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Overview
• We have studied reasoning in given theories

Labs used predeveloped .thy files.

• How does one encode their own theories? Issues include:
◦ Metalogic: formalism for formalizing theories

◦ Pragmatics: how to use such a metalogic

• The next two lectures will examine:
◦ Representing syntax using simple types

◦ Representing proofs using dependent types

• We will be formal

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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What is the Problem?

?????

Linear Logic

PRA

Lambda−calculus

HOL

Non−monotonic Logics

Hoare Logic

FOL

K, T,  S4,  S5,  S257, ...

Intuitionistic Logic

Type Theory

Hilbert Presentations, Natural Deduction, Sequent Calculus, ...

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Solutions?
• Implement individually

+/− employment for thousands!

• Embed in a framework logic

+ Implement ‘core’ only once

+ Shared support for automation

+ Conceptual framework for exploring what a logic is

+/− Meta-layer between user and logic

− Makes assumptions about structure of logic

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Overview — Encodings in Type Theory
• The λ-Calculus as programming language

f(x) = g(x, 3)  f = λx. g x 3

• Simple types classify syntax (o = type of Propositions)

⊥  False ∈ o

∧  And ∈ o→ o→ o

∀  All ∈ (i→ o)→ o

• Dependent types classify rules: pr:o→ Type

A ∧B

A
 andel ∈ Πx : o.Πy : o. pr(and x y)→ pr(x)

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Overview (cont.)
• Judgments as Types (syntax in this lecture)

··· P
` φ

 pP q ∈ pr(pφq)

◦ Models syntax: φ ∈ Prop iff pφq ∈ o

◦ Models provability: `L φ iff `TT pr(pφq)

◦ Models proofs: P iff pPq

• Correctness of encodings: faithfulness and adequacy

Requires study of metatheory of metalogic

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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The Untyped λ-Calculus

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Untyped λ-Calculus

Conventional λ-Calculus

Declaration: f(x) = g(x, 3)  f = λx. g x 3
Application: f(5) (λx. g x 3)(5)
Reduction: g(x, 3)[x← 5] (g x 3)[x← 5]
Result: g(5, 3) g 5 3

We will use the (typed) λ-calculus to represent the syntax

and proofs of deductive systems.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Syntax
(x ∈ Var , c ∈ Const)

e ::= x | c | (ee) | (λx. e)

The objects generated by this grammar are called λ-terms or

simply terms.

Conventions: iterated λ & left-associated application

(λx. (λy. (λz. ((xz)(yz))))) ≡ (λxyz. ((xz)(yz)))

≡ λxyz. xz(yz)

We may take further syntactic liberties, e.g., λx. x + 5

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Substitution
• Reduction based on substitutions

(λx. g x 3)(5) = (g x 3)[x← 5] = g 5 3

• Must respect free and bound variables,

(λx. x(λx. xy))(e) = ((x(λx. xy))[x← e] = e(λx. xy)

• Same problems as with quantifiers

∀x. (P (x) ∧ ∃x.Q(x, y))

P (e) ∧ ∃x.Q(x, y)
∀-E

∀x. (P (x) ∧ ∃y. Q(x, y))

P (y) ∧ ∃z. Q(y, z)
∀-E

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) :=

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) :=

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) := ∅ = FV (c)
FV (MN) :=

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) := ∅ = FV (c)
FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)
FV (λx.M) :=

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Bound, Free, Binding Occurrences
Recall the notions of bound, free, and binding occurrences of

variables in a term. Same thing here:

λ-calculus FOL

FV (x) := {x} = FV (x)
FV (c) := ∅ = FV (c)
FV (MN) := FV (M) ∪ FV (N) = FV (M ∧N)
FV (λx.M) := FV (M) \ {x} = FV (∀x.M)

Example: FV (xy(λyz. xyz)) = {x, y}

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Definition of Substitution
M [x← N ] means substitute N for x in M

1. x[x← N ] =
2. a[x← N ] =
3. (PQ)[x← N ] =
4. (λx. P )[x← N ] =
5. (λy. P )[x← N ] =

6. (λy. P )[x← N ] =

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Definition of Substitution
M [x← N ] means substitute N for x in M

1. x[x← N ] = N

2. a[x← N ] = a if a is a constant or variable other than x

3. (PQ)[x← N ] = (P [x← N ]Q[x← N ])
4. (λx. P )[x← N ] = λx. P

5. (λy. P )[x← N ] = λy. P [x← N ] if y 6= x and

y 6∈ FV (N)
6. (λy. P )[x← N ] = λz. P [y ← z][x← N ] if y 6= x and

y ∈ FV (N) where z is a variable such that z 6∈ FV (NP )

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Definition of Substitution
M [x← N ] means substitute N for x in M

1. x[x← N ] = N

2. a[x← N ] = a if a is a constant or variable other than x

3. (PQ)[x← N ] = (P [x← N ]Q[x← N ])
4. (λx. P )[x← N ] = λx. P

5. (λy. P )[x← N ] = λy. P [x← N ] if y 6= x and

y 6∈ FV (N)
6. (λy. P )[x← N ] = λz. P [y ← z][x← N ] if y 6= x and

y ∈ FV (N) where z is a variable such that z 6∈ FV (NP )
Cases similar to those for quantifiers: λ binding is ‘generic’.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Substitution: Example

(x(λx. xy))[x← λz. z]

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Substitution: Example

(x(λx. xy))[x← λz. z] 3= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Substitution: Example

(x(λx. xy))[x← λz. z] 3= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy

(λx. xy)[y ← x]

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Substitution: Example

(x(λx. xy))[x← λz. z] 3= x[x← λz. z](λx. xy)[x← λz. z]
1,4
= (λz. z)λx. xy

(λx. xy)[y ← x] 6= λz. ((xy)[x← z][y ← x])
3,1,2
= λz. (zy[y ← x])

3,2,1
= λz. zx

In the last example, clause 6 avoids capture, i.e., λx. xx.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Reduction: Intuition
Reduction is the notion of “computing”, or “evaluation”, in

the λ-calculus.

f x = x + 5  f = λx. x + 5
f 3 = 3 + 5  (λx. x + 5)(3)→β (x + 5)[x← 3] = 3 + 5

β-reduction replaces a parameter by an argument.

This should propagate into contexts, e.g.

λx.((λx. x + 5)(3))→β λx.(3 + 5).

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Reduction: Definition
• β-reduction: (λx.M)N →β M [x← N ]
• Rules for contraction (of redices) in contexts:

M →β M ′

NM →β NM ′

M →β M ′

MN →β M ′N

M →β M ′

λz.M →β λz.M ′

• Reduction is reflexive-transitive closure

M →β N

M →∗β N M →∗β M

M →∗β N N →∗β P

M →∗β P

• A term without redices is in β-normal form.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Reduction: Examples

(λx. λy. g x y)a b→β

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b

Shows Currying

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b

Shows Currying

(λx. xx)(λx. xx)→β
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b

Shows Currying

(λx. xx)(λx. xx)→β (λx. xx)(λx. xx)→β . . .

Shows divergence
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Reduction: Examples

(λx. λy. g x y)a b→β (λy. (g a y))b→β g a b

So (λx. λy. g x y)a b→∗β g a b

Shows Currying

(λx. xx)(λx. xx)→β (λx. xx)(λx. xx)→β . . .

Shows divergence

But (λxy. y)((λx. xx)(λx. xx))→β λy. y

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Conversion
• β-conversion: “symmetric closure” of β-reduction

M →∗β N

M =β N

M =β N

N =β M

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Conversion
• β-conversion: “symmetric closure” of β-reduction

M →∗β N

M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicitly)

λx.M =α λz.M [x← z] where z 6∈ FV (M)

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Conversion
• β-conversion: “symmetric closure” of β-reduction

M →∗β N

M =β N

M =β N

N =β M

• α-conversion: bound variable renaming (usually implicitly)

λx.M =α λz.M [x← z] where z 6∈ FV (M)

• η-conversion: for normal-form analysis

M =η λx. (Mx) if x 6∈ FV (M)

reflects an extensional equality on functions.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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λ-Calculus Meta-Properties
Confluence (equivalently, Church-Rosser): reduction is

order-independent.

For all M,N1, N2, if M →∗β N1 and M →∗β N2, then exists a

P where N1→∗β P and N2→∗β P .

P

N1 N2

M

J
J

J
J

J
J

JĴ


















�


















�

J
J

J
J

J
J

JĴ

∗ ∗

∗ ∗
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Uniqueness of Normal Forms
Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Uniqueness of Normal Forms
Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Uniqueness of Normal Forms
Corollary of the Church-Rosser property:

If M →∗β N1 and M →∗β N2 where N1 and N2 in normal

form, then N1 =α N2.

(λxy. y)((λx. xx)a)→β (λxy. y)(aa)→β λy. y

(λxy. y)((λx. xx)a)→β λy. y

N.B. As a computational formalism, the λ-calculus can

represent all computable functions.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


The Simply Typed λ-Calculus (λ→) 335

The Simply Typed λ-Calculus (λ→)
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Simply Typed λ-Calculus — Syntax
• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Simply Typed λ-Calculus — Syntax
• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N , N → N , (N → N )→ N , N → N → N

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Simply Typed λ-Calculus — Syntax
• Syntax for types (B a set of base types, T ∈ B)

τ ::= T | τ → τ

Examples: N , N → N , (N → N )→ N , N → N → N
• Syntax for (raw) terms: λ-calculus augmented with types

e ::= x | c | (ee) | (λxτ . e)

(x ∈ Var , c ∈ Const)

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Signatures and Contexts
Generally (in various logic-related formalisms) a signature

defines the “fixed” symbols of a language, and a context

defines the “variable” symbols of a language.
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Signatures and Contexts
Generally (in various logic-related formalisms) a signature

defines the “fixed” symbols of a language, and a context

defines the “variable” symbols of a language. In λ→,

• a signature Σ is a sequence (c ∈ Const)

Σ ::= 〈 〉 | Σ, c : τ

• a context Γ is a sequence (x ∈ Var)

Γ ::= 〈 〉 | Γ, x : τ

What’s the difference to signatures you have seen so far?

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Type Assignment Calculus
We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ
and a context Γ. For example

Γ `Σ c x : σ

where Σ = x : τ and Γ = c : τ → σ.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)
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Type Assignment Calculus
We now define type judgements:“a term has a type” or “a

term is of a type”. Generally this depends on a signature Σ
and a context Γ. For example

Γ `Σ c x : σ

where Σ = x : τ and Γ = c : τ → σ.

We usually leave Σ implicit and write ` instead of `Σ.

If Γ is empty it is omitted.
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Type Assignment Calculus: Rules

c : τ ∈ Σ
Γ ` c : τ

assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs
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Type Assignment Calculus: Rules

c : τ ∈ Σ
Γ ` c : τ

assum Γ, x : τ,∆ ` x : τ hyp

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs

Note analogy to minimal logic over →.

β-reduction defined as before, has subject reduction property

and is strongly normalizing.
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Example 1

` λxσ. λyτ . x :
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Example 1

` λxσ. λyτ . x : σ → (τ → σ)
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Example 1

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Example 1

x : σ ` λyτ . x : τ → σ

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Example 1

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Example 1

x : σ, y : τ ` x : σ

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


The Simply Typed λ-Calculus (λ→) 340

Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs
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Example 1

x : σ, y : τ ` x : σ
hyp

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types!
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Example 1

x : σ, y : τ ` x : σ

x : σ ` λyτ . x : τ → σ
abs

` λxσ. λyτ . x : σ → (τ → σ)
abs

Note the use of schematic types!

Also note that applications of hyp are usually not explicitly

marked in proof.
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Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x :
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Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
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Example 2

Γ = f : σ → σ → τ, x : σ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 2

Γ = f : σ → σ → τ, x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

f : σ → σ → τ ` λxσ. f x x : σ → τ
abs

` λfσ→σ→τ . λxσ. f x x : (σ → σ → τ)→ σ → τ
abs
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Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f x x : τ
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Example 3

Σ = f : σ → σ → τ

Γ = x : σ

f : σ → σ → τ ∈ Σ
Γ ` f : σ → σ → τ

assum

Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant.
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Example 3

Σ = f : σ → σ → τ

Γ = x : σ

Γ ` f : σ → σ → τ Γ ` x : σ

Γ ` f x : σ → τ
app

Γ ` x : σ

Γ ` f x x : τ
app

Note that this time, f is a constant.

We will often suppress applications of assum.
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Example 4: First-Order Syntax within λ→

• Propositional logic

P ::= x | ¬P | P ∧ P | P → P . . .

• Programming languages/algebraic specification

datatype Prop = VarInject of Variable | not of Prop

| and of Prop*Prop | imp of Prop*Prop

• λ→ approach
◦ Type declarations for context B = {o}
◦ Signature types constants:

Σ = {not : o→ o, and : o→ o→ o, imp : o→ o→ o}
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◦ Context types propositional variables
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Example 4: First-Order Syntax within
λ→(cont.)

• Example: a : o ` imp(not a)a : o

a : o ` imp : o→ o→ o

a : o ` not : o→ o a : o ` a : o

a : o ` not a : o

a : o ` imp(not a) : o→ o a : o ` a : o

a : o ` imp(not a)a : o
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• Non example: a : o ` not(imp a)a : o

a : o ` not : o→ o

a : o ` imp : o→ o→ o a : o,` a : o

a : o ` imp a : o→ o

???

No proof possible! (requires analysis of normal forms)
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Example 5: Encoding Binding in FOL
• This also works for languages with quantifiers !

Terms T ::= x | 0 | sT | T + T | T × T

Formulae F ::= T = T | ¬F | F ∧ F | . . .

∀x. F | ∃x. F

• Type declarations for context B = {i, o}
• Signature Σ = ΣT ∪ ΣP ∪ ΣQ:

ΣT = {0 : i, s : i→ i, plus : i→ i→ i, times : i→ i→ i}
ΣP = {eq : i→ i→ o, not : o→ o, and : o→ o→ o, . . .}
ΣQ = {all : (i→ o)→ o, exists : (i→ o)→ o}
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Example 5: Encoding Binding in FOL (cont)

• Faithfulness/adequacy: terms and formulae represented by

(canonical) members of i and o

0 + s0 ⇔ plus 0 (s0)
∀x. x = x ⇔ all(λxi. eq x x)
∀x.∃y.¬(x + x = y) ⇔ all(λxi. exists(λyi. not (eq (plus x x) y)))
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• Example derivation

` all : (i→ o)→ o

x : i ` eq : i→ i→ o x : i ` x : i

x : i ` eq x : i→ o x : i ` x : i

x : i ` eq x x : o

` λxi. eq x x : i→ o

` all(λxi. eq x x) : o
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More Detailed Explanations
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3 + 5 = 8?
As you might guess, the formalism of the λ-calculus is not directly

related to usual arithmetic and so it is not built into this formalism that

3 + 5 should evaluate to 8. However, it may be a reasonable choice,

depending on the context, to extend the λ-calculus is this way, but this is

not our concern at the moment.
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Var and Const
Similarly as for first-order logic, a language of the untyped λ-calculus is

characterized by giving a set of variables and a set of constants.

One can think of Const as a signature.

Note that Const could be empty.

Note also that the word constant has a different meaning in the

λ-calculus from that of first-order logic. In both formalisms, constants

are just symbols.

In first-order logic, a constant is a special case of a function symbol,

namely a function symbol of arity 0.

In the λ-calculus, one does not speak of function symbols. In the

untyped λ-calculus, any λ-term (including a constant) can be applied to

another term, and so any λ-term can be called a “unary function”. A

constant being applied to a term is something which would contradict
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the intuition about constants in first-order logic. So for the λ-calculus,

think of constant as opposed to a variable, an application, or an

abstraction.
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How do We Call those Terms?
A λ-term can either be

• a variable (case x), or

• a constant (case c), or

• an application of a λ-term to another λ-term (case (ee)), or

• an abstraction over a variable x (case (λx. e)).
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Backus-Naur Form
A notation like

e ::= x | c | (ee) | (λx. e)
τ ::= T | τ → τ

e ::= x | c | (ee) | (λxτ . e)
P ::= x | ¬P | P ∧ P | P → P . . .

for specifying syntax is called Backus-Naur form (BNF) for expressing

grammars. For example, the first BNF-clause reads: a λ-term can be

a variable, or

a constant, or

a λ-term applied to a λ-term, or

a λ-abstraction, which is a λ-term of the form λx. e, where e is a λ-term.

The BNF is a very common formalism for specifying syntax, e.g., of
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programming languages. See here or here.
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(λ-)Terms
So just like first-order logic, the λ-calculus has a syntactic category called

terms. Bit the word “term” has a different meaning for the λ-calculus

than for first-order logic, and so one can say λ-term for emphasis.

Note that at this stage, we have no syntactic category called “formula”

for the λ-calculus.
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λ-Calculus: Notational Conventions
We write λx1x2 . . . xn.e instead of λx1.(λx2.(. . . e) . . .).
e1 e2 . . . en is equivalent to (. . . (e1 e2) . . . en) . . ., not (e1(e2 . . . en) . . .).
Note that this is in contrast to the associativity of logical operators.

There are some good reasons for these conventions.
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Infix Notation

Strictly speaking, λx. x + 5 does not adhere to the definition of syntax of

λ-terms, at least if we parse it in the usual way: + is an infix constant

applied to arguments x and 5.

If we parse x + 5 as ((x+)5), i.e., x applied to (the constant) +, and the

resulting term applied to (the constant) 5, then λx. x + 5 would indeed

adhere to the definition of syntax of λ-terms, but of course, this is

pathological and not intended here.

It is convenient to allow for extensions of the syntax of λ-terms, allowing

for:

• application to several arguments rather than just one;

• infix notation.

Such an extension is inessential for the expressive power of the
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λ-calculus. Instead of having a binary infix constant + and writing

λx. x + 5, we could have a constant plus according to the original syntax

and write λx. ((plus x) 5) (i.e., write + in a Curryed way).
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Reduction
Reduction is the notion of “computing”, or “evaluation”, in the

λ-calculus.
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Notations for Substitutions
Here we use the notation e[x← t] for the term obtained from e by

replacing x with t. There is also the notation e[t/x], and confusingly,

also e[x/t]. We will attempt to be consistent within this course, but be

aware that you may find such different notations in the literature.
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λ Binding Is ‘Generic’
Recall the definition of substitution for first-order logic.

We observe that binding and substitution are some very general

concepts. So far, we have seen four binding operators: ∃, ∀ and λ, and

set comprehensions. The λ operator is the most generic of those

operators, in that it does not have a fixed meaning hard-wired into it in

the way that the quantifiers do. In fact, it is possible to have it as the

only operator on the level of the metalogic. We will see this later.
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Avoiding Capture
If it wasn’t for clause 6, i.e., if we applied clause 5 ignoring the

requirement on freeness, then (λx. xy)[y ← x] would be λx. xx.
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Parameters and Arguments
In the λ-term (λx.M)N , we say that N is an argument (and the

function λx.M is applied to this argument), and every occurrence of x in

M is a parameter (we say this because x is bound by the λ).

This terminology may be familiar to you if you have experience in

functional programming, but actually, it is also used in the context of

function and procedure declarations in imperative programming.
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Propagation into Contexts
In

λx.((λx. x + 5)(3)),

the underlined part is a subterm occurring in a context. β-reduction

should be applicable to this subterm.
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Like a Proof System
As you see, β-reduction is defined using rules (two of them being axioms,

the rest proper rules) in the same way that we have defined proof

systems for logic before. Note that we wrote the first axiom defining

β-reduction without a horizontal bar.
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Redex
In a λ-term, a subterm of the form (λx.M)N is called a redex (plural

redices). It is a subterm to which β-reduction can be applied.
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Currying
You may be familiar with functions taking several arguments, or

equivalently, a tuple of arguments, rather than just one argument.

In the λ-calculus, but also in functional programming, it is common not

to have tuples and instead use a technique called Currying (Schönfinkeln

in German). So instead of writing g(a, b), we write g a b, which is read as

follows: g is a function which takes an argument a and returns a

function which then takes an argument b.

Recall that application associates to the left, so g a b is read (g a) b.

Currying will become even clearer once we introduce the typed

λ-calculus.
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Divergence
We say that a β-reduction sequence diverges if it is infinite.

Note that for (λxy. y)((λx. xx)(λx. xx)), there is a finite β-reduction

sequence

(λxy. y)((λx. xx)(λx. xx))→β λy. y

but there is also a diverging sequence

(λxy. y)((λx. xx)(λx. xx))→β (λxy. y)((λx. xx)(λx. xx))→β . . .
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α-Conversion
α-conversion is usually applied implicitly, i.e., without making it an

explicit step. So for example, one would simply write:

λz. z =β (λx. xx)λr. r
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η-Conversion
η-conversion is defined as

M =η λx. (Mx) if x 6∈ FV (M)

It is needed for reasoning about normal forms.

g x =η λy. g x y reflects g x b =β (λy. g x y)b

More specifically: if we did not have the η-conversion rule, then g x and

λy. g x y would not be “equivalent” up to conversion. But that seems

unreasonable, because they behave the same way when applied to b.

Applied to b, both terms can be converted to g x b. This is why it is

reasonable to introduce a rule such that g x and λy. g x y are

“equivalent” up to conversion.
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Confluence and Church-Rosser
A reduction → is called confluent if

for all M,N1, N2, if M →∗ N1 and M →∗ N2, then there exists a P

where N1→∗ P and N2→∗ P .

A reduction is called Church-Rosser if

for all N1, N2, if N1
∗↔ N2, then there exists a P where N1 →∗ P

and N2→∗ P .

Here, ←:= (→)−1 is the inverse of →, and ↔:=← ∪ → is the

symmetric closure of →, and
∗↔:= (↔)∗ is the reflexive transitive

symmetric closure of →.

So for example, if we have
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M1→M2→M3→M4←M5←M6→M7←M8←M9

then we would write M1
∗↔M9.

Confluence is equivalent to the Church-Rosser property [BN98, page 10].
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λ-Calculus Metaproperties
By metaproperties, we mean properties about reduction and conversion

sequences in general.
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Turing Completeness

The untyped λ-calculus is Turing complete. This is usually shown not by

mimicking a Turing machine in the λ-calculus, but rather by exploiting

the fact that the Turing computable functions are the same class as the

µ-recursive functions. In a lecture on theory of computation, you have

probably learned that the µ-recursive functions are obtained from the

primitive recursive functions by so-called unbounded minimalization,

while the primitive recursive functions are built from the 0-place zero

function, projection functions and the successor function using

composition and primitive recursion [LP81].

The proof that the untyped λ-calculus can compute all µ-recursive

functions is thus based on showing that each of the mentioned

ingredients can be encoded in the untyped λ-calculus. While we are not

going to study this, one crucial point is that it should be possible to
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encode the natural numbers and the arithmetic operations in the

untyped λ-calculus.
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Term Language
We also say that we have defined a term language. A particular language

is given by a signature, although for the untyped λ-calculus this is simply

the set of constants Const .
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Type Language
We can say that we define a type language, i.e., a language consisting of

types. A particular type language is characterized by a giving a set of

base types B. One might also call B a type signature.

A typical example of a set of base types would be {N , bool}, where N
represents the natural numbers and bool the Boolean values ⊥ and >.

All that matters is that B is some fixed set “defined by the user”.
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Types: Intuition
The type N → N is the type of a function that takes a natural number

and returns a natural number.

The type (N → N )→ N is the type of a function that takes a function,

which takes a natural number and returns a natural number, and returns

a natural number.
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Types Are Right-Associative
To save parentheses, we use the following convention: types associate to

the right, so N → N → N stands for N → (N → N ).
Recall that application associates to the left. This may seem confusing

at first, but actually, it turns out that the two conventions concerning

associativity fit together very neatly.
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Raw Terms
In the context of typed versions of the λ-calculus, raw terms are terms

built ignoring any typing conditions. So raw terms are simply terms as

defined for the untyped λ-calculus, possibly augmented with type

superscripts.
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Augmenting with Types
So far, this is just syntax!

The notation (λxτ . e) simply specifies that binding occurrences of

variables in simple type theory are tagged with a superscript, where the

use of the letter τ makes it clear (in this particular context) that the

superscript must be some type, defined by the grammar we just gave.
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Var and Const
Var and Const are the sets of variables and constants, respectively, as

for the untyped λ-calculus.
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Sequences
A sequence is a collection of objects which differs from sets in that a

sequence contains the objects in a certain order, and there can be

multiple occurrences of an object.

We write a sequence containing the objects o1, . . . , on as 〈o1, . . . , on〉, or

sometimes simply o1, . . . , on.

If Ω is the sequence o1, . . . , on, then we write Ω, o for the sequence

〈o1, . . . , on, o〉 and o,Ω for the sequence 〈o, o1, . . . , on〉.
A empty sequence is denoted by 〈 〉.
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Type Binding
We call an expression of the form x : τ or c : τ a type binding.

The use of the letter τ makes it clear (in this particular context) that the

superscript must be some type, defined by the grammar we just gave.
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Signatures in Various Formalisms
For propositional logic, we did not use the notion of signature, although

we mentioned that strictly speaking, there is not just the language of

propositional logic, but rather a language of propositional logic which

depends on the choice of the variables.

In first-order logic, a signature was a pair (F ,P) defining the function

and predicate symbols, although strictly speaking, the signature should

also specify the arities of the symbols in some way. Recall that we did not

bother to fix a precise technical way of specifying those arities. We were

content with saying that they are specified in “some unambiguous way”.

In sorted logic, the signature must also specify the sorts of all symbols.

But we did not study sorted logic in any detail.

In the untyped λ-calculus, the signature is simply the set of constants.

Summarizing, we have not been very precise about the notion of a
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signature so far, since technically speaking, it was not strictly necessary

to have this notion.

For λ→, the rules for “legal” terms become more tricky, and it is

important to be formal about signatures.

In λ→, a signature associates a type with each constant symbol by

writing c : τ .

Usually, we will assume that Const is clear from the context, and that Σ
contains an expression of the form c : τ for each c ∈ Const , and in fact,

that Σ is clear from the context as well. Since Σ contains an expression

of the form c : τ for each c ∈ Const , it is redundant to give Const
explicitly. It is sufficient to give Σ.
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Type Judgement
The expression

Γ `Σ c x : σ

is called a type judgement. It says that given the signature Σ = x : τ

and the context Γ = c : τ → σ, the term

c x has type σ or

c x is of type σ or

c x is assigned type σ.

Recall that you have seen other judgements before.
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∈ for Sequences?
Recall that Σ is a sequence. By abuse of notation, we sometimes identify

this sequence with a set and allow ourselves to write c : τ ∈ Σ.

We may also write Σ ⊆ Σ′ meaning that c : τ ∈ Σ implies c : τ ∈ Σ′.
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System of Rules
Type assignment is defined as a system of rules for deriving type

judgements, in the same way that we have defined derivability

judgements for logics, and β-reduction for the untyped λ-calculus.
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Minimal Logic over →
Recall the sequent rules of the → /∧ fragment of propositional logic.

Consider now only the → fragment. We call this fragment minimal logic

over →.

If you take the rule

Γ, x : τ,∆ ` x : τ hyp

of λ→ and throw away the terms (so you keep only the types), you

obtain essentially the rule for assumptions

Γ ` A (where A ∈ Γ)

of propositional logic.
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Likewise, if you do the same with the rule

Γ ` e : σ → τ Γ ` e′ : σ

Γ ` ee′ : τ
app

of λ→, you obtain essentially the rule

Γ ` A→ B Γ ` A
Γ ` B

→-E

of propositional logic.

Finally, if you do the same with the rule

Γ, x : σ ` e : τ

Γ ` λxσ. e : σ → τ
abs
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of λ→, you obtain essentially the rule

A,Γ ` B

Γ ` A→ B
→-I

of propositional logic.

Note that in this setting, there is no analogous propositional logic rule for

c : τ ∈ Σ
Γ ` c : τ

assum

So for the moment, we can observe a close analogy between λ→, for Σ
being empty, and the → fragment of propositional logic, which is also

called minimal logic over →.

Such an analogy between a type theory (of which λ→ is an example) and

a logic is referred to in the literature as Curry-Howard isomorphism. One
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also speaks of propositions as types [GLT89]. The isomorphism is so

fundamental that it is common to characterize type theories by the logic

they represent, so for example, one might say:

λ→ is the type theory of minimal logic over →.
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Subject Reduction
Subject reduction is the following property: reduction does not change

the type of a term, so if `Σ M : τ and M →β N , then `Σ N : τ .
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(Strongly) Normalizing β-Reduction
The simply-typed λ-calculus, unlike the untyped λ-calculus, is

normalizing, that is to say, every term has a normal form. Even more, it

is strongly normalizing, that is, this normal form is reached regardless of

the reduction order.
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An Alternative for hyp
One could also formulate hyp as follows:

x : τ ∈ Γ
Γ ` x : τ

hyp

That would be in close analogy to LF, a system not tretaed here.
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Schematic Types
In this example, you may regard σ and τ as base types (this would

require that σ, τ ∈ B), but in fact, it is more natural to regard them as

metavariables standing for arbitrary types. Whatever types you substitute

for σ and τ , you obtain a derivation of a type judgement.

This is in analogy to schematic derivations in a logic.

Note also that Σ is irrelevant for the example and hence arbitrary.
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Constants vs. Variables
In Example 3, we have f : σ → σ → τ ∈ Σ, and so f is a constant.

In Example 2, we have f : σ → σ → τ ∈ Γ, and so f is a variable.

Looking at the different derivations of the type judgement Γ ` f x x : τ

in Examples 2 and 3, you may find that they are very similar, and you

may wonder: What is the point? Why do we distinguish between

constants and variables?

In fact, one could simulate constants by variables. When setting up a

type theory or programming language, there are choices to be made

about whether there should be a distinction between variables and

constants, and what it should look like. There is a famous epigram by

Alan Perlis:

One man’s constant is another man’s variable.
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For our purposes, it is much clearer conceptually to make the distinction.

For example, if we want to introduce the natural numbers in our λ→

language, then it is natural that there should be constants 1, 2, . . .

denoting the numbers. If 1, 2, . . . were variables, then we could write

strange expressions like λ2N→N . y, so we could use 2 as a variable of

type N → N .
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(Parametric) Polymorphism
In functional programming, you will come across functions that operate

uniformly on many different types. For example, a function append for

concatenating two lists works the same way on integer lists and on

character lists. Such functions are called polymorphic.

More precisely, this kind of polymorphism, where a function does exactly

the same thing regardless of the type instance, is called parametric

polymorphism, as opposed to ad-hoc polymorphism.

In a type system with polymorphism, the notion of base type (which is

just a type constant, i.e., one symbol) is generalized to a type

constructor with an arity ≥ 0. A type constructor of arity n applied to n

types is then a type. For example, there might be a type constructor list
of arity 1, and int of arity 0. Then, int list is a type.

Note that application of a type constructor to a type is written in postfix
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notation, unlike any notation for function application we have seen.

However, other conventions exist, even within Isabelle.

See [Pau96, Tho95, Tho99] for details on the polymorphic type systems

of functional programming languages.
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Ad-hoc Polymorphism
Ad-hoc polymorphism, also called overloading, refers to functions that do

different (although usually similar) things on different types. For

example, a function ≤ may be defined as ′a′ ≤′ b′ . . . on characters and

1 ≤ 2 . . . on integers. In this case, the symbol ≤ must be declared and

defined separately for each type.

This is in contrast to parametric pomorphism, but also somewhat

different from type classes

Type classes are a way of “making ad-hoc polymorphism less

ad-hoc”[HHPW96, WB89].
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Type Classes
Type classes are a way of “making ad-hoc polymorphism less

ad-hoc”[HHPW96, WB89].

Type classes are used to group together types with certain properties, in

particular, types for which certain symbols are defined.

For example, for some types, a symbol ≤ (which is a binary infix

predicate) may exist and for some not, and we could have a type class

ord containing all types for which it exists.

Suppose you want to sort a list of elements (smaller elements should

come before bigger elements). This is only defined for elements of a type

for which the symbol ≤ exists.

Note that while a symbol such as ≤ may have a similar meaning for

different types (for example, integers and reals), one cannot say that it

means exactly the same thing regardless of the type of the argument to
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which it is applied. In fact, ≤ has to be defined separately for each type

in ord .

This is in contrast to parametric poymorphism, but also somewhat

different from ad-hoc polymorphism: The types of the symbols must not

be declared separately. E.g., one has to declare only once that ≤ is of

type (a :: ord , α).
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Polymorphic Type Language
As before, we define a type language, i.e., a language consisting of types,

and a particular type language is characterized by a giving a certain set

of symbols B. But unlike before, B is now a set of type constructors.

Each type constructor has an arity associated with it just like a function

in first-order logic. The intention is that a type constructor may be

applied to types.

Following the conventions of ML [Pau96], we write types in postfix

notation, something we have not seen before. I.e., the type constructor

comes after the arguments it is applied to.

It makes perfect sense to view the function construction arrow → as type

constructor, however written infix rather than postfix.

So the B is some fixed set “defined by the user”, but it should definitely

always include →.
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Type Substitutions
A type substitution replaces a type variable by a type, just like in

first-order logic, a substitution replaces a variable by a term.
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Syntactic Classes
A syntactic class is a class of types for which certain symbols are declared

to exist. Isabelle has a syntax for such declarations. E.g., the declaration

sort ord < term
const <= : [’a::ord, ’a] => bool

may form part of an Isabelle theory file. It declares a type class ord
which is subclass (that’s what the < means; in mathematical notation it

will be written ≺) of a class term, meaning that any type in ord is also

in term. the class term must be defined elsewhere.

The second line declares a symbol <=. Such a declaration is preceded by

the keyword const. The notation α :: ord stands for a type variable

constrained to be in class ord . So <= is declared to be of type

[α :: ord , α]⇒ bool , meaning that it takes two arguments of a type in
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the class ord and returns a term of type bool . The symbol ⇒(=>) is the

function type arrow in Isabelle. Note that the second occurrence of α is

written without :: ord . This is because it is enough to state the class

constraint once.

Note also that [α :: ord , α] => bool is in fact just another way of writing

α :: ord => α => bool , similarly as for goals.

Haskell [HHPW96] has type classes but ML [Pau96] hasn’t.
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Axiomatic Classes
In addition to declaring the syntax of a type class, one can axiomatize

the semantics of the symbols. Again, Isabelle has a syntax for such

declarations. E.g., the declaration

axclass order < ord
order refl: ’’x <= x ’’
order trans: ’’[| x <= y; y <= z |] ==> x <= z’’
...

may form part of an Isabelle theory file. It declares an axiomatic type

class order which is a subclass of ord defined above.

The next two lines are the axioms. Here, order refl and order trans
are the names of the axioms. Recall that =⇒ is the implication symbol

in Isabelle (that is to say, the metalevel implication).
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Whenever an Isabelle theory declares that a type is a member of such a

class, it must prove those axioms.

The rationale of having axiomatic classes is that it allows for proofs that

hold in different but similar mathematical structures to be done only

once. So for example, all theorems that hold for dense orders can be

proven for all dense orders with one single proof.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 413

Renaming
Whenever a rule is applied, the metavariables occurring in it must be

renamed to fresh variables to ensure that no metavariable in the rule has

been used in the proof before.

The notion fresh is often casually used in logic, and it means: this

variable has never been used before. To be more precise, one should say:

never been used before in the relevant context.
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Unification
The mechanism to instantiate metavariables as needed is called

(higher-order) unification. Unification is the process of finding a

substitution that makes two terms equal.

We will later see more formally what it is and also where it is used.
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Type Class Syntax
κ ::= ord | order | lattice | . . .

is a grammar defining what type classes are (syntactically). κ is the

non-terminal we use for “type class”. However, the grammar given here

is incomplete (there are “. . .”) and just exemplary.

So the set of type classes involved in an Isabelle theory is a finite set of

names (written lower-case), typically including ord , order , and lattice.

The grammar does not tell us what syntax is used to declare the type

classes. We have seen an example of that previously.

Basin, Wolff, and Smaus: Metalogic: The λ-Calculus; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/


More Detailed Explanations 416

Type Constructor Syntax

χ ::= bool | → | ind | list | set . . .

is a grammar defining what type constructors are (syntactically). χ is the

non-terminal we use for “type constructor”. As before, the grammar

given here is incomplete (there are “. . .”) and just exemplary.

Note also that an is used to denote the arity of a type constructor.

• list means that list is unary type constructor;

• → means that → is a binary infix type constructor.

The notation using is slightly abusive since the is not actually part of

the type constructor (and the grammar is supposed to define type

constructors). list is not a type constructor; list is a type constructor.

So the set of type constructors involved in an Isabelle theory is a finite

set of names (written lower-case) with each having an arity associated,
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typically including bool , →, and list . Note however that bool is

fundamental (since object level predicates are modeled functions taking

terms to a Boolean), and so is →, the constructor of the function space

between two types.

The grammar does not tell us what syntax is used to declare the type

constructors.
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→ as Type Constructor
In λ→, types were built from base types using a “special symbol” →.

When we generalize λ→ to a λ-calculus with polymorphism, this “special

symbol” becomes a type constructor. However, the syntax is still special,

and it is interpreted in a particular way.
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Polymorphic Types Syntax

τ ::= α | α:: κ | (τ, . . . , τ) χ (α is type variable)

is a grammar defining what polymorphic types are (syntactically). As

before, τ is the non-terminal we use for (now: polymorphic) types.

This grammar is not exemplary but generic, and it deserves a closer look.

A type variable is a variable that stands for a type, as opposed to a term.

We have not given a grammar for type variables, but assume that there

is a countable set of type variables disjoint from the set of term

variables. We use α as the non-terminal for a type variable (abusing

notation, we often also use α to denote an actual type variable).

First, note that a type variable may be followed by a class constraint :: κ

(recall that κ is the non-terminal for type classes). However, a type

variable is not necessarily followed by such a constraint, for example if
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the type variable already occurs elsewhere and is constrained in that

place. We have already seen this.

Moreover, a polymorphic type is obtained by preceding a type

constructor with a tuple of types. The arity of the tuple must be equal

to the declared arity of the type constructor.

It is not shown here that for some special type constructors, such as →,

the argument may also be written infix.
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Type Instantiation
The assumption and hypothesis rules have an assumption of the form

τ ≺ σ.

The symbol ≺ is an ordering on types, induced by the subclass ordering

≺ on type classes. τ ≺ σ means that τ is an instance of σ, and τ is in a

type class c, and σ is in a type class d, such that c ≺ d.

One can also write τ :: c and σ :: d. We have previously seen the

notation α :: c for a type variable constrained to be in class c. We

regarded the whole expression α :: c as a type, but we have also seen

that a type variable is not necessarily followed by such a constraint.

Here, τ, σ are arbitrary types, not necessarily a type variables. For a type

τ other than a type variable, the expression τ :: c must be read as an

assertion that τ is in type class c.

One can formalize precisely when the type class declarations of an
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Isabelle theory entail the assertion that a type is in a certain type class,

but we do not go into these details here.

Note that ≺ is reflexive.

Consult [HHPW96, Nip93] for details on type classes.
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Type Construction
Type construction is the problem of given a Σ, Γ and e, finding a t such

that Σ , Γ ` e : τ .

Sometimes one also considers the problem where Γ is unknown and must

also be constructed.
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Term Congruence
αβη-conversion is defined as for λ→. Given two (extended) λ-terms e

and e′, it is decidable whether e =αβη e′.
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Solutions for Unification Problems
A solution for ?X +?Y =αβη x + x is [x/?X, x/?Y ].
A solution for ?P (x) =αβη x + x is [(λy.y + y)/?P ].
A solution for f(?Xx) =αβη?Y x is [(λz.z)/?X, (λz.f z)/?Y ].
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Unification Modulo

Unification of terms e, e′ modulo αβ means finding a substitution θ for

metavariables such that θ(e) =αβ θ(e′).
Likewise, unification of terms e, e′ modulo αβγ means finding a

substitution σ for metavariables such that σ(e) =αβγ σ(e′).
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