi 7sl (Asemi 7s2 (Asemi 7s3
(Awhile ?cond ?inv ?body)))"

have "squareroot tm sum i a = astrip 7aprog”
by(simp add: squareroot_def)
note A = this

have "pre = awp ?aprog (post a i)”
by(simp add: no_alias pre_def update_def)
note B = this

show ?thesis (x main proof *)

apply(simp only : A B)

apply(rule mp[OF spec[OF vc_sound]])

apply(auto simp: update_def no_alias post_def)

(x this is the beauty of this approach —

the verification condition is computed and
simply blown away by auto x)

done

ged

end

128



12 HOL: Specifying and Proving
AV L-Trees

This exercises describes a small modeling and verification project going over
two weeks. We will specify and analyze a widely-used data structure AVL-trees
as a (purely functional) implementation.

As proof techniques, we will use automatic case splitting in the simplifier
supporting reasoning over recursive functions with pattern matching (recdef).
Finally, we use Isabelle’s code generator the convert the function definitions
into “real” SML programs.

12.1 The Problem: AVL trees

In 1962 Adel’son-Vel’skii and Landis introduced a class of balanced binary
search trees (called AVL trees) that guarantee that a tree with n internal nodes
has height O(logn). The efficiency of AVL tree hinges on the fact that a tree
should be balanced and ordered. Of course, when a node is inserted into or
deleted from the tree, these properties must be maintained, by certain rotation
operations on AVL trees. Note that unless a tree contains 2" — 1 nodes for some
n, it cannot be “exactly” balanced. All we can expect is that the height of the
left and right subtrees differ by at most one. In order to decide in which way a
tree should be rotated, it is convenient to have a function bal that tells us if a
tree is perfectly balanced, or heavier on the right, or heavier on the left. The

necessary rotations are illustrated in Fig.

12.1.1 AVL tree insertion

We explain insertion of a node into an AVL tree in order to motivate the use of
the rotation functions. Suppose we insert a node z into a (balanced ordered)
tree Nodenlr. If x = n, then x should not be inserted at all since the property
of being ordered requires that the tree contains no duplicates. If x < n, we
must insert x into ! (to maintain the ordering). Let I’ be the tree obtained
by inserting z into [, and assume that it is balanced and ordered. As an
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Figure 12.4: rl_rot

intermediate result, we have the tree Nodenl’'r. It is ordered, but it might not
be balanced.

In fact, it might be the case that height | = height r + 1 and height I! =
height | + 1. Then height I" = height v + 2 and so Node n I’ r is not balanced.
Note that in all other cases, Node n !’ r is balanced.

So suppose that height I = height r + 2. Then Node n I’ r looks as shown
in the first picture of Figure where either height 1! = height v + 1 or
height Ir' = height r + 1|H The tree is too heavy on the left, and rotation must
rectify this. We distinguish two cases:

bal ' = Right. Since I’ is balanced, this means that height Ir’ = height r + 1
and height 1I' = height r. So, since Ir’ has height > 0, it follows that
Node n I’ r actually looks as shown in the second picture of Figure
where both Irl" and Irr’ have height height r or height r — 1. Since all
three trees I, Irl’, Irr’ have the same height as r or one less, it follows
that Ir_rot produces a balanced tree (see Figure .

bal I # Right. In this case, height ll' = height r + 1, and, since [’ is balanced,
height Ir’ = height r + 1 or height Ir' = height r. One can easily see that
r_rot produces a balanced tree (see Figure [12.1]).

! Never both actually, but this is not needed in the proofs.
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Figure 12.5: Too heavy on left

12.1.2 Efficient AVL trees

In the sequel, we discuss more efficient implementations of AVL-tree’s. New
function definitions and enriched data types were given; at the end, lemmas
were proven that reveal the exact relationship between the new function ver-
sions processing new data to the old ones.

The overall scheme is also well-known as a data refinement.

The first inefficiency we noticed is that isin traverses the entire tree, which
is unnecessary in case the tree is ordered. Note that for verification purposes,
the more general but inefficient version is still sometimes in-dispensary.

Another inefficiency we noted is related to bal, which calls height for any
node during insertion at the insertion path. A solution here is to store the
result of bal as an additional attribute in an extended version of the AVL tree.
As a consequence, this attribute must be kept consistent during operations on
the enriched tree.

12.2 More on Isabelle

12.2.1 Some non-elementary constructs of ISAR

In the previous exercise, we have presented a core-language of ISAR, providing
constructs such as note for binding (parts of) a current proof state as fact to
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a name that can be referenced later, or the let for introducing meta-variables
as abbreviations of terms, which can also occur in propositions, substitutions
or other pattern-match constructs such as (is <pattern>).

On top of this, we will now introduce a number of short-cuts that allow for

an implicit management of facts and meta-variables. also
_ . L moreover
also =note calculat!on = this (* . initial case * ) ultimately
also =note calculation = r o ( calculation @ this) then
(+ for some rule r
) thus
out of some given set of | ..

transitivity —rules x)

finally = also from calculation
moreover = note calculation = calculation @ this
ultimately = moreover from calculation
then = from this
thus = hence =then show

with <facts> = from <facts> this

Here, calculation is a standard name for a list of facts,@ the concatenation on
them, o the forward resolution.

Similar to calculation , there is a generic name “...” which refers to the right-
hand side of the most recent explicit fact statement. This allows to represent
calculational sequences as follows:

7

have "x1 = x2" <proof>
also have " ... = x3" <proof>
also have " ... = x4" <proof>

finally have x1 = x4 .

Note that the “.” at the very end is again an abbreviation for by(this).

One of the more trickier constructs of ISAR is the case distinction construct,
which works as well for case-splits as for inductions. For a current proof state,
goal by goal, it allows for creating sub-proofs referenced by names. The details
of this construction are quite involved (see Nipkow’s Paper “Structured Proofs
in ISAR/HOL” for details), here we give just an example:

lemma "length(tl xs) = length xs —1
proof (cases xs)

case Nil thus 7case by simp
next

case (Consy ys) thus ?case by simp
ged
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12.3 Exercises

Get the template theory http://www.infsec.ethz.ch/education/
permanent/csmr/material /HOL_AVL_tmpl.thy and complete it.

12.3.1 Exercise 46

Define the function insert
This involves the definition of:

'a:zorder = 'a tree <\Rightarrow> 'a tree”.

e height, which computes the maximal number of nodes on a path from
the root to a leaf,

is_ord , which decides that for each node labeled n, all node labels in the
left subtree are smaller, and all labels in the right subtree are greater,

e is_bal, which decides that it is either a leaf or a node with balanced
subtrees where the height differs at most by one,

e is_in_eff which should provide a O(Ilnn) implementation for ordered
trees,

e the elementary rotation operations |rot and Ir_rot (analogously to the
given functions r_rot and rl_rot ),

e the balancing operation r_bal (analogously to the given functions |_bal),
e and finally the insert function.

Of course, your definitions should allow to prove the properties in the subse-
quent lemmas.

Hint: Use the general well-founded recursion mechanism:

recdef f " <wf_order”
"f pat.ll = ... "

"f pat.n = ...

supporting pattern matching as in SML or Haskell whenever necessary.
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Answer to Exercise 46

datatype 'a tree = ET | MKT ’'a "'a tree” "'a tree”

consts
height :: "'a tree = nat”
is_in "'a = 'a tree = bool"
iscord :: "("a:order) tree = bool”
is_bal :: "'a tree = bool”

primrec
"height ET = 0"

"height (MKT n|r) =1+ max (height I) (height r)"

primrec
"is.in k ET = False”
"isiin k (MKT nlr) = (k=n Vis_.in k | V is_.in k r)"

primrec
isord_base : "is_.ord ET = True"
isord_rec : "is.ord (MKT nlr)=((Vn' isiin n" | —n’ <n) A
(Vn'. isiin n" r —n <n’) A
iscord | Ais.ord r)"
primrec

"is_bal ET = True”

"is_bal (MKT nIr) = ((height | = height r V
height | = 1+height r V
height r = 1+4height 1) A
is_bal | A is_bal r)"

datatype bal = Just | Left | Right

constdefs
bal :: "’'a tree = bal”
"bal t =case t of ET = Just

| (MKT nlr) = if height | = height r then Just
else if height | < height r then Right
else Left”
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consts
r_rot
I_rot
Ir_rot
rl_rot

'a
'a
'a
'a

X 'a tree
X 'a tree
X 'a tree
X 'a tree

recdef rrot "{}"
"rorot (n, MKT Inll Ir, r) = MKT In Il (MKT nlrr)"

recdef Irot "{}"

"lrot (n, I,

recdef Irrot "{}"
"lIrrot (n, MKT In Il (MKT Irn Il Irr), r) =
MKT Irn (MKT In Il Irl) (MKT n lrrr)”

recdef rlrot "{}"
"rl_rot (n, 1, MKT rn (MKT rIn rll rlr) rr) =

X 'a tree = 'a tree’
X 'a tree = 'a tree”
X 'a tree = 'a tree”
X 'a tree = 'a tree"

MKT rnrl rr) = MKT rn (MKT n [ rl) rr”

MKT rln (MKT n | rll) (MKT rn rlr rr)”

constdefs
Ibal :: "'a = 'a tree = 'a tree = 'a tree"
"l bal n | r =if bal | = Right
then Irrot (n, I, r)
else rrot (n, I, r)”
rbbal :: "'a = 'a tree = 'a tree = 'a tree”
"r_bal n | r =if bal r = Left
then rlrot (n, I, r)
else lrot (n, I, r)"
consts
insert :» "'a:order = 'a tree = 'a tree"
primrec

"insert x ET = MKT x ET ET"
"insert x (MKT nlr) =

(if x=n

then MKT nlr
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else if x<n

then let |' = insert x |
in if height |’ = 2+height r
then I_bal n |’ r
else MKT nl'r
else let r' = insert x r

in if height r’ = 2+height |
then rbal n | r’
else MKT nlr")"

12.3.2 Exercise 47
Prove two of the following properties of your programs:

1.

lemma is_in_insert :
"is.in y (insert x t) = (y=xZ isin y t)"

lemma is_in_eff_correct [rule_format (no_asm)]:
"iscord t _ (isdin k t = is.in_eff k t)"

lemma is_ord_insert :
"is-ord t d is_ord (insert (x::'a:: linorder) t)"

Hint: After giving the definitions in Exercise 46}, the commented proof scripts
should work again. Try to prove analogous cases and to flush out the
sorry’s.

Answer to Exercise 47

1.

lemma is_in_insert :

"is_in y (insert x t) = (y=x Vis.in y t)
apply (induct t)

apply simp
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apply (simp add: |_bal_def is.in_Ir_rot is_in_r_rot r_bal_def
is_in_rl_rot  is_in_l_rot )

apply blast

done

lemma is_in_eff_correct [rule_format (no_asm)]:
"isord t — (is.in k t = is_in_eff k t)"
apply (induct_tac "t")

apply (simp (no_asm))

apply (case_tac "k = a")

apply (auto);

done

lemma is_ord_insert :

"is.ord t = is_ord (insert (x::'a:: linorder) t)"

apply (induct t)

apply simp

apply (cut_tac x ="x" andy ="a" in linorder_less_linear )

apply (fastsimp simp add: |_bal_def is_ord_Ir_rot is_ord_r_rot r_bal_def
iscord_l_rot is_ord_rl_rot is_in_insert )

done

12.3.3 Exercise 48 (optional, tricky)

A data refinement is provided by the new tree structure:
datatype 'a etree = EET | EMKT bal 'a "'a etree” "'a etree”
where the balancing information is directly stored in the tree.

1. Define a recursive definition of insertE on etree’s that avoids the re-
computation of height.

2. Speculate: What should be the crucial properties of this definition ?
(state lemmas with sorry)!

3. Speculate: What could be a possible proof plan (state lemmas with
sorry)?
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12.4 Encoding AVL trees in in Isabelle (skeleton)

theory AVL = Main:

datatype ’a tree = ET | MKT ’a ”’a tree” ”’a tree”

consts
height :: ”’a tree = nat”
iscin  :: ”’a = ’a tree = bool”
is_ord :: 7 (’a::order) tree = bool”
is_bal :: ”’a tree = bool”
primrec

7 is.in k ET = False”
7is.in k (MKT nlr) = (k=n Vis_.in k1 V is_in k r)”

(s ks ok otk sk sk ks o s o s ok o ko sk sk sk ok s ok ok o ko sk sk ok S ok Sk S K kK Kok k)
(* Define height, is_ord, is_bal, is_in_eff here ... x)
(ks ok otk sk sk ks ok s ok o ok o ok ok sk sk ok sk ok s ok o ok o sk sk ok sk ok Sk ok Sk ok ok K ok KKk k)

datatype bal = Just | Left | Right

constdefs

bal :: ”’a tree = bal”

”bal t =case t of ET = Just

| (MKT nlr) =if height 1 = height r then Just
else if height 1 < height r
then Right else Left”

consts

r_rot ”’a X ’a tree X ’a tree = ’a tree”

l_rot ”’a X ’a tree X 'a tree = ’a tree”

Ir_rot ?’a X ’a tree X 'a tree = ’a tree”

rl_rot ”’a X ’a tree X ’'a tree = ’a tree”

recdef r_rot " {}”
?rrot (n, MKT In 1l Ir, r) = MKT In Il (MKT n Ir r)”

recdef rl.rot ”{}”
?rlrot (n, 1, MKT rn (MKT rln rll rlr) rr) =
MKT rln (MKT n 1rll) (MKT rn rlr rr)”

(* 3k 3k 3k 3k 3k 3k Sk Sk Sk Sk Sk ok ok ok ok 3k Sk Sk Sk Sk sk sk ok ok ok 3k 3k 3k Sk Sk Sk sk sk ok ok ok ok 3k 3k Sk Sk Sk ok sk ok ok ok 3k 3k Ok Sk ok *)
(* Define the analogous functions Il.rot and lr_rot here x)
(* sk sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk sk sk sk Ok sk sk sk sk sk Sk sk sk sk 3k sk 3Kk sk kR sk sk K 3k oKk ok *)

constdefs
I.bal :: ”’a = ’a tree = ’a tree = ’a tree”
”l.bal n 1l r =if bal 1 = Right
then Irrot (m, 1, r)
else rrot (mn, 1, r)”

(ks ook otk sk ks ks ok ok o ok ok ok sk sk ks ok ok ok o ok ok sk ok sk sk ok sk ok ok ok ok ok kK Sk SRR kK K )
(* Define the analogous function rbal here. *)
(* sk 3k >k sk ok ok sk sk >k sk sk ok ok sk ok ok sk ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok ok ok ok *)

(* 3k 3k 3k >k 3k 3k Sk Sk Sk Sk Sk ok ok ok ok 3k 3k Sk Sk Sk sk sk ok ok ok ok 3k 3k Sk Sk Sk sk sk ok ok ok ok 3k 3k Sk Sk Sk ok ok ok ok ok ok Ok ok Sk ok *)
(* Define the insert function for ’‘a::order on ’a tree. x)

(* sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk Sk sk sk sk 3k Ok sk Sk Ok sk sk Ok sk sk K 3k oKk ok *)
consts

insert ”

a::order = ’a tree = ’a tree”
subsection ”is —bal”
declare Let_def [simp]

lemma is_bal_lr_rot:
”[ height 1 = Suc(Suc(height r));
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74 bal 1 = Right; is_bal 1; is_bal r ]
75 = is_bal (lrrot (n, 1, r))”

76  sorry

s

78

79 lemma is_bal_r_rot:

80 ”[ height 1 = Suc(Suc(height r));

81 bal 1 #Right; is_bal 1; is_bal r ]
82 = is_bal (rrot (m, 1, r))”

83 sorry

84

85

86 lemma is_bal_rl_rot:
87 7[ height r = Suc(Suc(height 1));

88 bal r = Left; is_bal 1; is_bal r |
89 = is_bal (rlorot (n, 1, r))”

90 sorry

91

92

93 lemma is_bal_l_rot:

94 [ height r = Suc(Suc(height 1)); bal r #Left; is_bal 1; is_bal r ]
95 = is_bal (lorot (mn, 1, r))”

96 (x

97  apply (unfold bal-def)

98  apply (cases r)

99 apply simp

100  apply (simp add: maz_def split : split_if_asm )

101 done

102 %)

103 sorry

104

105 text {* Lemmas about height after rotation =}
106

107 lemma height_Ir_rot:

108 [ bal 1 = Right; height 1 = Suc(Suc(height r)) ]
109 = Suc(height (lrrot (n, 1, r))) = height (MKT nlr)”
110 (x

111 apply (unfold bal_def )

112 apply (cases 1)

113 apply simp

114  apply (rename_tac t1 t2)

115  apply (case_tac t2)

116 apply simp

117  apply (simp add: maz_def split : split_if_asm )

118  done
119 %)
120 sorry
121

122 lemma height_r_rot:
123 7[ height 1 = Suc(Suc(height r)); bal 1 #Right ]

124 = Suc(height (r_rot (n, 1, r))) = height (MKT nlr) V
125 height (r_rot (n, 1, r)) = height (MKT n1r)”
126 sorry

127

128

129 lemma height_l_bal:
130  ”height 1 = Suc(Suc(height r))

131 —> Suc(height (1-bal n 1 r)) = height (MKT nlr) |
132 height (1-bal n 1 r) = height (MKT n1r)”
133 sorry

134

135

136 lemma height_rl_rot [rule_format (no_asm)]:
137  ”height r = Suc(Suc(height 1)) — bal r = Left

138 —— Suc(height (rlrot (n, 1, r))) = height (MKT nlr)”
139 sorry
140

141 lemma height_l rot [rule_format (no_asm)]:

142 ”height r = Suc(Suc(height 1)) — bal r # Left

143 —— Suc(height (lorot (n, 1, r))) = height (MKT nlr) Vv
144 height (lorot (n, 1, r)) = height (MKT n1r)”
145 sorry

146

147

148

149 lemma height_r_bal:
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150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

”height r = Suc(Suc(height 1))
— Suc(height (r-bal n 1 r)) = height (MKT nlr) Vv
height (r-bal n 1 r) = height (MKT nlr)”
(*

apply (unfold r_bal_def )

apply (cases "bal r = Left”)

apply (fastsimp dest: height_ri_rot )
apply (fastsimp dest: height_l_rot )
done

*)

sorry

lemma height_insert [rule_format (no_asm)]:
7is_bal t

— height ( insert x t) = height t V height ( insert x t) = Suc(height t)”

sorry

(*

apply (induct_tac "t”)
apply simp

apply (rename_tac n t1 t2)
apply (case_tac "z=n"
apply simp

apply (case_tac "z<n”)

apply (case-tac "height (insert x t1) = Suc (Suc (height t2))”)

apply ( frule_-tac n = n in height_l_bal )
apply (simp add: maz_def)

apply fastsimp

apply (simp add: maz_def)

apply fastsimp

apply (case_tac ”height (insert z t2) = Suc (Suc (height t1))”)

apply ( frule_tac n = n in height_r_bal )
apply (fastsimp simp add: maz_def)
apply (stmp add: maz_def)

apply fastsimp

done

*)

lemma is_bal_insert_left :

? [height ( insert x 1) # Suc(Suc(height r));
is_bal (insert x 1); is_bal (MKT nlr)]

= is_bal (MKT n (insert x 1) r)”

sorry

lemma is_bal_insert_right:
”[ height ( insert x r) # Suc(Suc(height 1));
is_bal (insert x r); is.bal (MKT nlr) ]
= is_bal (MKT n 1 (insert x r))”
sorry

lemma is_bal_insert [rule_format (no_asm)]:
”is_bal t — is_bal ( insert x t)”
sorry
subsection ”is—in”

lemma is_in_Ir_rot:
”[ height 1 = Suc(Suc(height r)); bal 1 = Right ]

= is.in x (lrrot (n, 1, r)) = isiin x (MKT n 11)”
sorry

(*

apply (unfold bal_def )

apply (cases 1)

apply simp

apply (rename_tac t1 t2)

apply (case_tac t2)

apply simp

apply fastsimp

done

*)

lemma is_in_r_rot:
”[ height 1 = Suc(Suc(height r)); bal 1 #Right ]

= is.in x (rrot (n, 1, r)) = isiin x (MKT nlr)”
sorry
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(*

apply (unfold bal_def )
apply (cases 1)

apply simp

apply fastsimp

done

*)

lemma is_in_rl_rot:

”[ height r = Suc(Suc(height 1)); bal r = Left ]
= is.in x (rlorot (n, 1, r)) = isiin x (MKT n1r1)”
sorry

(*

apply (unfold bal_def )

apply (cases T)

apply simp

apply (rename_tac t1 t2)

apply (case_tac t1)

apply (simp add: maz_def le_def)

apply fastsimp

done

*)

lemma is_in_l_rot:
”[ height r = Suc(Suc(height 1)); bal r # Left ]
— is.in x (lorot (n, 1, r)) = isiin x (MKT nlr)”
sorry
(*
apply (unfold bal_def )
apply (cases T)
apply simp
apply fastsimp
done

*)

lemma is_in_insert:
7isiin y (insert x t) = (y=x Vis_in y t)”
sorry

lemma is_in_ord.l [rule_format (no_asm)]:
7iscord (MKT nlr) —x < n —is.in x (MKT nlr) —is_in x 17
sorry

lemma is_in_ord_r [rule_format (no_-asm)]:

?iscord (MKT nlr) —n < x —is_in x (MKT n lr) —is_in x r”
sorry
subsection ”is —in—eff”

lemma is_in_eff_correct [rule_format (no_asm)]:
”is.ord t — (is.in k t = is_in_eff k t)”
sorry

subsection ”is —ord”
lemma is_ord.lr_rot [rule_format (no.asm)]:
”[ height 1 = Suc(Suc(height r));
bal 1 = Right; iscord (MKT nlr) |

— is_ord (lrrot (n, 1, r))”

sorry

(*

apply (unfold bal_def )

apply (cases 1)

apply simp

apply (rename_tac t1 t2)

apply (case_tac t2)

apply simp

apply simp

apply (blast intro: order_less_trans )
done

*)
lemma is_ord_r_rot:

”[ height 1 = Suc(Suc(height r));
bal 1 #Right; iscord (MKT nlr) ]
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— is_ord (rrot (n, 1, r))”
sorry

(*

apply (unfold bal_def )

apply (cases 1)

apply (simp (no_asm_simp))

apply (auto intro: order_less_trans )
done

*)

lemma is_ord._rl_rot:
”[ height r = Suc(Suc(height 1));

bal r = Left; iscord (MKT nlr) ]

= is_ord (rlorot (n, 1, r))”
sorry

(*

apply (unfold bal_def )

apply (cases )

apply simp

apply (rename_tac t1 t2)

apply (case_tac t1)

apply (simp add: le_def )
apply simp

apply (‘blast intro: order_less_trans )
done

*)

lemma is_ord_l_rot:

”[ height r = Suc(Suc(height 1)); bal r # Left; iscord (MKT nlr) ]

= is.ord (lorot (m, 1, 1))”
sorry
(*
apply (unfold bal_def )
apply (cases T)
apply simp
apply simp
apply (blast intro: order_less_trans )
done

*)

(* insert operation presreves is_ord property x)

lemma is_ord_insert:

”is_ord t == is_ord ( insert (x::’a::linorder) t)”

sorry

subsection ”An extended tree datatype with labels for the balancing information”

datatype ’a etree = EET | EMKT bal ’a ”’a etree” ”’a etree”

text {* Pruning, i.e. throwing away the balancing

consts
strip

primrec
?strip EET = ET”
?strip (EMKT bnlr) =

?’a etree = ’a tree”

labels :

MKT n (strip 1) (strip r)”

text {x Test if the balancing arguments are correct: x}

consts
correct_labelled
primrec
” correct_labelled EET = True”

” correct_labelled (EMKT bnlr) =

”’a etree = bool”

(b = bal (MKT n (strip 1) (strip r))

A correct_labelled

1

A correct_labelled r)”

text {* Add correct balancing labels :
consts

label :: ”’a tree = ’a etree”
primrec

”label ET = EET”

*}

*}
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”label (MKT nlr) = EMKT (bal (MKT nlr)) n (label 1)
(label r)”

lemma correct_strip:

” correct_labelled (EMKT b n1r) —(bal (strip (EMKT bnlr)) = b)”
apply (simp (no_asm_simp) add: bal_def)

done

subsection ”Reversing of strip and label”

lemma prune_label: "strip (label t) = t”

apply (induct_tac ”t”)

apply (simp (no_asm))

apply (simp (no_asm))

apply (erule_tac conjI)

apply assumption

done

lemma label_prune: ”correct_labelled t = label (strip t) = t”
apply (induct t)

apply auto

done

end
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13 HOL: Using Specifications for
Code Generation and Testing

This exercises describes two advanced techniques for using formal specifica-
tions: code generation and random testing.

The former is a viable approach to achieve correct functional programs and
fast evaluation of complex expressions, the latter may be used for early valida-
tions of definitions and formulas.

13.1 More on Isabelle

13.1.1 Isabelle’s Code Generator

Isabelle has an own code generator that attempts to convert many constructs
occurring in a specification (such as primrec or datatype definitions) into SML
code. Code generation out of verified theories for efficient datatype implemen-
tations is a viable approach to achieve correct, non-trivial (functional) programs
with Isabelle. For example, you can generate code for the term “foldl op +
(0::int) [1,2,3,4,5] 7 and store it in the file test.sml via

(" test.sml")
test = "foldl op + (0::int) [1,2,3,4,5] "

The code generator can be configured both in more correctness oriented as
well as pragmatic ways; it is possible, for example, to map the datatype nat
on code resulting from the datatype definition in the theory Nat (thus on the
free datatype generated by 0 and Suc) or simply on the sSML-datatype int (thus
reusing the machine integers based on two’s complement representation).

Theories can contain highly generic function definitions that are not repre-
sentable in a target programming language for a number of reasons:

1. a function may simply be not computable,

2. a function may have a type that is not representable in the target lan-
guage.
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types_code

consts_code

[code]

[code ind]

An example for the former is a function definition involving a Hilbert-operator,
an example for the latter is isord (‘a::ord) ('a tree) which is not repre-
sentable in the SML type system but could be — in principle — represented
in Haskell (note, however, that isord ('a::order) ('a tree) could not even be
represented in Haskell). In practice, the types of formulas to be converted into
code must be sufficiently instantiated when configuring the code generator for
a theory. You have mainly three options for configuring the code generator:

1. associate type constructors with specific SML code, e.g.:

types_code
s ))
associate constants with specific SML code, e.g.:
consts_code
"Pair' ('(./ 1))
register theorems for code generation. This can be done using the declare
statement, e.g.

declare less_Suc_eq [code]

or the code attribute:

lemma [code]: "((n::nat) < 0 ) = False” by(simp)

The used theorem should be either an equation (with only constructors
and distinct variables on the left-hand side) or a horn-clause (in the same
format as introduction rules of inductive definitions). The latter should
denoted by using [code ind].

Finally note, if you omit the (" filename™) part of the generate_+code state-
ment, the generated code will be immediately available within Isabelle’s ML-
environment.

13.1.2 Quickcheck

Inspired by the success of random testing tools (e.g. Quickcheck for Haskell) a
similar mechanism for testing lemmas was build into Isabelle: the
command. For example, if we try to prove

lemma rev_append: "rev (xs @ ys) = rev xs @ rev ys"
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we will have a hard day (caused by a simple typo). Now we can try to find a
counter example:

lemma rev_append: "rev (xs @ ys) = rev xs @ rev ys”

Doing this, Isabelle will respond with:

Counterexample found:

xs = [0]

ys = [1]

Thus our lemma does not even hold for lists of length one. After fully un-
derstanding why this assignment is a counter-example, we can reformulate our
lemma:

lemma rev_append: "rev (xs @ ys) = rev ys @ rev xs”

and prove it.
Note that uses internally the code generator which means that
can only be used if the code generator is already configured cor-
rectly!

13.2 Exercises
13.2.1 Exercise 49

Create a version of your AVL tree specification that works over integers, e.g.,
insert should have the type

consts
insert

"int = tree = tree”

and use it for code generation. Store your SML program in a file avl.sml.
Create a file avl-test.sml with the following content:

Control.Print.printDepth := 100; (* only for sml/NJ x)
Control.Print.printLength := 100; (x only for sml/NJ x)

use "avl.sml”;

val elements = [1,5,3,4,8,2,4,6];

val t = foldl (fn (e,t) = insert e t) ET elements;
Now start open a shell (i.e., in a xterm) and start the SML Interpreter by typing
SML and load your file by executing use "avl-test.sml". Try to understand
the shown tree representation and validate that your code produced a correct
AVL tree with the elements 1,2,3,4,5,6,8. Note, that 4 should be only stored
once in your tree.
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Hints:

e For datatype nat, please write Suc(n) instead of 1+4n.

e The code generator will need some hints for the polymorphic max
function. Therefore prove the following two theorems and declare
them to the code generator:

lemma [code]: "((x::nat) <=vy) = ((x <y) V(x=y))"
lemma [code]: " (max (a::nat) b) = (if (a <= b) then b else a)"

e The first two lines in your avl-test.sml file configure the pretty
printer of New Jersey SML to show more details.

Answer to Exercise 49

1. A version of AVL trees that only works over integers:
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datatype tree = ET | MKT int "tree” "tree”

consts
height :: "tree = nat”
is_in : "'a = tree = bool"
iscord :: "tree = bool"
is_bal :: "tree = bool"
primrec
"height ET = 0"

"height (MKT n | r) = Suc(max (height I) (height r))"

primrec
"is_bal ET = True"
"is.bal (MKT nlr) = ((height | = height r V
height | = Suc(height r) Vv
height r = Suc(height 1)) A
is_bal | A is_bal r)"

datatype bal = Just | Left | Right

constdefs
bal :: "tree = bal”



"bal t =case t of ET = Just
| (MKT nlr)=if height | = height r then Just
else if height | < height r then Right

else Left”
consts
rorot  : "int X tree X tree = tree”
I_rot "int X tree X tree = tree”
[r_rot :: "int X tree X tree = tree”
rl_rot :: "int X tree X tree = tree”

recdef r_rot "{}"
"rorot (n, MKT Inll Ir, r) = MKT In Il (MKT nlIrr)"

recdef |_rot "{}"
"lrot(n, I, MKT rnrlrr) = MKT rm (MKT nlrl) rr”

recdef Irrot "{}"
"lIr_rot (n, MKT In Il (MKT Irn Irl Irr), r) =
MKT Irn (MKT In Il Irl) (MKT n lrrr)”

recdef rl_rot "{}"
"rlerot (n, 1, MKT rm (MKT rIn rll rlr) rr) =
MKT rin (MKT n | rll) (MKT rn rlr rr)”

constdefs
[_bal :: "int = tree = tree = tree”
"lIbal n | r =if bal | = Right
then Irrot (n, I, r)
else rrot (n, |, r)"
r_bal o "int = tree = tree = tree”
"r.bal n | r =if bal r = Left
then rl_rot (n, |, r)
else Irot (n, I, r)"
consts
insert 1 "int = tree = tree”
primrec

"insert x ET = MKT x ET ET"
"insert x (MKT nlr) =
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(if x=n
then MKT n | r
else if x<n
then let |' = insert x |
in if height |" = Suc(Suc(height r))
then Ibal n ' r
else MKT nl' r
else let r' = insert x r
in if height r' = Suc(Suc(height I))
then r.bal n | r’
else MKT nlr")"

2. Preparing the code generator and generating code:
lemma [code]: "((x::nat) <=vy) = ((x <y) V(x=y))"

by(auto)

lemma [code]: " (max (a::nat) b) = (if (a <= b) then b else a)"
by(simp add: max_def)

("avl.sml™")
insert =" insert”

13.2.2 Exercise 50

Use the command for testing your AVL tree specification “test-
ing” your lemmas. Modify (i.e., introduce bugs) your specifications and try if
finds it. Find at least one example for a bug

e where quickcheck finds a non-trivial counter-example.

e where quickcheck fails in detecting the bug.

Answer to Exercise 50
1. An error in the structure of AVL trees is detected by

consts
insertl :: "int = tree = tree”
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primrec
"insertl x ET = MKT x ET ET”
"insertl x (MKT nlr) =

(if x=n
then MKT n | r
else if x<n
then let |' = insertl x |
in if height |' = 2+height r
then rbal n |" r (x Correct: then I-bal n |’ r x)
else MKT n ' r
else let r' = insertl x r
in if height r' = 2+height |
then r_bal n | r’
else MKT n )"
lemma is_bal_insertl: " is_bal t = is_bal (insertl x t)"

(*
Counterexample found:
t = MKT 0 (MKT 3 (MKT —1 ET ET) (MKT 0 ET ET)) (MKT 3 ET ET)
x =-3

*)

oops

. However, the current implementation of only generates fairly
small integers for testing:

consts
insert2

"int = tree = tree”

primrec
"insert2 x ET = MKT x ET ET"
"insert2 x (MKT nlr) =
(if x=n
then if (10 < x) then (MKT n | ET) else (MKT n | r)
else if x<n

then let |' = insert2 x |
in if height |" = Suc(Suc(height r))
then Ibal n ' r
else MKT nl' r
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else let r' = insert2 x r
in if height r' = Suc(Suc(height I))

then rbal n | r’

else MKT nlr")"

lemma is_bal_insert2: " is_bal t = is_bal (insert2 x t)"

(+ no counter example found! x)
oops

lemma is_bal_insert2: "3 x.3t. is_bal (t) A — is_bal (insert2 x t)"

apply(rule exl)
apply( rule_tac t="insert2 12" in subst)
apply(simp)
apply(rule exl)
apply( rule_tac t="insert2 12
(MKT 12 (MKT 4 (MKT 3 ET ET) ET) (MKT 8 ET ET ))" in subst)
apply(simp add: Let_def | bal def bal_def)
apply(auto)
done
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