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First-Order Logic: Deductive System

First-order logic is a generalization of propositional logic. All

the rules of propositional logic carry over.

But we must introduce rules for the quantifiers.
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Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗
∀x. P (x)

P (t)
∀-E

where side condition ∗ means: x must be arbitrary.
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Universal Quantification (∀): Rules

P (x)

∀x. P (x)
∀-I∗
∀x. P (x)

P (t)
∀-E

where side condition ∗ means: x must be arbitrary.

Note that rules are schematic.
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

x = 0
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

x = 0
∀x. x = 0

∀-I
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl

∀x. x = 0
→-E
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Universal Quantification: Side Condition
What does arbitrary mean? Consider the following “proof”

[x = 0]1

∀x. x = 0
∀-I

x = 0→ ∀x. x = 0
→-I1

∀x. (x = 0→ ∀x. x = 0)
∀-I

0 = 0→ ∀x. x = 0
∀-E

0 = 0
refl

∀x. x = 0
→-E

Formal meaning of side condition: x not free in any open

assumption on which P (x) depends. Violated!
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Another Proof? (1)
Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1
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Another Proof? (1)
Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Conclusion is not valid.

The formula is false when UA has at least 2 elements.
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Another Proof? (1)
Is the following a proof? Is the conclusion valid?

[∀x.¬∀y. x = y]1

¬∀y. y = y
∀-E

(∀x.¬∀y. x = y)→ ¬∀y. y = y
→-I1

Proof is incorrect.

Reason: Substitution must avoid capturing variables. Re-

placing x with y in ∀-E is illegal because y is bound in

¬∀y. y = y. This detail concerns substitution (and renaming

of bound variables), not ∀-E.
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Another Proof? (2)

∀x.A(x) ∧B(x)
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I
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Another Proof? (2)

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

∀x.A(x) ∧B(x)

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I
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Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1
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Another Proof? (2)

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

A(x)
∧-EL

∀x.A(x)
∀-I

[∀x.A(x) ∧B(x)]1

A(x) ∧B(x)
∀-E

B(x)
∧-ER

∀x.B(x)
∀-I

(∀x.A(x)) ∧ (∀x.B(x))
∧-I

(∀x.A(x) ∧B(x))→ (∀x.A(x)) ∧ (∀x.B(x))
→-I1

Yes (check side conditions of ∀-I).
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Aside: A↔ B
Define A↔ B as A→ B ∧B → A.

The following rule can be derived (in propositional logic,

actually):

[A]
....
B

[B]
....
A

A↔ B
↔-I

You could do this as an exercise!
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Proof?

[A]1

∀x.A
∀-I

[∀x.A]1

A
∀-E

A↔ ∀x.A
↔-I1
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Proof?

[A]1

∀x.A
∀-I

[∀x.A]1

A
∀-E

A↔ ∀x.A
↔-I1

Yes, but only if x not free in A.
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Proof?

[A]1

∀x.A
∀-I

[∀x.A]1

A
∀-E

A↔ ∀x.A
↔-I1

Yes, but only if x not free in A.

Similar requirement arises in proving

(∀x.A→ B(x))↔ (A→ ∀x.B(x)).
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Existential Quantification
• We could define ∃x.A as ¬∀x.¬A.

• Equivalence follows from our definition of semantics.

A(¬A) =
{

1 if A(A) = 0
0 otherwise

A(∀x.A) =
{

1 if for all u ∈ UA,A[x/u](A) = 1
0 otherwise

A(∃x.A) =
{

1 if for some u ∈ UA,A[x/u](A) = 1
0 otherwise

Conclude: A(∃x.A) = A(¬∀x.¬A)
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Where do the Rules for ∃ Come from?
• We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.
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Where do the Rules for ∃ Come from?
• We can use definition ∃x.A ≡ ¬∀x.¬A and the given

rules for ∀ to derive ND proof rules.

• Alternatively, we can give rules as part of the deduction

system and prove equivalence as a lemma, instead of by

definition.
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∃-I as a Derived Rule
The rule:

A(t)

∃x.A(x)
∃-I

∃x.A(x)

We want to have ∃x.A(x) as conclusion.

Basin, Wolff, and Smaus: FOL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


First-Order Logic: Deductive System 149

∃-I as a Derived Rule
The rule:

A(t)

∃x.A(x)
∃-I

¬∀x.¬A(x)

But by definition that’s ¬∀x.¬A(x).
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∃-I as a Derived Rule
The rule:

A(t)

∃x.A(x)
∃-I

∀x.¬A(x)

⊥
¬∀x.¬A(x)

We aim for applying →-I in the last step (recall ¬-definition).
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∃-I as a Derived Rule
The rule:

A(t)

∃x.A(x)
∃-I

∀x.¬A(x)

¬A(t)
∀-E

⊥
¬∀x.¬A(x)

We apply ∀-E.
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∃-I as a Derived Rule
The rule:

A(t)

∃x.A(x)
∃-I

∀x.¬A(x)

¬A(t)
∀-E

A(t)
⊥

→-E

¬∀x.¬A(x)
Making assumption A(t) allows us to use →-E (recall ¬-

definition).
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∃-I as a Derived Rule
The rule:

A(t)

∃x.A(x)
∃-I

[∀x.¬A(x)]1

¬A(t)
∀-E

A(t)
⊥

→-E

¬∀x.¬A(x)
→-I1

Finally we can apply →-I. Note that the assumption A(t) is

still open.
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

∃x.A(x)

We will use ∃x.A(x) as one assumption.
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

But by definition that’s ¬∀x.¬A(x).
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

A(x)
....
B

We assume a hypothetical derivation.
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

¬B

A(x)
....
B

⊥
→-E

We make an additional assumption and apply →-E (recall

¬-definition)
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

¬B

[A(x)]2
....
B

⊥
→-E

¬A(x)
→-I2

Now we can discharge the assumption A(x) made in the

hypothetical derivation.
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

¬B

[A(x)]2
....
B

⊥
→-E

¬A(x)
→-I2

∀x.¬A(x)
∀-I

At this step, the side condition from ∀-I applies. ∃-E will

inherit it!
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

¬B

[A(x)]2
....
B

⊥
→-E

¬A(x)
→-I2

∀x.¬A(x)
∀-I

⊥
→-E

We apply →-E.
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∃-E as a Derived Rule
The rule:

∃x.A(x)

[A(x)]
....
B

B
∃-E

¬∀x.¬A(x)

[¬B]1

[A(x)]2
....
B

⊥
→-E

¬A(x)
→-I2

∀x.¬A(x)
∀-I

⊥
→-E

B
RAA1

We are done. Note that this proof uses classical reasoning.
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Sample Derivation
Assumption: x does not occur free in B

[∃x. A(x)]2

[∀x.A(x)→ B]1

A(x)→ B
∀-E

[A(x)]3

B
→-E

B
∃-E3

(∃x. A(x))→ B
→-I2

(∀x.A(x)→ B)→ ((∃x. A(x))→ B)
→-I1
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Conclusion on FOL

• Propositional logic is good for modeling simple patterns of

reasoning like “if . . . then . . . else”.
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Conclusion on FOL

• Propositional logic is good for modeling simple patterns of

reasoning like “if . . . then . . . else”.

• In first-order logic, one has “elements in a universe of

discourse” and relations on / properties of them. One can

quantify over the elements of the universe. Powerful!

• Some people advocate intuitionistic, relevant, and other

“deviant” logics.

• Limitation: cannot quantify over predicates.

• “A” world or “the” world is modeled in first-order logic

using so-called first-order theories. This will be studied
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next lecture.

Basin, Wolff, and Smaus: FOL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 154

More Detailed Explanations
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Boolean Functions
The set (or “type”) Bool contains the two truth values True,False. A

propositional formula containing n variables can be viewed as a function

Booln→ Bool . For each combination of values True,False for the

variables, the whole formula assumes the value True or False.
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Relations/Functions, Infinity
In propositional logic, there is no notation for writing “element x has

property p” or “element x and y are related as follows” or for denoting

the “element obtained from element x by applying some operation”.

In particular, no statement about all elements of a possibly infinite

domain can be expressed in propositional logic, since each formula

involves only finitely many different variables, and up to equivalence and

for a set containing n variables, there are only finitely many (to be

precise 2n) different propositional formulae.
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What is a Domain?
For example, the set of integers, the set of characters, the set of people,

you name it!

Any set of elements of the universe of discourse that we want to reason

about.
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Alternating State
Say, of a pedestrian traffic light which alternates between red and

non-red (=green).
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The State Alternates over all Time
“The state alternates over all time” could be expressed by the first-order

logic formula ∀t. x(t)↔ ¬x(t+ 1). We explain it intuitively.

x is some property which may or may not hold at a given point of time t,

expressed as a number. So we write x(t) if x holds at t. The formula

says that x is true at point t if and only if x is not true at point t+ 1.

To be more precise, one would have to axiomatize the fact that t is a

number etc.

Basin, Wolff, and Smaus: FOL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 160

“Constant Elements”?
As opposed to a variable which ranges over all values (elements of the

universe of discourse).
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Function Notation
So a function symbol f denotes an operation that takes n elements of

the universe of discourse and returns a another one: f(t1, . . . , tn) is an

element that depends on t1, . . . , tn.

The generic notation for function application is like this: f(t1, . . . , tn),
but the brackets are omitted for nullary functions (= constant symbols),

and many common function symbols like + are denoted infix, so we

write 0 + 0 instead of +(0, 0). Another common notation is prefix

notation without brackets, as in −2. There are also other notations.
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Equational Axiomatization
How do we formalize/axiomatize the fundamental truths of our domain

of interest?

It turns out that much of this is done by stating which terms are equal to

which other terms.

Here it is assumed that = is interpreted as the identity on the domain.
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“Some values”?
Just like a constant, a variable stands for a value (element of discourse).

The most important difference between a constant and a (free) variable

is that the latter ranges over all values.

Variables can be bound by quantifiers, so one can make statements such

as “for all x . . . ” or “there exists x such that . . . ”.
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What is Satisfiability? Validity?
Intuitively, satisfiable means “can be made true” and valid means

“always true”.

More formally, this will be defined later.
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Syntactic Categories
We have already learned about the syntactic category of formulae last

lecture.

A term is an expression that stands for an element in the universe of

discourse called a value.

Intuitively, this is what first-order logic is about: We have terms that

stand for a value and formulae that stand for statements/propositions

about those values.

But couldn’t a statement also be a value? And couldn’t a value depend

on a statement?

In first-order logic the answer is: no!
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Signatures

There isn’t simply the language of first-order logic! Rather, the definition

of a first-order language is parametrised by giving a F and a P. Each

symbol in F and P must have an associated arity, i.e., the number of

arguments the function or predicate takes. This could be formalised by

saying that the elements of F are pairs of the form f/n, where f is the

symbol itself and n, and likewise for P. All that matters is that it is

specified in some unambiguous way what the arity of each symbols is.

One often calls the pair (F ,P) a signature. Generally, a signature

specifies the “fixed symbols” (as opposed to variables) of a particular

logic language.

Strictly speaking, a first-order language is also parametrised by giving a

set of variables Var , but this is inessential. Var is usually assumed to be

a countably infinite set of symbols, and the particular choice of names of
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these symbols is not relevant.

Basin, Wolff, and Smaus: FOL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 168

A Language
Term and Form together make up a first-order language. Note that

strictly speaking, Term and Form depend on the signature, but we

always assume that the signature is clear from the context.
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Free, Bound, and Binding Occurrences
All occurrences of a variable in a term or formula are bound or free or

binding. These notions are defined by induction on the structure of

terms/formulae. This is why the following definition is along the lines of

our definition of terms and formulae.

1. The (only) occurrence of x in the term x is a free occurrence of x in x;

2. the free occurrences of x in f(t1, . . . , tn) are the free occurrences of x

in t1, . . . , tn;

3. there are no free occurrences of x in ⊥;

4. the free occurrences of x in p(t1, . . . , tn) are the free occurrences of x

in t1, . . . , tn;

5. the free occurrences of x in ¬φ are the free occurrences of x in φ;

6. the free occurrences of x in ψ ◦ φ are the free occurrences of x in ψ
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and the free occurrences of x in φ (◦ ∈ {∧,∨,→});
7. the free occurrences of x in ∀y. ψ, where y 6= x, are the free

occurrences of x in ψ; likewise for ∃;
8. x has no free occurrences in ∀x. ψ; in ∀x. ψ, the (outermost) ∀ binds

all free occurrences of x in ψ; the occurrence of x next to ∀ is a

binding occurrence of x; likewise for ∃.
A variable occurrence is bound if it is not free and not binding.

We also define

FV (φ) := {x | x has a free occurrence in φ}
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Structures

As usual, there isn’t just one way of modeling, and so we now explain

some other notions that you may have heard in the context of semantics

for first-order logic.

A universe (of discourse) is sometimes also called domain.

As you saw, a structure gives a meaning to functions, predicates, and

variables.

An alternative formalization is to have three different mappings for this

purpose:

1. an algebra gives a meaning to the function symbols (more precisely,

an algebra is a pair consisting of a domain and a mapping giving a

meaning to the function symbols);

2. in addition, an interpretation gives a meaning also to the predicate
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symbols;

3. a variable assignment, also called valuation, gives a meaning to the

variables.

As before, we assume that the signature is clear from the context.

Strictly speaking, we should say “structure for a particular signature”.

Details can be found in any textbook on logic [vD80].
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Omitted Cases
The following cases have been omitted:

A(φ ∧ ψ) =
{

1 if A(φ) = 1 and A(ψ) = 1
0 otherwise

A(φ ∨ ψ) =
{

1 if A(φ) = 1 or A(ψ) = 1
0 otherwise

A(φ→ ψ) =
{

1 if A(φ) = 0 or A(ψ) = 1
0 otherwise

These cases are the same as in propositional logic. This can also be

found in any textbook on logic [vD80].
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In mathematics and computer science, the word or is almost always

meant to be inclusive. If it is meant to be exclusive (A or B hold but not

both) this is usually mentioned explicitly.
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The Notation A[x/u]
A[x/u] is the structure A′ identical to A, except that xA

′
= u.
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Models
If you are happy with the definition of a model just given, this is fine.

But if you are confused because you remember a different definition from

your previous studies of logic, then these comments may help.

As explained before, it is common to distinguish an interpretation, which

gives a meaning to the constant symbols in the signature, from an

assignment, which gives a meaning to the variables. Let us use I to

denote an interpretation and A to denote an assignment.

Recall that we wrote A(.) for the meaning of a term or formula. In the

alternative terminology, we write I(A)(.) instead. This makes sense

since in the alternative terminology, I and A together contain the same

information as A in the original terminology. We define:

• For a given I, we say that φ is satisfiable in I if there exists an A so

that I(A)(φ) = 1;
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• for a given I, we write I |= φ and say φ is true in I or I is a model of

φ, if for all A, we have I(A)(φ) = 1;

• we say φ is satisfiable if there exists a I so that φ is satisfiable in I;
• we write |= φ and say φ is valid if for every (suitable) I, we have

I |= φ.

Note that satisfiable (without “for . . . ”) and valid mean the same thing

in both terminologies, whereas true in . . . means slightly different

things, since a structure is not the same thing as an interpretation.
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Suitable Structures
A structure is suitable for φ if it defines meanings for the signature of φ,

i.e., for the symbols that occur in φ. Of course, these meanings must

also respect the arities, so an n-ary function symbols must be interpreted

as an n-ary function. Without explicitly mentioning it, we always assume

that structures are suitable.
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N
N denotes the natural numbers.
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Confusion of Syntax and Semantics?
In logic, we insist on the distinction between syntax and semantics. In

particular, we set up the formalism so that the syntax is fixed first and

then the semantics, and so there could be different semantics for the

same syntax.

But the dilemma is that once we want to give a particular semantics, we

can only do so using again some kind of language, hence syntax. This is

usually natural language interspersed with usual mathematical notation

such as <, + etc.

Some people try to mark the distinction between syntax and semantics

somehow, e.g., by saying 0 is a constant that could mean anything,

whereas 0 is the number zero as it exists in the mathematical world.

When we give semantics, the symbols <, +, and 1 have their usual

mathematical meanings. The function that maps x to x+ 1 is also called
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successor function. Of course, when we write m < n, we assume that

m,n ∈ N , in this context.
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Why is this a Model?
It is true that for all numbers n, n is less than n+ 1.

Basin, Wolff, and Smaus: FOL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 183

Why is this not a Model?
The identity function maps every object to itself.

It is not true that for every character α ∈ {a, b, c},
(α, α) ∈ {(a, b), (a, c)}. E.g., (a, a) /∈ {(a, b), (a, c)}.
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Implicit Quantifiers
In the statement

if x > 2 then x2 > 4
the ∀-quantifier is implicit. It should be

for all x, if x > 2 then x2 > 4.
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Adapt the Proof for Reals
The proof for natural numbers exploits the fact that y > 0 implies y ≥ 1.

This is of course not true in the reals.

A proof for the reals:

Consider an arbitrary x where x > 2. Then x = 2 + y for some y > 0
and hence

x2 = (2 + y)2 = 4 + 4y + y2 > 4

The proof looks even simpler than for the naturals, and moreover, it also

holds for the naturals, since those are a subset of the reals. However,

such observations may be deceptive.

Tacitly, the proof uses the following assumptions (which we know are

true in the usual interpretation of mathematics):

y > 0 implies 4y > 0
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y > 0 implies y2 > 0

z > 0 and z′ > 0 implies z + z′ > 0

z > 0 implies w + z > w
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Inheriting Rules
First-order logic “inherits” all the rules of propositional logic. Note

however that the metavariables in the rules now range over propositional

formulae.
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Schematic Rules
Similarly as in the previous lecture, one should note that P is not a

predicate, but rather P (x) is a schematic expression: P (x) stands for

any formula, possibly containing occurrences of x.

In the context of ∀-E, P (t) stands for a formula where all occurrences of

x are replaced by t.
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Reflexivity
When one has a predicate symbol =, it is usual to have a rule that says

that = is reflexive.
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Side Condition Violated!
The side condition is violated in the proof since in the first ∀-I step, x

does occur free in x = 0.
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Why is (∀x.¬∀y. x = y)→ ¬∀y. y = y False?
Here we assume that the predicate symbol = is interpreted by A as

equality on UA. Suppose UA contains two elements α and β and

IA(x) = α and IA(y) = β. Then A(x = y) = 0, hence

A(∀y. x = y) = 0, hence A(¬∀y. x = y) = 1. Now one can see that

A[x/u](¬∀y. x = y) = 1 for all u ∈ UA, and hence

A(∀x.¬∀y. x = y) = 1. On the other hand, A′(y = y) = 1 for any A′
and hence A(∀y. y = y) = 1 and hence A(¬∀y. y = y) = 0. Therefore,

A((∀x.¬∀y. x = y)→ ¬∀y. y = y) = 0.
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Substitutions in FOL
The notation s[x← t] denotes the term obtained by substituting t for x

in s. However, a substitution [x← t] replaces only the free occurrences

of x in the term that it is applied to. A substitution is defined as follows:

1. x[x← t] = t;

2. y[x← t] = y if y is a variable other than x;

3. f(t1, . . . , tn)[x← t] = f(t1[x← t], . . . , tn[x← t]) (where f is a

function symbol, n ≥ 0);

4. p(t1, . . . , tn)[x← t] = p(t1[x← t], . . . , tn[x← t]) (where p is a

predicate symbol, possibly ⊥);

5. (¬ψ)[x← t] = ¬(ψ[x← t])

6. (ψ ◦ φ)[x← t] = (ψ[x← t] ◦ φ[x← t]) (where ◦ ∈ {∧,∨,→});
7. (Qx.ψ)[x← t] = Qx.ψ (where Q ∈ {∀,∃});
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8. (Qy.ψ)[x← t] = Qy.(ψ[x← t]) (where Q ∈ {∀,∃}) if y 6= x and

y 6∈ FV (t);

9. (Qy.ψ)[x← t] = Qz.(ψ[y ← z][x← t]) (where Q ∈ {∀,∃}) if y 6= x

and y ∈ FV (t) where z is a variable such that z 6∈ FV (t) and

z 6∈ FV (ψ).
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Avoiding Capture of Variables
A substitution (replacement of a variable by a term) must not replace

bound occurrences of variables, and if we replace x with t in an

expression φ, then this replacement should not turn free occurrences of

variables in t into bound occurrences in φ. It is possible to avoid this by

renaming variables.

This is part of the standard definition of a substitution. The problem is

not related to ∀-E in particular.

The definition can be found in any textbook on logic [vD80]. We will

also give a formal definition later, in the context of the λ-calculus.
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Check Side Conditions
In both cases, x does not occur free in ∀x.A(x) ∧B(x), which is the

open assumption on which A(x), respectively B(x), depends.
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Defining ↔
By defining we mean, use A↔ B as shorthand for A→ B ∧B → A, in

the same way as we regard negation as a shorthand.
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Defining ∃
By defining we mean, use ∃x.A as shorthand for ¬∀x.¬A, in the same

way as we regard negation as a shorthand.

However, we have already introduced ∃ as syntactic entity, and also its

semantics. If we now want to treat it as being defined in terms of ∀, for

the purposes of building a deductive system, we must be sure that ∃x.A
is semantically equivalent to ¬∀x.¬A, i.e., that

A(∃x.A) = A(¬∀x.¬A).
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Where Do the Rules for ∃ Come from?
• We can use definition ∃x.A ≡ ¬∀x.¬A and the given rules for ∀ to

derive ND proof rules.

In this case, the soundness of the derived rules is guaranteed since

◦ the rules for ∀ are sound;

◦ we have proven the equivalence of ∃x.A and ¬∀x.¬A semantically.

• Alternative: give rules as part of the deduction system and prove the

equivalence as a lemma, instead of by definition.

In this case, the soundness must be proven by hand (however, proving

rules sound is an aspect we neglect in this course). But once this is

done, the equivalence of ∃x.A and ¬∀x.¬A can be proven within the

deductive system, rather than by hand, provided that the deductive

system is complete.
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Hypothetical Derivation
We are constructing here a “schematic fragment” of a derivation tree.

Within this construction, we simply assume a hypothetical derivation of

B from assumption A(x). When we are done with the construction of

this fragment, we will collapse the fragment by throwing away all the

nodes in the middle and only keep the root and leaves.

Note two points:

• We assume a hypothetical derivation of B from assumption A(x).
Somewhere in the middle of the constructed fragment, we will

discharge the assumption A(x). In the final rule ∃-E, this means an

application of ∃-E involves discharging A(x). Therefore ∃-E has

brackets around the A(x).

• The hypothetical derivation of B may contain other assumptions than

A(x). These are not discharged in the constructed fragment, and so in
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the final rule ∃-E, we must also read the notation

A(x)....
B

as a derivation of B where one of the assumptions is A(x). There may

be other assumptions, but these are not discharged. This is no

different from previous rules involving discharging.
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Inheriting a Side Condition
∃-E will inherit the side condition from ∀-I. Hence, the side condition for

∃-E is:

x must not be free in B or in hypotheses of the subderivation of B other

than A(x) (occurrences in (A(x) are allowed because the assumption

A(x) was discharged before the application of ∀-I).
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Classical Reasoning
Defining ∃x.A as ¬∀x.¬A is only sensible in classical reasoning, since

the derivation of the rule ∃-E requires the RAA rule.
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The Power of First-Order Logic
In first-order logic, one has values(elements of the universe of discourse)

and relations/properties that may or may not hold for these values.

Quantifiers are used to speak about “all values” and “some value”.

For example, one can reason:

All men are mortal, Socrates is a man, therefore Socrates is mortal.

The idea underlying first-order logic is so general, abstract, and powerful

that vast portions of human (mathematical) reasoning can be modeled

with it.

In fact, first-order logic is the most prominent logic of all. Many people

know about it: not only mathematicians and computer scientists, but

also linguists, philosophers, psychologists, economists etc. are likely to

learn about first-order logic in their education.
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While some applications in the fields mentioned above require other

logics, e.g. modal logics, those can often be reduced to first-order logic,

so that first-order logic remains the point of reference.

On the other hand, logics that are strictly more expressive than

first-order logic are only known to and studied by few specialists within

mathematics and computer science.

This example about Socrates and men is a very well-known one. You

may wonder: what is the history of this example?

In English, the example is commonly given using the word “man”,

although one also finds “human”. Like many languages (e.g., French,

Italian), English often uses “man” for “human being”, although this use

of language may be considered discriminating against women.

E.g. [Tho95]:

man [. . . ] 1 an adult human male, esp. as distinct from a woman
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or boy. 2 a human being; a person (no man is perfect).

While the example does not, strictly speaking, imply that “man” is used

in the meaning of “human being”, this is strongly suggested both by the

content of the example (or should women be immortal?) and the fact

that languages that do have a word for “human being” (e.g. “Mensch” in

German) usually give the example using this word. In fact, the example

is originally in Old Greek, and there the word �njrwpoc (anthropos =

human being), as opposed to �n r (anér = human male), is used.

The example is a so-called syllogism of the first figure, which the

scholastics called Barbara. It was developed by Aristotle [Ari] in an

abstract form, i.e., without using the concrete name “Socrates”. In his

terminology, �njrwpoc is the middle term that is used as subject in the

first premise and as predicate in the second premise (this is what is called

first figure). Aristotle formulated the syllogism as follows: If A of all B
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and B is said of all C, then A must be said of all C.

And why “Socrates”? It is not exactly clear how it came about that this

particular syllogism is associated with Socrates. In any case, as far it is

known, Socrates did not investigate any questions of logic. However,

Aristotle frequently uses Socrates and Kallias as standard names for

individuals [Ari]. Possibly there were statutes of Socrates and Kallias

standing in the hall where Aristotle gave his lectures, so it was

convenient for him to point to the statutes whenever he was making a

point involving two individuals.
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Other Logics
There are still controversies about what the best logic is for reasoning

about values (=elements of a universe of discourse) and

properties/relations, and scope (quantification). Some argue for

intuitionistic, relevance, modal and other “deviant” logics.

An example where first-order logic is inappropriate might be:

From “a dollar buys a candy bar” and “a dollar buys an ice cream”

we cannot normally conclude “a dollar buys a candy bar and an ice

cream”.

However, such analogies should be treated with care. Depending on how

ice-creams, candy bars, dollars and buying are modeled, first-order logic

may very well be appropriate.

Modal logics are logics that have modality operators, usually � and ♦.
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Sometimes these denote temporal aspects, e.g., �φ means “φ always

holds”. But many other interpretations are possible, e.g., �Aφ could

mean “A knows that φ holds” [HC68].

In relevance logics, it is not true that A→ B holds whenever A is false.

Rather, A must somehow be “relevant” for B.
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Limitations of First-Order Logic

The idea underlying first-order logic seems so general that it is not so

apparent what its limitations could be. The limitations will become clear

as we study more expressive logics.

For the moment, note the following: in first-order logic, we quantify over

variables (hence, domain elements), not over predicates. The number of

predicates is fixed in a particular first-order language. So for example, it

is impossible to express the following:

For all unary predicates p, if there exists an x such that p(x) is true,

then there exists a smallest x such that p(x) is true,

since we would be quantifying over p.

Basin, Wolff, and Smaus: FOL: Natural Deduction; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 1190

References

[Ari] Aristotle. Analytica priora I, chapter 4.

[HC68] George E. Hughes and Maxwell John Cresswell. An Introduction to Modal
Logic. Muthuen and Co. Ltd, London, 1968.

[Tho95] Della Thompson, editor. The Concise Oxford Dictionary. Clarendon Press,
1995.

[vD80] Dirk van Dalen. Logic and Structure. Springer-Verlag, 1980. An introductory
textbook on logic.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16812)

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	First-Order Logic: Natural Deduction
	First-Order Logic: Deductive System
	Conclusion on FOL
	More Detailed Explanations


	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Part IV:The Semantic Approach (HOL)
	Part V:Applications
	References
	References


