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Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

Designed to support ‘natural’ logical arguments:

• we make (temporary) assumptions;

• we derive new formulas by applying rules;

• there is also a mechanism for discharging assumptions.
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Natural Deduction (2)
Derivations are trees

A → (B → C) A

B → C
→-E

B

C
→-E

where the leaves are called assumptions.

Write A1, . . . An ` A if there exists a derivation of A with

assumptions A1, . . . , An, e.g. A → (B → C), A, B ` C.

A proof is a derivation with no (open) assumptions.
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Natural Deduction: an Abstract Example
• Language L = {♥, ♣, ♠, ♦}.
• Deductive system given by rules of proof:

♦

♣
α

♦

♠
β

♣ ♠

♥
γ

[♦]
....
♥

♥
δ

How do you read these rules?How about this one?

N.B. α, β, γ, δ just name the rules.
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Proof of ♥
The rules:

♦

♣
α

♦

♠
β

♣ ♠

♥
γ

[♦]
....
♥

♥
δ

The proof:

[♦]1

♣
α

[♦]1

♠
β

♥
γ

♥
δ1

We make an assumption. The assumption is now open.We apply α.Similarly with β.We apply γ.

We apply δ, discharging two occurrences of ♦. We mark the

brackets and the rule with a label so that it is clear which

assumption is discharged in which step. The derivation is now

a proof: it has no open assumptions (all discharged).

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


Deductive System: Rules of Propositional Logic 95

Deductive System: Rules of Propositional
Logic

We have rules for conjunction, implication, disjunction,

falsity and negation.

Some rules introduce, others eliminate connectives.
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Rules of Propositional Logic: Conjunction
• Rules of two kinds: introduce and eliminate connectives

A B
A ∧B

∧-I
A ∧B

A
∧-EL

A ∧B
B

∧-ER

• Rules are schematic.

• Why valid? If all assumptions are true, then so is

conclusion

A |= A ∧B iff A |= A and A |= B
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Example Derivation with Conjunction
The rules:

A B
A ∧B

∧-I

A ∧B
A

∧-EL

A ∧B
B

∧-ER

A ∧ (B ∧ C)
A

∧-EL

A ∧ (B ∧ C)
B ∧ C

∧-ER

C
∧-ER

A ∧ C
∧-I

Can we prove anything with just these three rules?
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Rules of Propositional Logic: Implication
• Rules

[A]
....
B

A → B
→-I

A → B A
B

→-E

• →-E is also called modus ponens.

• →-I formalizes (bottom-up) strategy:

To derive A → B, derive B under the additional (local)

assumption A.

Top-down: we may discharge 0 or more occurences of A.
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A Simple Proof
The simplest proof we can think of is the proof of P → P .

[P ]1

P → P
→-I1

Do you find this strange?
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Examples with Conjunction and Implication
1. A → B → A

2. A ∧ (B ∧ C) → A ∧ C

3. (A → B → C) → (A → B) → A → C

Object versus Meta: variables here can either represent

object variables or metavariables.
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Disjunction
• Rules

A
A ∨B

∨-IL
B

A ∨B
∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Formalizes case-split strategy for using A ∨B.
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Disjunction: Example
• Rules

A
A ∨B

∨-IL
B

A ∨B
∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

• Example: formalize and prove

When it rains then I wear my jacket.

When it snows then I wear my jacket.

It is raining or snowing.

Therefore I wear my jacket.
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Falsity and Negation
• Falsity

⊥
A

⊥-E

No introduction rule!

• Negation: define ¬A as A →⊥. Rules for ¬ just special

cases of rules for →. Convenient to have

¬A A
B

¬-E

derived by

¬A A
⊥

→-E

B
⊥-E
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Intuitionistic versus Classical Logic
• Peirce’s Law: ((A → B) → A) → A.

Is this valid? Provable?

• It is provable in classical logic, obtained by adding

A ∨ ¬A or

[¬A]
....
⊥
A

RAA

or

[¬A]
....
A

A
classical

.
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Example of Classical Reasoning
There exist irrational numbers a and b such that ab is

rational.

Proof: Let b be
√

2 and consider whether or not bb is

rational.

Case 1: If rational, let a = b =
√

2
Case 2: If irrational, let a =

√
2
√

2
, and then

ab =
√

2
√

2
√

2
=
√

2
(
√

2∗
√

2)
=
√

2
2
= 2
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Overview of Rules

A B
A ∧B

∧-I
A ∧B

A
∧-EL

A ∧B
B

∧-ER

A
A ∨B

∨-IL
B

A ∨B
∨-IR

A ∨B

[A]
....
C

[B]
....
C

C
∨-E

[A]
....
B

A → B
→-I

A → B A
B

→-E
⊥
A

⊥-E
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Deductive System: Derived Rules

Using the basic rules, we can derive new rules.

Example: Resolution rule.

R ∨ S ¬S
R

R ∨ S [R]1

¬S [S]1

⊥
→-E

R
⊥-E

R
∨-E1

It looks like this.
We build a fragment of a derivation by writing the conclusion

R and the assumptions R ∨ S and ¬S.

Since we have assumption R ∨ S, using ∨-E seems a good

idea. So we should make assumptions R and S. First R. But

that is a derivation of R from R!

So now S.¬S and S allow us to apply →-E.
To apply ∨-E in the end, we need to derive R. But that’s

easy using ⊥-E!

Finally, we can apply ∨-E. The derivation with open as-

sumptions is a new rule that can be used like any other rule.

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


Alternative Deductive System Using Sequent Notation 108

Alternative Deductive System Using Sequent
Notation

One can base the deductive system around the derivability

judgement, i.e., reason about Γ ` A where Γ ≡ A1, . . . , An

instead of individual formulae.
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Sequent Rules (for → /∧ Fragment)

Γ ` A (where A ∈ Γ)
Γ ` B

A,Γ ` B
weaken

Rules for assumptions and weakening.

Γ ` A Γ ` B
Γ ` A ∧B

∧-I
Γ ` A ∧B

Γ ` A
∧-EL

Γ ` A ∧B
Γ ` B

∧-ER

A,Γ ` B

Γ ` A → B
→-I

Γ ` A → B Γ ` A
Γ ` B

→-E

More rules can be derived.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A
∧-EL

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)
∧-ER

A ∧ (B ∧ C) ` C
∧-ER

A ∧ (B ∧ C) ` A ∧ C
∧-I

` A ∧ (B ∧ C) → A ∧ C
→-I

We want to show that A ∧ (B ∧ C) → A ∧ C is a tautology,

i.e., that it is derivable without any assumptions.
The topmost connective of the formula is →, so the best rule

to choose is →-I.

The topmost connective of the formula is ∧, so the best rule

to choose is ∧-I.

Things are becoming less obvious. To know that ∧-EL is the

best rule for the r.h.s., you need to inspect the assumption

A ∧ (B ∧ C).
Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).Again you need to look at both sides of the ` to decide what

to do.

Now it’s becoming even more difficult. To know that ∧-ER

is the best rule for the l.h.s., you need to look deep into the

assumption A ∧ (B ∧ C).
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Comments about Proof Refinement
This crazy way of carrying out proofs is the (standard) way,

which is used in many proof assistants (as Isabelle)!

• Refinement style is also called backward style proofs

• Refinement style means we work from goals to axioms

• metavariables are used to delay substitions

Isabelle allows other refinements/alternatives too (see labs).

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


Alternative Deductive System Using Sequent Notation 112

How Are ND Proofs Built?
ND proofs build derivations under (possibly temporary)

assumptions.
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ND: Example for → /∧ Fragment
Rules:

A B
A ∧B

∧-I
A ∧B

A
∧-EL

A ∧B
B

∧-ER

[A]
....
B

A → B
→-I

A → B A
B

→-E

Proof:

[A ∧B]1

B
∧-EL

[A ∧B]1

A
∧-ER

B ∧A
∧-I

A ∧B → B ∧A
→-I1
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Alternative Formalization Using Sequents
Rules (for → /∧ fragment). Here, Γ is a set of formulae.

Γ ` A (where A ∈ Γ)

Γ ` A Γ ` B
Γ ` A ∧B

∧-I
Γ ` A ∧B

Γ ` A
∧-EL

Γ ` A ∧B
Γ ` B

∧-ER

A,Γ ` B

Γ ` A → B
→-I

Γ ` A → B Γ ` A
Γ ` B

→-E

Two representations equivalent. Sequent notation seems

simpler in practice.
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Example: Refinement Style with
Metavariables

A ∧ (B ∧ C) ` A ∧ ?X

A ∧ (B ∧ C) ` A

A ∧ (B ∧ C) ` ?Z ∧ (?Y ∧ C)

A ∧ (B ∧ C) ` (?Y ∧ C)

A ∧ (B ∧ C) ` C

A ∧ (B ∧ C) ` A ∧ C

` A ∧ (B ∧ C) → A ∧ C

Solution for ?Z = A, ?Y = B and ?X = (B ∧ C).
We went through this example in detail last lecture.
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Comments about Refinement
This crazy way of carrying out proofs is the (standard)

Isabelle-way!

• Refinement style means we work from goals to axioms

• Metavariables used to delay commitments

Isabelle allows other refinements/alternatives too (see labs).

More Detailed Explanations
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What are ND Systems and Proofs?

ND stands for Natural Deduction. It was explained in the previous

lecture.
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What is Sequent Notation?

The judgement (Γ ` φ) means that we can derive φ from the

assumptions in Γ using certain rules. As, explained in the previous

lecture, one can make such judgements the central objects of the

deductive system.
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Sequent Notation and Isabelle

In particular, the sequent style notation is more amenable to automation,

and thus it is closer to what happens in Isabelle.
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