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Naive Set Theory: Basics

e A set is a collection of objects where order and repetition
are unimportant.

Sets are central in mathematical reasoning [Vel94|. E.g.,
set of prime numbers.
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Naive Set Theory: Basics

e A set is a collection of objects where order and repetition
are unimportant.
Sets are central in mathematical reasoning [Vel94|. E.g.,
set of prime numbers.

e In what follows we consider a simple, intuitive
formalization: “naive set theory".
We will be somewhat less formal than usual. Our goal is
to understand standard mathematical practice.
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Naive Set Theory: Basics

e A set is a collection of objects where order and repetition
are unimportant.
Sets are central in mathematical reasoning [Vel94|. E.g.,
set of prime numbers.

e In what follows we consider a simple, intuitive
formalization: “naive set theory".

We will be somewhat less formal than usual. Our goal is
to understand standard mathematical practice.

Later, in HOL, we will be completely formal.
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Sets: Language

Assuming any first-order language with equality, we add:

e set-comprehension {x|P(x)} and a binary membership
predicate €.
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Sets: Language

Assuming any first-order language with equality, we add:
e set-comprehension {x|P(x)} and a binary membership
predicate €.

e Term /formula distinction inadequate: need a syntactic
category for sets.
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Assuming any first-order language with equality, we add:

e set-comprehension {x|P(x)} and a binary membership
predicate €.

e Term /formula distinction inadequate: need a syntactic
category for sets.

e We will be more formal about syntax later (HOL).
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Sets: Language

Assuming any first-order language with equality, we add:

e set-comprehension {x|P(x)} and a binary membership
predicate €.

e Term /formula distinction inadequate: need a syntactic
category for sets.

e We will be more formal about syntax later (HOL).

e Comprehension is a binding operator: x bound in

| P2}
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Examples
e Vr.x € {yly mod 6 =0} — (z mod 2 =0Ax mod 3 = 0).
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Examples
e Vr.x € {yly mod 6 =0} — (z mod 2 =0Ax mod 3 = 0).
e \What does the following say?

2 € {w|6 ¢ {x|z is divisible by w}}
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Examples
e Vr.x € {yly mod 6 =0} — (z mod 2 =0Ax mod 3 = 0).
e \What does the following say?

2 € {w|6 ¢ {x|z is divisible by w}}

Answer: 6 ¢ {x|x divisible by 2} i.e., 6 not divisible by 2.
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Proof Rules for Sets

Introduction, elimination, extensional equality

P(t) t € {z|P(x)}
t € {x|P(x)} P(t)
Ve.x € A~ x € B A=DB
A=DB Ve.x € A—x € B

Following equivalence is derivable:

Vz. P(z) < z € {y|P(y)}
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Digression: Sorted Reasoning

e In mathematical arguments we often (implicitly) assume
that variables are restricted to some universe of discourse.

E.g., 2° < 9 (universe either R, N/, . ..)

e To avoid ambiguity we can include sort information in
formulae:

members x of U where P(x) = {z € U|P(x)}

Formally

{r e U|P(x)} ={z|U(x) N P(z)}.
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Sorted Reasoning in an Unsorted Logic

e \We may introduce the additional set comprehension syntax
{x € A|P(x)}, but our logic is still unsorted. We have

yeir e AlP(x)} —yei{z| Al@)A\P(x); < Aly)A\P(y)
e Sorted quantification

Ve € A. P(x) V. A(z) — P(x)
dr € A. P(x) = dx. A(x) A P(x)
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Operations on Sets

e Functions on sets

ANB = {xjlr € ANz € B}
AUB = {zlx€e AVx e B}
A\ B = {zjlr € ANz & B}

e Predicates on sets

ACB=Ve.x e A—xe B
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?
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One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

ANBKB
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

AUB
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Examples of Operations on Sets

One often depicts sets as circles or bubbles.
What are AN B, AUB, A\ B?

A\ B
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Correspondence between Set-Theoretic and
Logical Operators

rcEANB < € ANz EB
rcAUB < € AVxEeRB
re A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the
set-theoretic operators and V. P(x) < x € {y|P(y)}.

Basin, Wolff, and Smaus: FOL: Naive Set Theory; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

Operations on Sets 272

Correspondence between Set-Theoretic and
Logical Operators

rcEANB < € ANz EB
rcAUB < €AV EB
re A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the
set-theoretic operators and V. P(x) < x € {y|P(y)}.

Example: what is the logical form of
re(ANB)U(ANC))?
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Correspondence between Set-Theoretic and
Logical Operators

rcEANB < € ANz EB
rcAUB < €AV EB
re A\B < x€ ANz ¢ B

These correspondences follow from the definitions of the
set-theoretic operators and V. P(x) < x € {y|P(y)}.
Example: what is the logical form of
re(ANB)U(ANC))?

(re ANz eB)V(xe ANz e C)
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Proof of AN(BUC)=(ANB)U(ANC)
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Proof of AN(BUC)=(ANB)UANC) (1)

Venn diagram (lIs this a proof?)
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Proof of AN (BUC)=(ANB)UANC) (2)

Natural deduction (refinement style, natural language)
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Proof of AN (BUC)=(ANB)UANC) (2)

Natural deduction (refinement style, natural language)
By extensionality, suffices to show

Ve.x e AN (BUC)«—ze€(ANB)U(ANCQC).
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Proof of AN(BUC)=(ANB)U(ANC) (2)

Natural deduction (refinement style, natural language)
By extensionality, suffices to show

Ve.x e AN(BUC)—ze€ (ANB)U(ANC).

For an arbitrary z, this is equivalent to establishing

(xe AN(reBvxel)) <
(re ANzeB)V(xe ANz e C)
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Proof of AN(BUC)=(ANB)U(ANC) (2)

Natural deduction (refinement style, natural language)
By extensionality, suffices to show

Ve.x e AN(BUC)—ze€ (ANB)U(ANC).

For an arbitrary z, this is equivalent to establishing

(re AN(xeBVxel))«—
(re ANzeB)V(xe ANz e C)

But that Is a propositional tautology.
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Same in Isabelle

Last proof carries over to Isabelle: extensionality, rewriting,
tautology checking. Do it!
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.
Let « be element of (AU B) \ B.
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Operations on Sets 276

Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.
Let « be element of (AU B) \ B.
So(re AVxe B)\N—x € B.
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.
Let « be element of (AU B) \ B.
So(re AVxe B)\N—x € B.
Therefore x € A.
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.

Let « be element of (AU B) \ B.

So(re AVxe B)\N—x € B.
Therefore x € A.

Therefore x € (AUB)\ B — z € A.
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.

Let « be element of (AU B) \ B.

So(re AVxe B)\N—x € B.
Therefore x € A.

Therefore x € (AUB)\ B — z € A.
nerefore (AU B) \ B) C A.
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Prove: for all Sets A and B, (AUB)\B)C A

Not obvious? Just follow your nose!

Let A and B be arbitrary sets.

Let « be element of (AU B) \ B.

So(re AVxe B)\N—x € B.
Therefore x € A.

Therefore x € (AUB)\ B — z € A.
nerefore (AU B) \ B) C A.

This semi-formal proof combines forward reasoning with
backward reasoning. This is common in practice and usually
easy to unscramble.
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Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
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Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Can define set transformers, e.g.,

()| P(x)
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Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Can define set transformers, e.g.,

U (2)|P(z)} = y[3z. P(z) Ny = f(z)}
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Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Can define set transformers, e.g.,

U (2)|P(z)} = y[3z. P(z) Ny = f(z)}

Example: ¢t € {z*|x > 5} equivalent to
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Extending Set Comprehensions

Recall set comprehensions {z|P(x)}.
Can define set transformers, e.g.,

U (2)|P(z)} = y[3z. P(z) Ny = f(z)}

Example: t € {z*|x > 5} equivalent to Jz. 2 > 5 At = 2%
True for t € {36,49, ...}
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Indexing

Sometimes, it is natural to denote a function f applied to an
argument = as “f indexed by z", so f,, rather than f(x).
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Indexing

Sometimes, it is natural to denote a function f applied to an
argument = as “f indexed by z", so f,, rather than f(x).

Example: let S = set of students and let m, stand for “the
mother of s”, for s a student. Call S an index set.

r e {mslse S} « xze{ylds.s€ SNy =m}
— ds.s € S ANx = mg

— ds e S.x=mg
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Indexing

Sometimes, it is natural to denote a function f applied to an
argument = as “f indexed by z", so f,, rather than f(x).

Example: let S = set of students and let m, stand for “the
mother of s”, for s a student. Call S an index set.

r e {mslse S} « xze{ylds.s€ SNy =m}
— ds.s € S ANx = mg

— ds e S.x=mg

Uses extended comprehensions, indexing syntax, and sorted
quantification.
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Logical Forms of the New Notation
Question: what is the logical form of {z;|s € I} C A7
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Logical Forms of the New Notation
Question: what is the logical form of {z;|s € I} C A7

Ve.x e {x;lt €[} - x €A, ie,
Ve.(hel.x=ux;) —x e A
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Logical Forms of the New Notation
Question: what is the logical form of {z;|s € I} C A7

Ve.x e {x;lt €[} - x €A, ie,

Ve.(hel.x=ux;) —x e A
Intuition suggests that Vi € I.x; € A is also correct, i.e.,

(Ve (Fiel.x=z) ax€A) - Viel.x, € A).

Can you prove this?
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Indexed Families

Can formulate sets as indexed families.

Let S = set of students, C; = courses taken by student s.
Then
{C,ls € S5}
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Indexed Families

Can formulate sets as indexed families.
Let S = set of students, C's = courses taken by student s.

Then
(Cy]s € S)

Is the set whose elements are those sets of courses taken by
some student.
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Logical Forms of Powersets
P(A) = {z|x C A}.
What is the logical form of:
1. x € P(A)?
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Logical Forms of Powersets
P(A) = {z|z C A}.
What is the logical form of:
1. x € P(A)?
rCA ie,Vy(yex—yeA)
2. P(A) CP(B)?
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Logical Forms of Powersets
P(A) = {z|z C A}.
What is the logical form of:
1. x € P(A)?
rCA ie,Vy(yex—yeA)
2. P(A) CP(B)?
Ve.z € P(A) — x € P(B), i.e.,
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Logical Forms of Powersets
P(A) = {z|z C A}.

What is the logical form of:
1. x € P(A)?

rCA e, Vy(ycer—yeA
2. P(A) CP(B)?

Ve.xz € P(A) — x € P(B), i.e,

Ve.x CA—xCBHB,ie.,
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Logical Forms of Powersets
P(A) = {z|z C A}.

What is the logical form of:
1. x € P(A)?

rCA e, Vy(ycer—yeA
2. P(A) CP(B)?

Ve.xz € P(A) — x € P(B), i.e,

Ve.x CA— a2 CB,le.,

Ve.Vyyex—yeA) - VYyyex—yeB)
Exercise: prove that the last answer is equivalent to A C B,
le. Ve.x € A — x € B.
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Outlook

Sets can have other sets as elements.

Implicitly assume that universe of discourse is collection of
all sets.
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Russell’s Paradox

Suppose U :={x | T}. Then U € U.
Somewhat unusual, but no contradiction yet.
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Russell’'s Paradox
Suppose U :={x | T}. Then U € U.
Somewhat unusual, but no contradiction yet.
Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and

2. more typical sets that are not.
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Russell’s Paradox

Suppose U :={x | T}. Then U € U.
Somewhat unusual, but no contradiction yet.
Now split sets into two categories:

1. unusual sets like U that are elements of themselves, and
2. more typical sets that are not.

Let R:={A|A ¢ A}.

Using logical form we derive: VA. (A€ R+~ A& A)
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Russell’s Paradox
Suppose U :={x | T}. Then U € U.
Somewhat unusual, but no contradiction yet.
Now split sets into two categories:
1. unusual sets like U that are elements of themselves, and
2. more typical sets that are not.
Let R:={A|A ¢ A}.
Using logical form we derive: VA. (A€ R+~ A& A)

Substituting R for A (V-E) yields R € R <~ R ¢ R, which is
a logical contradiction.
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Consequences

e Naive Set Theory is nice and highly intuitive ...
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Consequences

e Naive Set Theory is nice and highly intuitive ...

e . . . but inconsistent!
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Consequences

e Naive Set Theory is nice and highly intuitive ...
e . .. but inconsistent!

e Axioms must be considered harmful:
“The axiomatic method has the advantage of theft over
honest labour” (Russel)
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Consequences

e Naive Set Theory is nice and highly intuitive ...
e . .. but inconsistent!

e Axioms must be considered harmful:
“The axiomatic method has the advantage of theft over
honest labour” (Russel)

e New concepts to avoid inconsistency are needed: Types,
Conservativity, ...
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Where Do We Go from here?

In the sequel of the course, we will turn to the A-calculus for
three reasons:

e it is basis for a metalanguage to avoid notational confusion
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Where Do We Go from here?

In the sequel of the course, we will turn to the A-calculus for
three reasons:
e it is basis for a metalanguage to avoid notational confusion

e it allows for a uniform representation of substitution,
unification, Resolution and other deduction techniques
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Where Do We Go from here?

In the sequel of the course, we will turn to the A-calculus for
three reasons:
e it is basis for a metalanguage to avoid notational confusion

e it allows for a uniform representation of substitution,
unification, Resolution and other deduction techniques

e it is a foundation fot Higher-order Logic: a formalism for
(among other things) non-naive set theory.
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More Detailed Explanations
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Set Comprehension

Set comprehension is a way of defining sets through predicates.
{x|P(x)} stands for the set of elements of the universe for which P(x)
(some formula usually containing x) holds.
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Is a Set a Term?

It is more adequate to regard a set as a term than as a formula. A set is
considered a value in a universe of discourse, not a relation over values.
However, it is in fact possible to model relations inside set theory;
therefore, the distinction is purely syntactical and not conceptual.
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Extensional Equality
Two things are extensionally equal if they are “equal in their effects”.
Thus two sets are equal if they have the same members, regardless of
their syntactic representation.
Note that extensional equality may be undecidable.
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Deriving Equivalence for Comprehensions

[P(z)] o [z € {y|P(y)}])? -
r € {y|P(y)} » P(z) »
P(r) — z € {y|P(y)} r € {y|P(y)} — P(x)

A-1

P(x) — 2 € {y|P(y)} A € (ylP(y)} — Pla)
P(z) oz € (ylPy)}
vz. P(z) = 2 € {y|P(v)}

Rules A-I, —-I, V-] were defined in previous lectures. The step marked
with iff is not a proof step in the technical sense. We only make the
expansion of a shorthand notation explicit.
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Universes

We already know what a universe or domain is. To interpret a particular
language, we have a structure interpreting all function symbols as
functions on the universe.

However, it is often adequate to subdivide the universe into several
“sub-universes’. Those are called sorts. Note that a sort is a set.

For example, in a usual mathematical context, one may distinguish R

(the real numbers) and N (the natural numbers) to say that /= requires
x to be of sort R and z! requires x to be of sort V.
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Avoiding Ambiguity

We want to make explicit the sort of the variable in question. So we do
not want the set of all x such that P(x) holds, but only the ones of the
right sort, so the ones for which x € U (U being the sort/universe) holds.

Note there is a certain confusion here, since we write x € U in one place
(so U should be a set) and U(x) in another (so U should be a predicate.
This confusion is deliberate and quite common. One can identify a set
(sort) U with a unary predicate U such that U(t) is interpreted as True
iIff ¢ is a member of U.

The whole expression {x € U|P(x)} is a special kind of syntax.
Therefore, you must look at it as a whole: it makes no sense to see any
meaning just in, say, the bit z € U in this expression. It is called set
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comprehension, and it is defined by

{r e U|P(x)} ={x | U(x) AN P(x)}.
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Sorted Logic

In sorted logic, sorts are part of the syntax. So the signature contains a
fixed set of sorts. For each constant, it is specified what its sort is. For
each function symbol, it is specified what the sort of each argument is,
and what the sort of the result is. For each predicate symbol, it is
specified what the sort of each argument is.

Terms and formulas that do not respect the sorts are not well-formed,
and so they are not assigned a meaning.

In contrast, our logic is unsorted. The special syntax we provide for
sorted reasoning is just syntactic sugar, i.e., we use it as shorthand and
since it has an intuitive reasoning, but it has no impact on how
expressive our logic is.

For any formal language (programming language, logic, etc.), the term
“syntactic sugar’ refers to syntax that is provided for the sake of
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readability and brevity, but which does not affect the expressiveness of
the language.

It is usually a good idea to consider the language without the syntactic
sugar for any theoretical considerations about the language, since it
makes the language simpler and the considerations less error-prone.
However, the correspondence between the syntactic sugar and the basic
syntax should be stated formally.
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Sorted Quantification

So Vx € U. P(x) is simply a shorthand or syntactic sugar for
Ve.x € U — P(x), and analogously for 9x € U. P(x).
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Set Functions

N i1s called intersection.
U 1s called union.
\ is called set difference.

C is called inclusion.

Basin, Wolff, and Smaus: FOL: Naive Set Theory; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 298

The Logical Form

When we transform an expression containing set operators N, U, \, C into
an expression using A, V, -, —, we call the latter the logical form of the
expression.
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Is a Venn Diagram a Proof?

A Venn diagram represents sets as bubbles. Intersecting sets are drawn
as overlapping bubbles, and the overlapping area is meant to depict the
Intersection of the sets.

A Venn diagram is not a proof in the sense defined earlier.

Moreover, it would not even be acceptable as a proof according to usual
mathematical practice. If it is unknown whether two sets have a
non-empty intersection, how are we supposed to draw them? Trying to
make a case distinctions (drawing several diagrams depending on the
cases) is error-prone.

Venn diagrams are useful for illustration purposes, but they are not
proofs.
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Natural Language

We intersperse formal notation with natural language here in order to
give an intuitive and short proof.

We can also do this in formal logic, too.
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore x € A (P follows from (P V Q) A Q)
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore z € A (P follows from (P V Q) A =Q)
Therefore t € (AUB)\ B —-xz € A (—-/)
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore x € A (P follows from (P V Q) A Q)
Therefore t € (AUB)\ B —-xz € A (—-/)
Therefore (AUB)\ B) C A (def of C)
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Explanations for each Step

Let A and B be arbitrary sets. (V-)
Let = be an element of (AU B) \ B (temporary assumption)
So(re AVxe B)A—-xz € B (equivalent proposition)
Therefore x € A (P follows from (P V Q) A Q)
Therefore t € (AUB)\ B —-xz € A (—-/)
Therefore (AUB)\ B) C A (def of C)

Concerning forward and backwards reasoning, one may look at it as
follows: we first construct the derivation step at the root of the proof
tree (V-/), and then we jump to a leaf (by making the temporary
assumption) and work downwards from there.
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Definition of C

{x;liel} CA=Ve.x e{x;liecl} —-x €A

follows from the definition of C.
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Details of Logical Form

We want to show

Ve.xe{xjliel} Dz e A=Va. (Fielx=x;) -z €A

ZEE{Q%’ZEI}
re{yldi.ie INy =x;}
.1 el Nz =x;

el .x=ux

(def. of notation)
compr-1
(Sorted quantification)
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Intuition for Indexed Sets

It may be helpful to pronounce both forms out loud in natural language
to get an intuitive feeling that they are equivalent.
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Proof

Want to prove

Ve (Fiel.x=x,) Dz €A) - (Vieclx;, €A
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Proof

Want to prove

Ve (Fiel.x=x,) Dz €A) - (Vieclx;, €A

® —

Let ¢ € I be arbitrary. Now from assumption (for the instance x;) we
have (37 € I.z; = x;) — x; € A. But premise is true for i = j, so
x; € A.
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Proof

Want to prove

Ve (Fiel.x=x,) Dz €A) - (Vieclx;, €A

o —
Let ¢ € I be arbitrary. Now from assumption (for the instance x;) we
have (37 € I.x; = x;) — x; € A. But premise is true for ¢ = j, so
x; € A.

[ <

Let x be arbitrary and assume 3¢ € I.x = x;. So for some ¢ € I, we
have z = x;. Now Vi € [.z; € A. Hence x € A.

“—" In more Detail: Want to prove

Ve (diel.x=x,) € A) - (Viclx, €A
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Proof

Want to prove

Ve (Fiel.x=x,) Dz €A) - (Vieclx;, €A

o —
Let ¢ € I be arbitrary. Now from assumption (for the instance x;) we
have (37 € I.x; = x;) — x; € A. But premise is true for ¢ = j, so
x; € A.

[ <

Let x be arbitrary and assume 3¢ € I.x = x;. So for some ¢ € I, we
have z = x;. Now Vi € [.z; € A. Hence x € A.

“—" In more Detail: Want to prove

Ve (diel.x=x,) € A) - (Viclx, €A
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We show Vi € I.x; € A assuming Vx.(3t € [.x = x;) — x € A.

So we show that for arbitrary ¢ € I, assuming
Ve (diel.x =x;) > x € A, we have z; € A. So let ¢ € I be arbitrary.

Since we have Vx.(3t € [.x = x;) — x € A, by rule V-E we can
specialize to (3j € I.x; = z;) — x; € A. But premise (35 € [.z; = x,)
Is true for ¢ = 7, and so x; € A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using
Isabelle.

<" In more Detail: Want to prove

Ve (dielx=x,) mz€A) - (Viclx, €A
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We show Vi € I.x; € A assuming Vx.(3t € [.x = x;) — x € A.

So we show that for arbitrary ¢ € I, assuming

Ve (diel.x =x;) > x € A, we have z; € A. So let ¢ € I be arbitrary.
Since we have Vx.(3t € [.x = x;) — x € A, by rule V-E we can
specialize to (3j € I.x; = z;) — x; € A. But premise (35 € [.z; = x,)
Is true for ¢ = 7, and so x; € A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using
Isabelle.

<" in more Detail: Want to prove
Ve (dielx=x,) mz€A) - (Viclx, €A

We show Vx.(di € [.x = x;) —» x € A, assuming Vi € [.x; € A.
So we show that for arbitrary x, assuming Vi € I.x; € A, we have
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(Fiel.x =x;) - x € A. So let x be arbitrary.

Toshow (die [.x =x;) — x € A, assume Ji € I.x = x;. So for some
v € I, we have £ = z;. Now by our earlier assumption Vi € I.x; € A,
and so it follows that € A. thus we have shown x € A under the
assumption (3¢ € I.x = x;), thus we have shown

(Fi € I.x =x;) — x € A, which is what was to be proven.

This proof could be made more formal by drawing a proof tree or using
Isabelle.
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Families

The word family is sometimes used for a function that maps elements of
an index-set (e.g. natural numbers) to sets.
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Collections and Sets

We speak of collection of all sets in order to avoid a definitional circle
(this is the traditional way to proceed).

In practice, we have “sets of sets” in set theory, and even “sets of all
sets’, which will lead to certain problems. . .
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Logical Characterization

Recall R := {A|A & A} and recall the notion of logical form.

Let A be arbitrary (for the formal reasoning applied here, arbitrary
means: it could be a set, a number, a dog, the pope, anything
whatsoever).

By the rules for set comprehension, we can prove

Ac{AlA¢g A} - AZAand Ag A— Aec {A|A & A}, and so by
definition of «», we have A € R+ A &€ A, and since A was arbitrary, by
V-1, we have VA. (A€ R+~ A ¢ A).
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What does this Tell us about Sets?

It tells us that there can be no such thing as the set of all sets.

The fundamental flaw of naive set theory is that sets and predicates are

arbitrarily mutual dependent. Ways out of this dilemma are:

1. constraining the comprehension on a hierarchy of sets (—
Zermelo-Frankel-Set-Theory),

2. typing set expressions and ruling out “circular” constructs such as
r € x (— Higher-order Logic), or

3. contraining the mutual dependencies to “monotonic” ones; sets can
be defined via sets if the result “grows”, which rules out the — in
Russels antinomy (— Domain Theory).
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True

Assume that T is syntactic sugar for a proposition that is always true,
say | = 1L — L. We have not introduced this, but it is convenient.

So semantically, we have I 4(T) =1 for all I 4.
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A Strange Set Comprehension

Recall that a set comprehension has the form {x|P(z)}, where P(x) is a
formula usually containing x.

The set comprehension U := {x | T} is strange since T does not contain
x.

But by the introduction rule for set comprehensions, this means that

x € U for any x. Thus in particular, U € U.
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Higher-Order Logic

Higher-order logic is a solution to the dilemma presented by Russell's

paradox.

It is a surprisingly simple formalism which can be extended
conservatively: this means that it can be ensured that the extensions
cannot compromise the truth or falsity of statements that were already

expressible before the extension.
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