Computer Supported Modeling and Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and Burkhart Wolff

April 2005

http://www.infsec.ethz.ch/education/permanent/csmr/

Propositional Logic: Natural Deduction

David Basin, Burkhart Wolff, and Jan-Georg Smaus

Natural Deduction

Developed by Gentzen [Gen35] and Prawitz [Pra65].

- Designed to support 'natural' logical arguments:
- we make (temporary) assumptions;
- we derive new formulas by applying rules;
- there is also a mechanism for discharging assumptions.

Natural Deduction (2)

Derivations are trees

$$\frac{A \to (B \to C) \quad A}{B \to C \qquad B} \xrightarrow{\to -E} B C$$

where the leaves are called assumptions.

Natural Deduction (2)

Derivations are trees

where the leaves are called assumptions.

Write $A_1, \ldots, A_n \vdash A$ if there exists a derivation of A with assumptions A_1, \ldots, A_n , e.g. $A \to (B \to C), A, B \vdash C$.

Natural Deduction (2)

Derivations are trees

$$\frac{A \to (B \to C) \quad A}{B \to C \qquad B} \xrightarrow{\to -E} B \\ C \qquad \qquad C$$

where the leaves are called assumptions.

Write $A_1, \ldots, A_n \vdash A$ if there exists a derivation of A with assumptions A_1, \ldots, A_n , e.g. $A \to (B \to C), A, B \vdash C$. A proof is a derivation with no (open) assumptions.

• Language $\mathcal{L} = \{ \mathbf{V}, \mathbf{\Phi}, \mathbf{\Phi}, \mathbf{\Phi} \}$.

• Language $\mathcal{L} = \{ \mathbf{V}, \mathbf{\Phi}, \mathbf{\Phi}, \mathbf{\Phi} \}$.

• Deductive system given by rules of proof:

How do you read these rules?

• Language $\mathcal{L} = \{ \mathbf{V}, \mathbf{\Phi}, \mathbf{\Phi}, \mathbf{\Phi} \}$.

• Deductive system given by rules of proof:

How about this one?

• Language $\mathcal{L} = \{ \mathbf{V}, \mathbf{\Phi}, \mathbf{\Phi}, \mathbf{\Phi} \}$.

• Deductive system given by rules of proof:

How about this one? N.B. $\alpha, \beta, \gamma, \delta$ just name the rules.

We make an assumption. The assumption is now open.

We apply α .

Similarly with β .

We apply γ .

We apply δ , discharging two occurrences of \blacklozenge . We mark the brackets and the rule with a label so that it is clear which assumption is discharged in which step. The derivation is now a proof: it has no open assumptions (all discharged).

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

Deductive System: Rules of Propositional Logic

We have rules for conjunction, implication, disjunction, falsity and negation.

Some rules introduce, others eliminate connectives.

Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce

connectives

Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce and eliminate connectives

$$rac{A \quad B}{A \wedge B} \ ^{\wedge - \prime} \quad rac{A \wedge B}{A} \ ^{\wedge - \textit{EL}} \quad rac{A \wedge B}{B} \ ^{\wedge - \textit{ER}}$$

Rules of Propositional Logic: Conjunction

• Rules of two kinds: introduce and eliminate connectives

- Rules are schematic.
- Why valid? If all assumptions are true, then so is conclusion

$$\mathcal{A} \models A \land B \text{ iff } \mathcal{A} \models A \text{ and } \mathcal{A} \models B$$

The rules:

The rules:

The rules:

The rules:

The rules:

Can we prove anything with just these three rules?

Rules of Propositional Logic: Implication

• Rules

Rules of Propositional Logic: Implication

• Rules

• \rightarrow -*E* is also called modus ponens.

Rules of Propositional Logic: Implication

• Rules

$$\begin{bmatrix} A \end{bmatrix} \\ \stackrel{!}{B} \\ \overline{A \to B} \xrightarrow{\rightarrow -'} \quad \frac{A \to B \quad A}{B} \xrightarrow{\rightarrow -\mathcal{E}}$$

- \rightarrow -*E* is also called modus ponens.
- \rightarrow -*I* formalizes (bottom-up) strategy: To derive $A \rightarrow B$, derive *B* under the additional (local) assumption *A*.

Top-down: we may discharge 0 or more occurences of A.

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

A Simple Proof

The simplest proof we can think of is the proof of $P \rightarrow P$.

P

A Simple Proof

The simplest proof we can think of is the proof of $P \rightarrow P$.

Do you find this strange?

Examples with Conjunction and Implication

- 1. $A \rightarrow B \rightarrow A$
- 2. $A \land (B \land C) \rightarrow A \land C$
- 3. $(A \to B \to C) \to (A \to B) \to A \to C$

Object versus Meta: variables here can either represent object variables or metavariables.

Disjunction

• Formalizes case-split strategy for using $A \lor B$.

Disjunction: Example

Example: formalize and prove
 When it rains then I wear my jacket.
 When it snows then I wear my jacket.
 It is raining or snowing.
 Therefore I wear my jacket.

Falsity and Negation

 $\frac{\perp}{A}$ \perp -E

No introduction rule!

Falsity and Negation

No introduction rule!

Negation: define ¬A as A →⊥. Rules for ¬ just special cases of rules for →. Convenient to have

$$\frac{\neg A \quad A}{B} \xrightarrow{\neg -\mathcal{E}} \text{derived by} \quad \frac{\neg A \quad A}{B} \xrightarrow{\rightarrow -\mathcal{E}}$$

Intuitionistic versus Classical Logic

• Peirce's Law: $((A \rightarrow B) \rightarrow A) \rightarrow A$. Is this valid? Provable?

Intuitionistic versus Classical Logic

- Peirce's Law: $((A \rightarrow B) \rightarrow A) \rightarrow A$. Is this valid? Provable?
- It is provable in classical logic, obtained by adding

Example of Classical Reasoning

There exist irrational numbers a and b such that a^b is rational.

Proof: Let b be $\sqrt{2}$ and consider whether or not b^b is rational.

Case 1: If rational, let $a = b = \sqrt{2}$ Case 2: If irrational, let $a = \sqrt{2}^{\sqrt{2}}$, and then

$$a^{b} = \sqrt{2}^{\sqrt{2}^{\sqrt{2}}} = \sqrt{2}^{(\sqrt{2}*\sqrt{2})} = \sqrt{2}^{2} = 2$$

Using the basic rules, we can derive new rules. Example: Resolution rule.

Using the basic rules, we can derive new rules. Example: Resolution rule.

$\frac{R \lor S \quad \neg S}{R}$

It looks like this.

Using the basic rules, we can derive new rules. Example: Resolution rule.

 $\frac{R \lor S \quad \neg S}{R} \qquad \qquad \frac{R \lor S}{R}$

We build a fragment of a derivation by writing the conclusion R and the assumptions $R \lor S$ and $\neg S$.

 $\neg S$

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

Using the basic rules, we can derive new rules. Example: Resolution rule.

 $\neg S$

 $\frac{R \lor S \quad \neg S}{R} \qquad \qquad \frac{R \lor S \quad R}{R} \qquad \qquad \overset{\vee \text{-}\text{E}}{}$

Since we have assumption $R \lor S$, using $\lor-E$ seems a good idea. So we should make assumptions R and S. First R. But that is a derivation of R from R!

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

Using the basic rules, we can derive new rules. Example: Resolution rule.

 $\neg S$ S

 $\frac{R \lor S \quad \neg S}{R} \qquad \qquad \frac{R \lor S \quad R}{R} \qquad \qquad \overset{\vee \text{-}\text{E}}{}$

So now S.

Using the basic rules, we can derive new rules. Example: Resolution rule.

 $\neg S$ and S allow us to apply $\rightarrow -E$.

Using the basic rules, we can derive new rules. Example: Resolution rule.

To apply $\lor -E$ in the end, we need to derive R. But that's easy using $\bot -E$!

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

Using the basic rules, we can derive new rules. Example: Resolution rule.

Finally, we can apply \lor -*E*. The derivation with open assumptions is a new rule that can be used like any other rule.

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

Alternative Deductive System Using Sequent Notation

One can base the deductive system around the derivability judgement, i.e., reason about $\Gamma \vdash A$ where $\Gamma \equiv A_1, \ldots, A_n$ instead of individual formulae.

Sequent Rules (for \rightarrow / \land Fragment) $\Gamma \vdash A$ (where $A \in \Gamma$) $\frac{\Gamma \vdash B}{A, \Gamma \vdash B}$ weaken

Rules for assumptions and weakening

Sequent Rules (for \rightarrow / \land Fragment) $\Gamma \vdash A$ (where $A \in \Gamma$) $\frac{\Gamma \vdash B}{A, \Gamma \vdash B}$ weaken

Rules for assumptions and weakening

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \stackrel{\wedge -I}{\sim} \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \stackrel{\wedge -EL}{\sim} \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \stackrel{\wedge -ER}{\sim} \frac{A, \Gamma \vdash B}{\Gamma \vdash A} \xrightarrow{\to -I} \frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \xrightarrow{\to -E}$$

More rules can be derived.

$$\vdash A \land (B \land C) \to A \land C \xrightarrow{\rightarrow}$$

We want to show that $A \wedge (B \wedge C) \rightarrow A \wedge C$ is a tautology, i.e., that it is derivable without any assumptions.

Basin, Wolff, and Smaus: PL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

$$\frac{A \wedge (B \wedge C) \vdash A \wedge C}{\vdash A \wedge (B \wedge C) \to A \wedge C} \xrightarrow{\wedge -l}$$

The topmost connective of the formula is \rightarrow , so the best rule to choose is \rightarrow -*I*.

The topmost connective of the formula is \land , so the best rule to choose is \land -*I*.

$$\begin{array}{c|c} \displaystyle \frac{A \wedge (B \wedge C) \vdash A \wedge ?X}{A \wedge (B \wedge C) \vdash A} & \xrightarrow{} & A \wedge (B \wedge C) \vdash C \\ \hline & A \wedge (B \wedge C) \vdash A \wedge C \\ \hline & A \wedge (B \wedge C) \rightarrow A \wedge C \\ \hline & \vdash A \wedge (B \wedge C) \rightarrow A \wedge C \\ \hline & \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \displaystyle A \wedge (B \wedge C) \vdash A \wedge C \\ \hline & \vdash A \wedge (B \wedge C) \rightarrow A \wedge C \\ \hline & \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \displaystyle A \wedge (B \wedge C) \\ \displaystyle A \wedge (B \wedge C). \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \displaystyle A \wedge (B \wedge C) \\ \displaystyle A \wedge (B \wedge C). \\ \hline \end{array} \\ \begin{array}{c} \displaystyle A \wedge (B \wedge C) \\ \displaystyle A \wedge (B \wedge C). \\ \hline \end{array} \\ \hline$$

the

$$\frac{A \wedge (B \wedge C) \vdash A \wedge ?X}{A \wedge (B \wedge C) \vdash A} \wedge {}^{\text{--EL}} \qquad \frac{A \wedge (B \wedge C) \vdash ?Z \wedge (?Y \wedge C)}{A \wedge (B \wedge C) \vdash (?Y \wedge C)} \wedge {}^{\text{--ER}} \\ \frac{A \wedge (B \wedge C) \vdash A}{A \wedge (B \wedge C) \vdash A \wedge C} \rightarrow {}^{\text{---}} \end{pmatrix}$$

Again you need to look at both sides of the \vdash to decide what to do.

$$\frac{A \land (B \land C) \vdash A \land ?X}{A \land (B \land C) \vdash A} \land {}^{-EL} \qquad \frac{A \land (B \land C) \vdash ?Z \land (?Y \land C)}{A \land (B \land C) \vdash (?Y \land C)} \land {}^{-ER} \qquad \frac{A \land (B \land C) \vdash A}{A \land (B \land C) \vdash C} \land {}^{-A} \land {}^{-ER} \qquad \frac{A \land (B \land C) \vdash A \land C}{\vdash A \land (B \land C) \vdash A \land C} \rightarrow {}^{-I}$$

Solution for ?Z = A, ?Y = B and $?X = (B \land C)$.

Comments about Proof Refinement

This crazy way of carrying out proofs is the (standard) way, which is used in many proof assistants (as Isabelle)!

- Refinement style is also called backward style proofs
- Refinement style means we work from goals to axioms
- metavariables are used to delay substitions

Isabelle allows other refinements/alternatives too (see labs).

How Are ND Proofs Built?

ND proofs build derivations under (possibly temporary) assumptions.

ND: Example for \rightarrow / \land **Fragment**

Rules:

$$\frac{A \quad B}{A \wedge B} \wedge I \quad \frac{A \wedge B}{A} \wedge EL \qquad [A]$$

$$\stackrel{[A]}{:}{B} \wedge ER \quad \frac{B}{A \rightarrow B} \rightarrow I$$

$$\frac{A \rightarrow B \quad A}{B} \rightarrow E$$

Proof:

Alternative Formalization Using Sequents Rules (for \rightarrow / \wedge fragment). Here, Γ is a set of formulae.

$$\begin{split} \Gamma \vdash A \quad (\text{where } A \in \Gamma) \\ \\ \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} & \stackrel{\wedge -I}{\wedge} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} & \stackrel{\wedge -EL}{\wedge} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} & \stackrel{\wedge -ER}{\wedge} \\ \\ \frac{A, \Gamma \vdash B}{\Gamma \vdash A \rightarrow B} & \stackrel{\rightarrow -I}{\rightarrow} \quad \frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} & \stackrel{\rightarrow -E}{\rightarrow} \end{split}$$

Two representations equivalent. Sequent notation seems simpler in practice.

 $\frac{A \land (B \land C) \vdash A \land ?X}{A \land (B \land C) \vdash A} \qquad \frac{A \land (B \land C) \vdash ?Z \land (?Y \land C)}{A \land (B \land C) \vdash (?Y \land C)} \\ \frac{A \land (B \land C) \vdash A}{A \land (B \land C) \vdash C} \\ \frac{A \land (B \land C) \vdash A \land C}{\vdash A \land (B \land C) \vdash A \land C}$

Solution for ?Z = A, ?Y = B and $?X = (B \land C)$. We went through this example in detail last lecture.

Comments about Refinement

This crazy way of carrying out proofs is the (standard) Isabelle-way!

- Refinement style means we work from goals to axioms
- Metavariables used to delay commitments
 Isabelle allows other refinements/alternatives too (see labs).
 More Detailed Explanations

What are ND Systems and Proofs?

ND stands for Natural Deduction. It was explained in the previous lecture.

What is Sequent Notation?

The judgement $(\Gamma \vdash \phi)$ means that we can derive ϕ from the assumptions in Γ using certain rules. As, explained in the previous lecture, one can make such judgements the central objects of the deductive system.

Sequent Notation and Isabelle

In particular, the sequent style notation is more amenable to automation, and thus it is closer to what happens in Isabelle.

References

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schliessen. *Mathematische Zeitschrift*, 39:176–210, 405–431, 1935. English translation in [Sza69].

[Pra65] Dag Prawitz. *Natural Deduction: A proof theoretical study*. Almqvist and Wiksell, 1965.

[Sza69] M. E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland, 1969.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005 http://www.infsec.e