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First-Order Logic: Overview

In propositional logic, formulae are Boolean combinations of
propositions. A proposition is just a letter (variable).
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First-Order Logic: Overview

In propositional logic, formulae are Boolean combinations of
propositions. A proposition is just a letter (variable).
Can be used to model certain finite scenarios. E.g., we can

model 10 time units with variables z1,...,x79. Then
x1 N\ —xo AN T3 N\ xy N\ x5... expresses “alternating state”.
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In propositional logic, formulae are Boolean combinations of
propositions. A proposition is just a letter (variable).

Can be used to model certain finite scenarios. E.g., we can
model 10 time units with variables z1,...,x79. Then
x1 N\ —xo AN T3 N\ xy N\ x5... expresses “alternating state”.

Cannot talk about relations and functions.
Cannot say things like “the state alternates over time”.
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First-Order Logic: Overview

In propositional logic, formulae are Boolean combinations of
propositions. A proposition is just a letter (variable).

Can be used to model certain finite scenarios. E.g., we can
model 10 time units with variables z1,...,x79. Then
x1 N\ —xo AN T3 N\ xy N\ x5... expresses “alternating state”.

Cannot talk about relations and functions.
Cannot say things like “the state alternates over time”.
Let us now extend propositional logic to first-order logic.
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Variables: Intuition
In first-order logic, we talk about “elements of a universe of

discourse” and their “properties”.
A variable in first-order logic stands for a element of the

universe.
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Variables: Intuition
In first-order logic, we talk about “elements of a universe of
discourse” and their “properties”.
A variable in first-order logic stands for a element of the
universe.
This is In contrast to propositional logic.
It is common to use letters x, y, z for variables.
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Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y
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Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x
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Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

p(z) A (d(y,z) vV d(z,x))
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Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

p(z) A (d(y,z) vV d(z,x))

e  Is a man and y Is a woman and x likes y but not vice
versa
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Predicates: Intuition
A predicate denotes a property/relation.

p(z) = x is a prime number d(x,y) = x is divisible by y

Propositional connectives are used to build statements
e x Is a prime and y or z is divisible by x

p(z) A (d(y,z) vV d(z,x))

e  Is a man and y Is a woman and x likes y but not vice
versa

m(x) ANw(y) ANl(z,y) A =l(y, z)
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Predicates: Intuition (2)
We can represent only “abstractions” of these in
propositional logic, e.g., p A (dy V ds) could be an abstraction
of p(x) A (d(y,x) Vd(z,x)).

Here p stands for “x is a prime’ and d; stands for “y is
divisible by x".
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Functions: Intuition

e A constant stands for a “fixed thing” in a universe.
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Functions: Intuition

e A constant stands for a “fixed thing” in a universe.

e More generally, a function of arity n expresses an n-ary
operation over some universe, €.g.
Function arity expresses . . .
0

S
4+
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Functions: Intuition
e A constant stands for a “fixed thing” in a universe.

e More generally, a function of arity n expresses an n-ary
operation over some universe, e.g.

Function arity expresses . . .
0 nullary

S unary

+ binary
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Functions: Intuition
e A constant stands for a “fixed thing” in a universe.

e More generally, a function of arity n expresses an n-ary
operation over some universe, e.g.

Function arity expresses . . .

0 nullary number “0"

s unary  successor in N

+ binary  function plus in N/
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?
Ve.dy.yx2=x
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals

Basin, Wolff, and Smaus: First-Order Logic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

First-Order Logic: Overview 126

Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y—dz.ax<zAz<y
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals

r<y— dz.x < zAz<y true for any dense order
dx.x #0
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Jdx.x #0 true for universes with
more than one element
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Jdx.x #0 true for universes with
more than one element

(V. p(x,z)) — pla, a)
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Quantifiers: Intuition

e A variable stands for “some element” in the universe of
discourse. Quantifiers V, 3 are used to speak about all or
some members of this universe.

e Examples: Are they satisfiable? valid?

Vae.dy.y *2 =x true for rationals
r<y— dz.x < zAz<y true for any dense order

Jdx.x #0 true for universes with
more than one element

(Vz.p(x,z)) — pla,a) valid
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First-Order Logic: Syntax

e [wo syntactic categories: terms and formulae

e A first-order language is characterized by giving a finite
collection of function symbols F and predicates P as well
as a set Var of variables.
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First-Order Logic: Syntax

e [wo syntactic categories: terms and formulae

e A first-order language is characterized by giving a finite
collection of function symbols F and predicates P as well
as a set Var of variables.

e Sometimes write f* (or p') to indicate that function
symbol f (predicate p) has arity i € .
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First-Order Logic: Syntax

e [wo syntactic categories: terms and formulae

e A first-order language is characterized by giving a finite
collection of function symbols F and predicates P as well
as a set Var of variables.

e Sometimes write f* (or p') to indicate that function
symbol f (predicate p) has arity i € .

e One often calls the pair (F,P) a signature.
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Terms in First-Order Logic
Term, the set of terms, is the smallest set where
1. x € Term it x € Var, and

2. fM(ty,...,ty) € Term if f* € F and t; € Term, for all
1<j7<n.

Basin, Wolff, and Smaus: First-Order Logic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

First-Order Logic: Syntax 129

Formulae in First-Order Logic
Form, the set of formulae, is the smallest set where
1. 1€ Form,
2. p"(t1,...,t,) € Form if p* € P and t; € Term, for all
1<7<mn,
3. 7¢p € Form if ¢ € Form,
4. (p o) € Form if ¢ € Form, 1 € Form and
o€ {A,V,—1},
5.Vx.¢p € Form and dx. ¢ € Form if ¢ € Form and
x € Var.

The formulae 2 above are called atoms.
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Variable Occurrences

e All occurrences of a variable in a formula are bound or free
or binding.
A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v) or Vz.1).

e Example:
(q(x) vV 3z.Vy.p(f(z),2) Agla)) VVz.r(z, 2, 9())

Which are bound?
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Variable Occurrences
e All occurrences of a variable in a formula are bound or free
or binding.
A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v) or Vz.1).

e Example:
(q(x) vV 3z.Vy.p(f(z),2) ANqla)) VVe.r(z, 2, 9(x))

Which are bound?
Which are free?
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o All

Variable Occurrences

occurrences of a variable in a formula are bound or free

or binding.

A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v) or Vz.1).

e Example:
(q(x) v 3z.Vy.p(f(z),2) Nqla)) VVz.r(z, 2, 9(x))

NIC
NIC
NIC

===

n are bound?
N are free?

n are binding?
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o All

Variable Occurrences

occurrences of a variable in a formula are bound or free

or binding.

A variable x in a formula ¢ is bound if x occurs within a
subformula of ¢ of the form dx.v) or Vz.1).

e Example:
(q(x) vV 3z.Vy.p(f(z), 2) ANgla)) VVz.r(z, 2, 9(1))

NIC
NIC
NIC

===

n are bound?
N are free?

n are binding?
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First-Order Logic: Semantics

A structure is a pair A = (U4, I4) where Uy is an nonempty
set, the universe, and I 4 Is a mapping where

1. I4(f™) is an n-ary (total) function on Uy, for f" € F,
2. I4(p") is an n-ary relation on Uy, for p" € P, and

3. I4(x) is an element of Uy, for each x € Var.
As shorthand, write p* for I4(p), etc.
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The Value of Terms
Let A be a structure. We define the value of a term ¢ under
A, written A(t), as
1. A(z) = z*, for x € Var, and

2. A(f(t1s - tn) = FACA(R), - Altn)).
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The Value of Formulae

We define the (truth-)value of the formula ¢ under A,
written A(¢), as

A(L) = 0
(1 if A € ph
At ) = { o e
[ 1 ifA(¢) =0
A(=9) = - 0 otherwise
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The Value of Formulae (2)

We define the (truth-)value of the formula ¢ under A,
written A(¢), as

(1 if for all u e Uy, A[w/u](qﬁ) =1
| 0 otherwise

(1 if for some u € Uy, .A[x/u](gb) =1
| 0 otherwise

A(Vx.p) = «

A(dx. ) = «
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Models

o If A(¢) =1, we write A = ¢ and say ¢ is true in A or A
Is a model of ¢.
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Models

o If A(¢) =1, we write A = ¢ and say ¢ is true in A or A
Is a model of ¢.

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.
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Models

o If A(¢) =1, we write A = ¢ and say ¢ is true in A or A
Is a model of ¢.

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

o If there is at least one model for ¢, then ¢ is satisfiable.
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Models

o If A(p) =1, we write A

Is a model of ¢.

— ¢ and say ¢ is true in A or A

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

o If there is at least one model for ¢, then ¢ is satisfiable.

e If there is no model for ¢, then ¢ is contradictory.
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135

Models

o If A(p) =1, we write A

Is a model of ¢.

— ¢ and say ¢ is true in A or A

e If every suitable structure is a model, we write = ¢ and
say ¢ Is valid or ¢ Is a tautology.

o If there is at least one model for ¢, then ¢ is satisfiable.

e If there is no model for ¢, then ¢ is contradictory.

There are alternative ways to formulate this.
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An Example

Va.p(x,s(x))
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An Example

V. p(x, s(x))
A model:

P = {(mvn) ’ m<n}
st z) = z+1
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An Example

Va.p(x,s(x))

A model: Not a model:
UA p— N UA — {&,b,C}
p* = {(m,n) | m<n} p* = {(a,b),(a,c)}
sMNz) = z+1 s* = “the identity function”

Basin, Wolff, and Smaus: First-Order Logic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

Towards a Deductive System 137

Towards a Deductive System

Consider an “ordinary” mathematical proof of
if z > 2 then 2 > 4.
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Towards a Deductive System

Consider an “ordinary” mathematical proof of

if z > 2 then 2% > 4.
In natural language, quantitfiers are often implicit.
Proof:
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Towards a Deductive System

Consider an “ordinary” mathematical proof of

if © > 2 then 2% > 4.
In natural language, quantitfiers are often implicit.
Proof: Consider an arbitrary x where © > 2
Then £ = 2 + y for some y > 0 and hence

=2+ y) ' =4+4dy+y P >44+4+1>9>4.
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Towards a Deductive System

Consider an “ordinary” mathematical proof of

if © > 2 then 2 > 4.
In natural language, quantitfiers are often implicit.
Proof: Consider an arbitrary x (V-/) where © > 2 (—-).
Then £ = 2 + y for some y > 0 and hence

=2+ y) ' =4+4dy+y P >44+4+1>9>4.

Some phrases used in this proof have a flavor of introduction
rules.
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Towards a Deductive System

Consider an “ordinary” mathematical proof of

if © > 2 then 2 > 4.
In natural language, quantitfiers are often implicit.
Proof: Consider an arbitrary x (V-/) where © > 2 (—-).
Then £ = 2 + y for some y > 0 and hence

=2+ y) ' =4+4dy+y P >44+4+1>9>4.

Note: Proof holds for natural numbers. How would you adapt
for reals?
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Weaker Statement
Even easier to prove the weaker statement
dr.z > 2 — 22 > 4.
Let £ = 0 (indeed any number!). Statement follows as 0 > 2
implies 0> > 4.
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Weaker Statement

Even easier to prove the weaker statement

dr.x > 2 — 22 > 4.

Let £ = 0 (indeed any number!). Statement follows as 0 > 2
implies 0> > 4.

Intuition: existential statements are proven by giving a
witness.
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