Computer Supported Modeling and Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and Burkhart Wolff

April 2005

http://www.infsec.ethz.ch/education/permanent/csmr/

First-Order Logic

David Basin, Burkhart Wolff, and Jan-Georg Smaus

First-Order Logic: Overview

In propositional logic, formulae are Boolean combinations of propositions. A proposition is just a letter (variable). Can be used to model certain finite scenarios. E.g., we can model 10 time units with variables x_1, \ldots, x_{10} . Then $x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x_5 \dots$ expresses "alternating state". Cannot talk about relations and functions. Cannot say things like "the state alternates over time". Let us now extend propositional logic to first-order logic.

Variables: Intuition

In first-order logic, we talk about "elements of a universe of discourse" and their "properties".

A variable in first-order logic stands for a element of the universe.

This is in contrast to propositional logic.

It is common to use letters x, y, z for variables.

Predicates: Intuition

A predicate denotes a property/relation.

 $p(x) \equiv x$ is a prime number $d(x,y) \equiv x$ is divisible by y

Propositional connectives are used to build statements

• x is a prime and y or z is divisible by x

$$p(x) \land (d(y,x) \lor d(z,x))$$

• x is a man and y is a woman and x likes y but not vice versa

$$m(x) \wedge w(y) \wedge l(x,y) \wedge \neg l(y,x)$$

Predicates: Intuition (2)

We can represent only "abstractions" of these in propositional logic, e.g., $p \wedge (d_1 \vee d_2)$ could be an abstraction of $p(x) \wedge (d(y, x) \vee d(z, x))$. Here p stands for "x is a prime" and d_1 stands for "y is divisible by x".

Functions: Intuition

- A constant stands for a "fixed thing" in a universe.
- More generally, a function of arity n expresses an n-ary operation over some universe, e.g.
 Function arity expresses . . .
 nullary number "0"
 unary successor in N
 + binary function plus in N

Quantifiers: Intuition

- A variable stands for "some element" in the universe of discourse. Quantifiers ∀,∃ are used to speak about all or some members of this universe.
- Examples: Are they satisfiable? valid?

 $\begin{array}{l} \forall x. \ \exists y. \ y*2 = x \quad \text{true for rationals} \\ x < y \rightarrow \exists z. \ x < z \land z < y \quad \text{true for any dense order} \\ \exists x. \ x \neq 0 \quad \text{true for universes with} \\ \text{more than one element} \\ (\forall x. \ p(x, x)) \rightarrow p(a, a) \quad \text{valid} \end{array}$

First-Order Logic: Syntax

- Two syntactic categories: terms and formulae
- A first-order language is characterized by giving a finite collection of function symbols \mathcal{F} and predicates \mathcal{P} as well as a set Var of variables.
- Sometimes write f^i (or p^i) to indicate that function symbol f (predicate p) has arity $i \in \mathcal{N}$.
- One often calls the pair $(\mathcal{F}, \mathcal{P})$ a signature.

Terms in First-Order Logic

Term, the set of terms, is the smallest set where 1. $x \in Term$ if $x \in Var$, and

2. $f^n(t_1, \ldots, t_n) \in Term$ if $f^n \in \mathcal{F}$ and $t_j \in Term$, for all $1 \leq j \leq n$.

Formulae in First-Order Logic

Form, the set of formulae, is the smallest set where 1. $\perp \in Form$,

- 2. $p^n(t_1, \ldots, t_n) \in Form \text{ if } p^n \in \mathcal{P} \text{ and } t_j \in Term, \text{ for all } 1 \leq j \leq n,$
- 3. $\neg \phi \in Form$ if $\phi \in Form$,
- 4. $(\phi \circ \psi) \in Form \text{ if } \phi \in Form, \ \psi \in Form \text{ and}$ $\circ \in \{\land, \lor, \rightarrow\},$
- 5. $\forall x. \phi \in Form \text{ and } \exists x. \phi \in Form \text{ if } \phi \in Form \text{ and } x \in Var.$
- The formulae 2 above are called atoms.

Variable Occurrences

- All occurrences of a variable in a formula are bound or free or binding.
 - A variable x in a formula ϕ is bound if x occurs within a subformula of ϕ of the form $\exists x.\psi$ or $\forall x.\psi$.
- Example:

 $(q(x) \lor \exists x. \forall y. p(f(x), z) \land q(a)) \lor \forall x. r(x, z, g(x))$

Which are bound? Which are free? Which are binding?

First-Order Logic: Semantics

A structure is a pair $\mathcal{A} = \langle U_{\mathcal{A}}, I_{\mathcal{A}} \rangle$ where $U_{\mathcal{A}}$ is an nonempty set, the universe, and $I_{\mathcal{A}}$ is a mapping where 1. $I_{\mathcal{A}}(f^n)$ is an *n*-ary (total) function on $U_{\mathcal{A}}$, for $f^n \in \mathcal{F}$, 2. $I_{\mathcal{A}}(p^n)$ is an *n*-ary relation on $U_{\mathcal{A}}$, for $p^n \in \mathcal{P}$, and 3. $I_{\mathcal{A}}(x)$ is an element of $U_{\mathcal{A}}$, for each $x \in Var$. As shorthand, write $p^{\mathcal{A}}$ for $I_{\mathcal{A}}(p)$, etc.

The Value of Terms

Let \mathcal{A} be a structure. We define the value of a term t under \mathcal{A} , written $\mathcal{A}(t)$, as

1. $\mathcal{A}(x) = x^{\mathcal{A}}$, for $x \in Var$, and

2. $\mathcal{A}(f(t_1,\ldots,t_n)) = f^{\mathcal{A}}(\mathcal{A}(t_1),\ldots,\mathcal{A}(t_n)).$

The Value of Formulae

We define the (truth-)value of the formula ϕ under \mathcal{A} , written $\mathcal{A}(\phi)$, as

$$\begin{aligned} \mathcal{A}(\perp) &= 0\\ \mathcal{A}(p(t_1, \dots, t_n)) &= \begin{cases} 1 & \text{if } (\mathcal{A}(t_1), \dots \mathcal{A}(t_n)) \in p^{\mathcal{A}} \\ 0 & \text{otherwise} \end{cases}\\ \mathcal{A}(\neg \phi) &= \begin{cases} 1 & \text{if } \mathcal{A}(\phi) = 0\\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

The Value of Formulae (2) We define the (truth-)value of the formula ϕ under \mathcal{A} , written $\mathcal{A}(\phi)$, as

$$\mathcal{A}(\forall x. \phi) = \begin{cases} 1 & \text{if for all } u \in U_{\mathcal{A}}, \mathcal{A}_{[x/u]}(\phi) = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\mathcal{A}(\exists x. \phi) = \begin{cases} 1 & \text{if for some } u \in U_{\mathcal{A}}, \mathcal{A}_{[x/u]}(\phi) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Models

- If A(φ) = 1, we write A ⊨ φ and say φ is true in A or A is a model of φ.
- If every suitable structure is a model, we write $\models \phi$ and say ϕ is valid or ϕ is a tautology.
- If there is at least one model for ϕ , then ϕ is satisfiable.
- If there is no model for ϕ , then ϕ is contradictory.

There are alternative ways to formulate this.

An Example

 $\forall x. p(x, s(x))$

A model:

Not a model:

$$\begin{array}{rcl} U_{\mathcal{A}} &=& \mathcal{N} & & U_{\mathcal{A}} &=& \{\mathtt{a}, \mathtt{b}, \mathtt{c}\} \\ p^{\mathcal{A}} &=& \{(m, n) \mid m < n\} & p^{\mathcal{A}} &=& \{(\mathtt{a}, \mathtt{b}), (\mathtt{a}, \mathtt{c})\} \\ s^{\mathcal{A}}(x) &=& x+1 & \qquad s^{\mathcal{A}} &=& \text{``the identity function''} \end{array}$$

Basin, Wolff, and Smaus: First-Order Logic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

Towards a Deductive System

 $\begin{array}{ll} \mbox{Consider an ``ordinary'' mathematical proof of} \\ \mbox{if $x>2$ then $x^2>4$.} \end{array}$

In natural language, quantifiers are often implicit.

Proof: Consider an arbitrary x (\forall -I) where x > 2 (\rightarrow -I). Then x = 2 + y for some y > 0 and hence

$$x^{2} = (2+y)^{2} = 4 + 4y + y^{2} \ge 4 + 4 + 1 \ge 9 > 4.$$

Skortree phroassebolsedfon it atsupprior of have sa Havor votuld ty oduacta pit for the seals?

Weaker Statement

Even easier to prove the weaker statement $\exists x. x > 2 \rightarrow x^2 > 4.$

Let x = 0 (indeed any number!). Statement follows as 0 > 2 implies $0^2 > 4$.

Intuition: existential statements are proven by giving a witness.