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Overview

Last lecture: first-order logic.

This lecture:

• first-order logic with equality and first-order theories;

• set-theoretic reasoning.

We extend language and deductive system to formalize and

reason about the (mathematical) world.
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FOL with Equality
Equality is a logical symbol rather than a mathematical one.

Speak of first-order logic with equality rather than adding

equality as “just another predicate”.
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Syntax and Semantics

Syntax: = is a binary infix predicate.

t1 = t2 ∈ Form if t1, t2 ∈ Term.

Semantics : recall a structure is a pair A = 〈UA, IA〉 and

IA(t) is the interpretation of t.

IA(s = t) =
{

1 if IA(s) = IA(t)
0 otherwise

Note the three completely different uses of “=” here!
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Rules
• Equality is an equivalence relation

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans

• Equality is also a congruence on terms and all relations

x1 = y1 · · · xn = yn

t(x1, . . . , xn) = t(y1, . . . , yn)
cong1

x1 = y1 · · · xn = yn A(x1, . . . , xn)

A(y1, . . . , yn)
cong2
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Congruence: Alternatives
One can specialize congruence rules to replace only some

term occurrences.

x1 = y1 · · · xn = yn

t[z1← x1, . . . , zn← xn] = t[z1← y1, . . . , zn← yn]
cong1

x1 = y1 · · · xn = yn A[z1← y1, . . . , zn← yn]

A[z1← x1, . . . , zn← xn]
cong2

One time the z’s are replaced with x’s and one time with y’s.
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Examples
How many ways are there to choose some occurrences of x

in x2 + y2 > 12 · x? 4, namely:
A = x2 + y2 > 12 · x, A = z2 + y2 > 12 · x,

A = x2 + y2 > 12 · z, A = z2 + y2 > 12 · z.
We show two ways:

x = 3 x2 + y2 > 12 · x
32 + y2 > 12 · x

with A = z2 + y2 > 12 · x

x = 3 x2 + y2 > 12 · x
x2 + y2 > 12 · 3

with A = x2 + y2 > 12 · z
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Isabelle Rule
The Isabelle FOL rule is simply (using a tree syntax)

x = y P (x)

P (y)
subst

or literally

[[a = b;P (a)]] =⇒ P (b)
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Proving ∃x. t = x

t = t
refl

∃x. t = x
∃-I

In the rule

A(t)

∃x.A(x)
∃-I

, “A(x)” is metanotation. In the

example, A(x) = (t = x).
Notational confusion avoided by a precise metalanguage.
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More Detailed Explanations

Basin, Wolff, and Smaus: FOL: Theories; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 220

Logical vs. Non-logical Symbols
In logic languages, it is common to distinguish between logical and

non-logical symbols. We explain this for first-order logic.

Recall that there isn’t just the language of first-order logic, but rather

defining a particular signature gives us a first-order language. The logical

symbols are those that are part of any first-order language and whose

meaning is “hard-wired” into the formalism of first-order logic, like ∧ or

∀. The non-logical symbols are those given by a particular signature, and

whose meaning must be defined “by the user” by giving a structure.

What status should the equality symbol = have? We will assume that =
is a symbol whose meaning is hard-wired into the formalism. One then

speaks of first-order logic with equality.
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Three Different Uses of Equality

IA(s==t) ==
{

1 if IA(s)==IA(t)
0 otherwise

The first == is a predicate symbol.

The second == is a definitional occurrence: The expression on the

left-hand side is defined to be equal to the value of the right-hand side.

The third = is semantic equality, i.e., the identity relation on the domain.
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Why Rules?
Since = is a logical symbol in the formalism of first-order logic with

equality, there should be derivation rules for = to derive which formulas

a = b are true.
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What is an Equivalence?
In general mathematical terminology, a relation ∼= is an equivalence

relation if the following three properties hold:

Reflexivity: a ∼= a for all a;

Symmetry: a ∼= b implies b ∼= a;

Transitivity: a ∼= b and b ∼= c implies a ∼= c.

Example: being equal modulo 6.

“a is equal b modulo 6” is often written a ≡ b mod 6.
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What is a Congruence?
In general mathematical terminology, a relation ∼= is a congruence w.r.t.

(or: on) f , where f has arity n, if a1
∼= b1, . . . , an

∼= bn implies

f(a1, . . . , an) ∼= f(b1, . . . , bn).
Example: being equal modulo 6 is congruent w.r.t. multiplication.

14 ≡ 8 mod 6 and 15 ≡ 9 mod 6, hence 14 · 15 ≡ 8 · 9 mod 6.

This can be defined in an analogous way for a property (relation) P .

Example: being equal modulo 6 is congruent w.r.t. divisibility by 3.

15 ≡ 9 mod 6 and 15 is divisible by 3, hence 9 is divisible by 3.

14 ≡ 8 mod 6 and 14 is not divisible by 3, hence 8 is not divisible by 3.

Basin, Wolff, and Smaus: FOL: Theories; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Soundness of Equivalence Rules
On the semantic level, two things are equal if they are identical.

Semantic equality is an equivalence relation.

So one can prove that IA(s = s) = 1 for all all terms s, because

IA(s) = IA(s) for all terms, and likewise for symmetry and transitivity.
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Soundness of Congruence Rules
If t(x) is a term containing x and t(y) is the term obtained from t(x) by

replacing all occurrences of x with y, and moreover IA(x = y) = 1, then

IA(x) = IA(y). One can show by induction on the structure of t that

IA(t(x)) = IA(t(y)).
So by “truth-functional” we mean that the value IA(t(x)) depends on

IA(x), not on x itself.

This can be generalized to n variables as in the rule.

An analogous proof can be done for rule cong2.
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Occurrences vs. Substitution
The notation t[z1← x1, . . . , zn← xn] stands for the term obtained from

t by simultaneously replacing each zi (i ∈ {1, . . . , n}) with xi.

[z1← x1, . . . , zn← xn] is called a substitution.

Substitutions are a way to make the notion of variable occurence precise:

assume we have a term t containing the (free) variable x.

Now, we can represent the n occurences of x in t by terms t1 to tn, for

which t = ti[z ←− x] holds, where z is not a free variable in t and where

z appears only once in the term. Then, the ti represents an occurrence

of x in t which is marked by z.

See also example.
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Example: x2 + y2 > 12 · x
The atom x2 + y2 > 12 · x contains two occurrences of x. There are four

ways to choose some occurrences of x in x2 + y2 > 12 · x.

Each of those ways corresponds to an atom obtained from

x2 + y2 > 12 · x by replacing some occurrences of x with z. That is,

there are four different A’s such that A[x←− z] = x2 + y2 > 12 · x.

Now the atom above the line in the examples is obtained by substituting

x for z, and the atom below the line is obtained by substituting y for z.
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The Substitutivity Rule
The FOL rule for Substitutivity (“Leipnitz Rule”) is presented as:

x = y P (x)

P (y)
subst

We can think of P (x) and P (y) as P [z ←− x] for some arbitrary z.

Think of P as a formula where some positions are marked in such a way

that once we apply P to t (we write P (t)), t will be substituted into all

those positions.

In fact, the particular choice of z does not play a role; it is an

“anonymous” variable from the point of view of substitutivity. This

motivates the λ-calculus which allows for writing λz.P for this situation.
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Why Are All Functions in a Structure Total?

If we allowed partial functions in a structure, then terms t can be

undefined, and elementary operations like substitution require all sorts of

side-conditions (we must not replace a variable with an undefined term,

etc.).
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Example 1: Partial Orders

• The language of the theory of partial orders: ≤
• Axioms

∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z

∀x, y. x ≤ y ∧ y ≤ x↔ x = y

• Alternative to axioms is to convert to rules

x ≤ y y ≤ z

x ≤ z
trans

x ≤ y y ≤ x

x = y
antisym

x = y

x ≤ y
≤-refl

Such a conversion is possible since implication is the main

connective.
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A Second Transitivity Rule
One may also consider adding the rule

x = y

y ≤ x
≤-refl2

to the system. This rule can be derived as follows:

x = y

y = x
sym

y ≤ x
≤-refl
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More on Orders
• A partial order is a linear or total order when

∀x, y. x ≤ y ∨ y ≤ x

Note: no “pure” rule formulation of this disjunction.

• A total order is dense when, in addition

∀x, y. x < y → ∃z.(x < z ∧ z < y)

What does < mean?

Basin, Wolff, and Smaus: FOL: Theories; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Structures for Orders . . .
Give structures for orders that are . . .

1. partial but not total: ⊆-relation;

2. total but not dense: integers with ≤;

3. dense: reals with ≤.

Basin, Wolff, and Smaus: FOL: Theories; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


Example 2: Groups 236

Example 2: Groups

• Language: Function symbols · , −1, e

• A group is a model of

∀x, y, z. (x · y) · z = x · (y · z) (assoc)
∀x. x · e = x (r-neutr)

∀x. x · x−1 = e (r-inv)

It is an example of an equational theory.

Theorems: (1) x−1 · x = e and (2) e · x = x . . .

Basin, Wolff, and Smaus: FOL: Theories; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Theorem 1

∀x, y, z. (x · y) · z = x · (y · z) (assoc)(assoc)(assoc)(assoc)(assoc)

∀x. x · e = x (r-neutr)(r-neutr)(r-neutr)(r-neutr)

∀x. x · x−1 = e (r-inv)(r-inv)(r-inv)(r-inv)(r-inv)(r-inv)(r-inv)

x−1 · x = e (1)

x−1 · x =x = x−1 · (x · e)(x · e)e) = x−1 · (x · (x−1 · x−1−1))x · (x−1 · x−1−1))x · (x−1 · x−1−1)) =
x−1 · ((x · x−1) · x−1−1)(x · x−1) · x−1−1)(x · x−1) · x−1−1) = x−1 · (e · x−1−1)x−1 · (e · x−1−1)x−1 · (e · x−1−1) =
(x−1 · e) · x−1−1(x−1 · e) · x−1−1(x−1 · e) · x−1−1 = x−1 · x−1−1

x−1 · x−1−1
x−1 · x−1−1 = ee

.
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Theorem 2

∀x, y, z. (x · y) · z = x · (y · z) (assoc)(assoc)(assoc)(assoc)

∀x. x · e = x (r-neutr)(r-neutr)(r-neutr)

∀x. x · x−1 = e (r-inv)(r-inv)(r-inv)

e · x = x (2)

e · xe · x = (x · x−1) · x(x · x−1) · x(x · x−1) · x = x · (x−1 · x)x · (x−1 · x) (Theorem 1)(x−1 · x) = x · ex · ex · e = xx.
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Lessons Learned from these Examples

Equational proofs are often tricky!

• Equalities used in different directions, “eureka” terms, etc.

• In some cases (the word problem is) decidable.
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Equational versus ND Proofs
• Above proofs were of a particular, equational form.

• In Isabelle this is accomplished by term rewriting.

Term rewriting is a process for replacing equals by equals

(see later).

• Alternative is natural deduction:
◦ requires explicit proofs using equality rules;

◦ tedious in practice. Try it on above examples!
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More Detailed Explanations
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Theories
Recall our intuitive explanation of theories.

A theory involves certain function and/or predicate symbols for which

certain “laws” hold.

Depending on the context, these symbols may co-exist with other

symbols.

Technically, the laws are added as rules (in particular, axioms) to the

proof system.

A structure in which these rules are true is then called a model of the

rules.
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Partial Orders
A partial order is a binary relation that is reflexive, transitive, and

anti-symmetric: a ≤ b and b ≤ a implies a = b.
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A Language Consisting of ≤?
≤ is (by convention) a binary infix predicate symbol.

The theory of partial orders involves only this symbol, but that does not

mean that there could not be any other symbols in the context.
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Antisymmetry and Reflexivity
Note that ∀x, y. x ≤ y ∧ y ≤ x↔ x = y encodes both antisymmetry

(→) and reflexivity (←). Recall that A↔ B as shorthand for

A→ B ∧B → A.
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Transitivity
The axiom ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z encodes transitivity.
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Axioms vs. Rules
One can see that using →-I and →-E, one can always convert a proof

using the axioms to one using the proper rules.

More generally, an axiom of the form ∀x1, . . . , xn. A1 ∧ . . . ∧An→ B

can be converted to a rule

A1 . . . An

B .

Do it in Isabelle!
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Linear and Dense Orders
We define these notions in a usual mathematical terminology.

A partial order ≤ is linear or total if for all a, b, either a ≤ b or b ≤ a.

A partial order ≤ is dense if for all a, b where a < b, there exists a c such

that a < b and b < c.
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“Pure” Rule Formulation
The axiom ∀x, y. x ≤ y ∨ y ≤ x cannot be phrased as a proper rule in

the style of, for example, the transitivity axiom.
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<
We use s < t as shorthand for s ≤ t ∧ ¬s = t.

We say that < is the strict part of the partial order ≤.

Basin, Wolff, and Smaus: FOL: Theories; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 251

The ⊆-Relation

The ⊆-relation is partial but not total. As an example, consider the

⊆-relation on the set of subsets of {1, 2}.

∅

{1, 2}

{2}{1}

J
J

J
J

JJ





























J
J

J
J

JJ

Depicting partial orders by a such a graph is quite common. Here, node

a is below node b and connected by an arc if and only if a < b and there

exists no c with a < c < b.
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In this example, we have the partial order

{(∅, ∅), ({1}, {1}), ({1}, {1}), ({1, 2}, {1, 2}),
(∅, {1}), (∅, {1}), ({1}, {1, 2}), ({1}, {1, 2})}.
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Group Language
· is a binary infix function symbol (in fact, only · is the symbol, but

the notation · is used to indicate the fact that the symbol stands

between its arguments).
−1 is a unary function symbol written as superscript. Again, the is

used to indicate where the argument goes.

e is a nullary function symbol (= constant).

Note that groups are very common in mathematics, and many different

notations, i.e., function names and fixity (infix, prefix. . . ) are used for

them.
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Group
In general mathematical terminology, a group consists of three function

symbols · , −1, e, obeying the following laws:

Associativity (a · b) · c = a · (b · c) for all a, b, c,

Right neutral a · e = a for all a,

Right inverse a · a−1 = e for all a.
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Equational Theory
An equational theory is a set of equations. Each equation is an axiom.

Sometimes, each equation is surrounded by several ∀-quantifiers binding

all the free variables in the equation, but often the equation is regarded

as implicitly universally quantified.

More generally, a conditional equational theory consists of proper rules

where the premises are called conditions [Höl90].

Note also that sometimes, one also considers the basic rules of equality

as being part of every equational theory. Whenever one has an

equational theory, one implies that the basic rules are present; whether or

not one assumes that they are formally elements of the equational theory

is just a technical detail.
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A Model a Group?
A model of the group axioms is a structure in which the group axioms

are true.

However, when we say something like, “this model is a group”, then this

is a slight abuse of terminology, since there may be other function

symbols around that are also interpreted by the structure.

So when we say “this model is a group”, we mean, “this model is a

model of the group axioms for function symbols · , −1,and e clear

from the context”.
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“Eureka” terms
By “eureka” terms we mean terms that have to be guessed in order to

find a proof. At least at first sight, it seems like these terms simply fall

from the sky.

The Greek heureka is 1st person singular perfect of heuriskō, “to find”.

It was exclaimed by Archimedes upon discovering how to test the purity

of Hiero’s crown.
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The Word Problem
The word problem w.r.t. an equational theory (here: the group axioms)

is the problem of deciding whether two terms s and t are equal in the

theory, that is to say, whether the formula s = t is true in any model of

the theory.
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Equational Proofs
An equational proof consists simply of a sequence of equations, written

as t1 = t2 = . . . = tn, where each ti+1 is obtained from ti by replacing

some subterm s with a term s′, provided the equality s = s′ holds.

This style of proof can be justified by the rules given for equality, in

particular the congruences. However, it looks very different from the

natural deduction style.
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Proof of Theorem 2 by Natural Deduction

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)
cont. below

e · x = (x · x−1) · x
e · x = x · (x−1 · x)

e · x = x · e
e · x = x

Most steps use the congruence rule cong2.
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r-inv

x · x−1 = e

e = x · x−1
sym

e · x = e · x
refl

e · x = (x · x−1) · x
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Proof of Theorem 2 by Natural Deduction,
Complete

r-neutr

x · e = x

Theorem 1

x−1 · x = e

assoc

(x · x−1) · x = x · (x−1 · x)

r-inv

(x · x−1) = e

e = (x · x−1)
sym

e · x = e · x
refl

e · x = (x · x−1) · x

e · x = x · (x−1 · x)

e · x = x · e

e · x = x

Each framed box in the derivation tree stands for a sub-tree consisting of

a group axiom and possibly several applications of ∀-E.
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