
Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and

Burkhart Wolff

April 2005
http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Isabelle: Automation by Proof
Search

Burkhart Wolff

Isabelle: Automation by Proof Search 510

Outline of this Part
• Proof search (à la tableaux proving) and backtracking

• Making Calculi more deterministic

• Proof procedures

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 511

Proof Search and Backtracking

• Need for more automation

• Some aspects in proof construction are highly

non-deterministic:
◦ unification: which unifier to choose?

◦ resolution: where to apply a rule (which ‘subgoal’)?

◦ which rule to apply?

• How to organize proof-search technically?

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ

Goal φ will create the proof state φ =⇒ φ.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ ��
���

��* (ε⇒ η) ⇒ φ

One tactic step (apply . . .) transforms into proof state (ε⇒
η) ⇒ φ.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ ��
���

��* (ε⇒ η) ⇒ φ �
���

���* . . .

Next tactic step yields dead-end (no tactic application pos-

sible).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ ��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ

�
���

���* . . .

back(); tries an alternative successor of (ε⇒ η) ⇒ φ.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ ��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ - φ -

�
���

���* . . .

Now (ε⇒ ε) ⇒ φ is solvable using assume/atac. done/qed.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ ��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ

�
���

���* . . .

- φ -

Use undo three times to go to previous proof states.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ ��
���

��* (ε⇒ η) ⇒ φ �
���

���* . . .

HH
HHH

HHj (ε⇒ ε) ⇒ φ - φ -

Use undo three times to go to previous proof states.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ

�
���

���* . . .

��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ - φ -

Use undo three times to go to previous proof states.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

φ⇒ φ @
@

@
@

@
@

@R-

�
���

���* . . .

��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ - φ -

Use the back command to try alternative successor. . . .

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

�
���

���* . . .

��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ - φ -φ⇒ φ @
@

@
@

@
@

@R-

? ? ?

Summary:

back to try alternative successors (⇒ different unifiers).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 512

Organizing Proof Search: Idea 1
Organize proof search as a tree of theorems (thm’s).

A sketch of an exemplary proof search:

�
���

���* . . .

��
���

��* (ε⇒ η) ⇒ φ HH
HHH

HHj (ε⇒ ε) ⇒ φ - φ -φ⇒ φ @
@

@
@

@
@

@R-�

�

�

�

�

�

�

�

�

Summary:

back to try alternative successors (⇒ different unifiers).

undo to go to previous proof state.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 513

Problems with Idea 1
• Branching of the tree infinite in general (HO-unification)

• Explicit tree representation expensive in time and space

• Not very abstract

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 514

Organizing Proof Search: Idea 2
Organize proof search as a relation on theorems (thm’s)

prooftrees = P(thm× thm)

Advantage: an abstract algebra

• PT1 ◦ PT2: sequential composition (“then”)

• PT1 ∪ PT2: alternative of proof attempts (“or”)

• PT ∗ : reflexive transitive closure (“repeat ”)

• (φ⇒ φ, φ) ∈ PT ∗ ≡ “there is a proof for φ”

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 515

Problems with Idea 2
• Union ∪ is difficult to implement (needs comparison with

all previous results).

• More operational, strategic interpretations of union ∪ are

desirable (try this — then that, interleave attempts in PT1

with attempts in PT2, and so forth).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Search and Backtracking 516

Organizing Proof Search: Idea 3
Organize proof search as a function on theorems (thm’s)

type tactic = thm→ thm seq

where seq is the type constructor for infinite lists.

This allows us to have in ISAR resp. in Isabelle/ML:

• ”, ” or THEN

• ”|” or ORELSE

• ”∗” or REPEAT

• only at Isabelle/ML: INTLEAVE, BREADTHFIRST,
DEPTHFIRST, . . .

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 517

Making Calculi more Deterministic

Observation: Some rules can always be applied blindly in

backward reasoning, e.g. →-I or ∧-I.

` (ρ ∧ φ) → ψ → φ

The topmost connective is →, which asks for →-I.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 517

Making Calculi more Deterministic

Observation: Some rules can always be applied blindly in

backward reasoning, e.g. →-I or ∧-I.

ρ ∧ φ ` ψ → φ

` (ρ ∧ φ) → ψ → φ
→-I

The topmost connective is →, which asks for →-I.Again

→-I.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 517

Making Calculi more Deterministic

Observation: Some rules can always be applied blindly in

backward reasoning, e.g. →-I or ∧-I.

ρ ∧ φ, ψ ` φ
ρ ∧ φ ` ψ → φ

→-I

` (ρ ∧ φ) → ψ → φ
→-I

The topmost connective is →, which asks for →-I.Again

→-I.To decompose the assumption ρ∧ φ, use ∧-E′.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 517

Making Calculi more Deterministic

Observation: Some rules can always be applied blindly in

backward reasoning, e.g. →-I or ∧-I.

ρ, φ, ψ ` φ
ρ ∧ φ, ψ ` φ

∧-E′

ρ ∧ φ ` ψ → φ
→-I

` (ρ ∧ φ) → ψ → φ
→-I

The topmost connective is →, which asks for →-I.Again

→-I.To decompose the assumption ρ∧ φ, use ∧-E′.The proof

can be completed by assumption.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 518

Problematic Rules
Others are problematic, e.g.:

Γ ` B
A,Γ ` B

weaken
Γ ` B

Γ ` A ∨B
disjI2

Γ ` ¬¬A
Γ ` A

notnotD

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 518

Problematic Rules
Others are problematic, e.g.:

Γ ` B
A,Γ ` B

weaken
Γ ` B

Γ ` A ∨B
disjI2

Γ ` ¬¬A
Γ ` A

notnotD

But: proof rules can be tailored such that they may be

applied blindly.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 519

Example: ∧-E′

First approach: getting rid of critical rules by fusing them

into others.

Consider:
A,B,Γ ` C
A ∧B,Γ ` C

∧-E′

It is instructive to reconsider the derivation of ∧-E′ which

uses weakining inside.

The method erule (corresponding to etac) has the effect

of “internalizing” weakening.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 520

Example: contraposXX
Following the fusion approach, we also get alternative

versions of contraposition rules:

B,Γ ` A
¬A,Γ ` ¬B

contraposNN
¬B,Γ ` A
¬A,Γ ` B

contraposNP

B,Γ ` ¬A
A,Γ ` ¬B

contraposPN
B,Γ ` A

¬A,Γ ` ¬B
contraposPP

Thus, with contraposNN, we incorporate the elimination of

superfluous negations. contraposPN is useful but can not be

applied “blindly” (non-termination).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 521

Example: ∧-E′

Second approach: Use only rules that transform the proof

state equivalently (only use “safe rules” or “analytic

tableaux rules”).

Instead of
Γ ` B

Γ ` A ∨B
disjI2

we use:

¬B,Γ ` A
Γ ` A ∨B

disjCI

which does not lose information and avoids backtracking.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 522

Adapting Rules for Automated Proof Search
Based on disjCI and the contraposXX-rules, the following

example is deterministic:

` (α→ β) ∨ (β → α)
disjCI1

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 522

Adapting Rules for Automated Proof Search
Based on disjCI and the contraposXX-rules, the following

example is deterministic:

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
disjCI1

Neither ∨-IL nor ∨-IR would work here. Uses classical logic.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 522

Adapting Rules for Automated Proof Search
Based on disjCI and the contraposXX-rules, the following

example is deterministic:

¬(α→ β), β ` α
contraposNP

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
disjCI1

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 522

Adapting Rules for Automated Proof Search
Based on disjCI and the contraposXX-rules, the following

example is deterministic:

¬α, α, β ` β
¬α, β ` α→ β

→-I

¬(α→ β), β ` α
contraposNP

¬(α→ β) ` β → α
→-I

` (α→ β) ∨ (β → α)
disjCI1

Principle: Emulate sequent calculus with derived rules.

The safe, but non-terminating contraposNP can be avoided

by fusing it with all logical junctors.(In this case: →).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 523

Handling Quantifiers
Can derive ∀-E′ (≡ allE) using ∀-E (≡ spec):

∀x.A(x)

[A(x)]
....
B

B
∀-E′

What is the difference to ∃-E?

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 523

Handling Quantifiers
Can derive ∀-E′ (≡ allE) using ∀-E (≡ spec):

∀x.A(x)

[A(x)]
....
B

B
∀-E′

What is the difference to ∃-E?

Problem: ∀x.A(x) may still be needed.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Making Calculi more Deterministic 523

Handling Quantifiers
Can derive ∀-E′ (≡ allE) using ∀-E (≡ spec):

∀x.A(x)

[A(x),∀x.A(x)]
....
B

B
∀-dupE

What is the difference to ∃-E?

Problem: ∀x.A(x) may still be needed.

Principle: Introduce duplicating rules. Turns search infinite!

Check out allE and all dupE in IFOL!

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Procedures (Simplified) 524

Proof Procedures (Simplified)

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Procedures (Simplified) 525

Proof Procedures (Simplified)
Tactics in Isabelle are performed in order:

1. DEPTHSOLVE(
REPEAT(rtac safe I rules ORELSE etac safe E rules))

2. canonize: propagate “x = t” throughout subgoal

3. rtac unsafe I rules ORELSE etac unsafe E rules
4. atac

In ISAR, rtac is rule,etac is erule, . . .

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Procedures (Simplified) 526

Combined Proof Search Tactics in ISAR
On the ISAR-level, the syntax for commands accessing the

“provers” looks as follows:

CHAPTER 4. GENERIC TOOLS AND PACKAGES 70

Automated methods

blast : method

blast : method

fast : method

best : method

safe : method

clarify : method

blast
²
±

¯
°̄

± !
²
±

¯
°

²

°

¯

±nat

²
±

¯
°

²

°

²

± clamod

¯

°

blast
²
±

¯
°¯

±fast
²
±

¯
°

±best
²
±

¯
°

±safe
²
±

¯
°

±clarify
²
±

¯
°

²

°

°

°

°

¯

± !
²
±

¯
°

²

°

²

± clamod

¯

°

clamod

intro
²
±

¯
°¯

±elim
²
±

¯
°

±dest
²
±

¯
°

²

°

°

!
²
±

¯
°¯

±

± ?
²
±

¯
°

²

°

°

¯

±del
²
±

¯
°

²

°

:
²
±

¯
°thmrefs

blast refers to the classical tableau prover (see blast_tac in [10, §11]). The
optional argument specifies a user-supplied search bound (default 20).

fffast, slow , best , safe, and clarify refer to the generic classical reasoner. See
fast_tac, slow_tac, best_tac, safe_tac, and clarify_tac in [10,
§11] for more information.

Any of the above methods support additional modifiers of the context
of classical rules. Their semantics is analogous to the attributes given be-
fore. Facts provided by forward chaining are inserted into the goal before
commencing proof search. The “!” argument causes the full context of as-
sumptions to be included as well.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Procedures (Simplified) 527

clamod allows for introducing new rules (thm’s) as

introduction, elimination or destruction rules. Rules

classified with bang “!” were applied earlier and more

agressively as “safe rules”.

These commands were mapped to the SML-tactics

(described in more detail in the Isabelle Reference Manual

[Pau03]).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Procedures (Simplified) 528

Safe and Unsafe Rules
On the Isabelle SML level, the rules and their classification

were maintained in the data structure claset, and accessed

by functions of type claset ∗ thm list→ claset.

Class: To add use function:

Safe introduction rules addSIs
Safe elimination rules addSEs
Unsafe introduction rules addIs
Unsafe elimination rules addEs

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Procedures (Simplified) 529

Combined Proof Search Tactics
• fast tac : claset→ int→ tactic

(safe and unsafe steps in depth-first stategy)

• best tac : claset→ int→ tactic
(safe and unsafe steps in breadth-first stategy)

• blast tac : claset→ int→ tactic
(like fast tac, but often more powerful)

More details can be found in the Isabelle Reference

Manual[Pau03].

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Summary on Automated Proof Search 530

Summary on Automated Proof Search

• Proof search can be organized as a tree of theorems.

• Calculi can be set up to facilitate proof search (although

this must be done by specialists).

• Combined with search strategies, powerful automatic

procedures arise. Can prove well-known hard problems

such as ((∃y.∀x.J(y, x) ∨ ¬J(x, x)) →
¬(∀x.∃y.∀z.J(z, y) ∨ ¬J(z, x))

• Unfortunately, failure is difficult to interpret.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 531

More Detailed Explanations

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 532

Notion
In this lecture we use both, the ISAR synatx and the “classical” ML

based syntax of Isabelle. We first denote the ISAR syntax, followed by

the ML syntax, e.g. assume/atac.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 533

Need for Automation
We have seen in the exercises that proving on a stepwise basis is very

tedious and yearns for automation.

Efficiency considerations are also important for automation. The

non-determinacy in proof search may lead to deep backtracking which

should therefore be avoided.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 534

Idea 1: A Tree of Theorems
We have seen in the previous lecture that resolution transforms a proof

state into a new proof state. Since in general, a proof state has several

successor states (states that can be obtained by one resolution step),

conceptually one obtains a tree where the children of a state are the

successors.

The essential point of idea 1 is that the tree is constructed explicitly, as

a data-structure.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 535

φ =⇒ φ?
The initial proof state is φ =⇒ φ. Isabelle will display this as

Level 1 : (1 subgoal)
φ

1. φ

Technically, the proof state is an Isabelle theorem (thm), i.e. something

which Isabelle considers as proven. The aim of a proof search in

backward proof is to transform φ =⇒ φ into φ (φ can be shown if I

assume nothing).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 536

Idea 2: A Relation on Theorems
One can look at a fragment of a tree of theorems as in idea 1, e.g.:

φ⇒ φ �
���

��* (ε⇒ η) ⇒ φ

@
@

@
@

@
@R . . .

One could say that each tactic application (with a particular rule) gives

rise to a relations on theorems. That is to say, φ and φ′ are in the

relation if φ′ is a successor proof state of φ.

This is abstract in that there is no order among the successors of a proof

state.

Also, one does not represent a tree explicitly.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 537

Sequential Composition
Given two relations between thm’s, PT1 and PT2, we define PT1 ◦ PT2

as the relation

{(φ, ψ) | there is η such that (φ, η) ∈ PT1 and (η, ψ) ∈ PT2}

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 538

Union of Relations
The union of two relations is defined as usual for sets. If PT1 and PT2

each model the application of a particular tactic, then PT1 ∪PT2 models

the application of “first tactic or second tactic”.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 539

Reflexive Transitive Closure
PT ∗ is inductively defined as the smallest set where

• (φ, φ) ∈ PT ∗ for all φ;

• if (φ, η) ∈ PT and (η, ψ) ∈ PT ∗ then (φ, ψ) ∈ PT ∗.
So if PT models the application of a particular tactic, then PT ∗ models

the application of that tactic arbitrarily many times

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 540

Idea 2: A Function on Theorems
Idea 3 differs from idea 2 in that it is less abstract, more operational.

Instead of saying that φ and φ′ are in a relation, one says that φ′ is in

the sequence returned by the tactic applied to φ. There is an order

among the successors of a proof state.

One still does not represent a tree explicitly, but by higher-order

functions that can compute the rest of a sequence step by step.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 541

Infinite Lists
For any type τ , the type τ seq (recall the notation) is the type of

(possibly) infinite lists of elements of type τ . This is of course an

abstract datatype. There should be functions to return the head and the

tail of such an infinite list.

An abstract datatype is a type whose terms cannot be represented

explicitly and accessed directly, but only via certain functions for that

type.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 542

Tacticals
• THEN

• ORELSE

• REPEAT

• INTLEAVE, BREADTHFIRST, DEPTHFIRST, . . .

are called tacticals.

Tacticals are operations on tactics. They play an important role in

automating proofs in Isabelle. The most basic tacticals are THEN and

ORELSE. Both of those tacticals are of type tactic ∗ tactic→ tactic
and are written infix: tac1 THEN tac2 applies tac1 and then tac2, while

tac1 ORELSE tac2 applies tac1 if possible and otherwise applies tac2

[Pau03, Ch. 4].

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 543

∧-E
In Isabelle notation, it looks as follows:

[[P ∧Q; [[P ; Q]] =⇒ R]] =⇒ R

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 544

claset
claset is an abstract datatype. Overloading notation, claset is also an

ML unit function which will return a term of that datatype when applied

to (), namely, the current classifier set.

A classifier set determines which rules are safe and unsafe introduction,

respectively elimination rules. The current classifier set is a classifier set

used by default in certain tactics.

The current classifier set can be accessed via special functions for that

purpose.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 545

Accessing the claset
The functions addSIs, addSEs, addIs, addEs are all of type

claset ∗ thm list→ claset. They add rules to the current classifier

set. For example, addSIs adds a rule as safe introduction rule.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 546

Emulating the Sequent Calculus
The sequent calculus works with expressions of the form

A1, . . . , An ` B1, . . . , Bm which should be interpreted as: under the

assumptions A1, . . . , An, at least one of B1, . . . , Bm can be proven. So

as a formula, this would be A1 ∧ . . . ∧An → B1 ∨ . . . ∨Bm.

In Isabelle (and the proof trees we have seen, e.g,. in this lecture), we

only have sequents with one formula to the right of the `. We have said

that we use sequent notation.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 547

Deriving allE
You should do it in Isabelle. The rule is:

[[ALL x. P (x); P (x) =⇒ R]] =⇒ R

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 548

The Rule ∨-swap
The rule disjCI is

¬A,Γ ` B
Γ ` A ∨B

disjCI

To derive it you need classical reasoning, as the rule exploits the

equivalence of A and ¬¬A (then the rule follows immediately from →-I).

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 549

The Rule impE
The rule impE is

A,¬C,Γ ` B
¬(A→ B),Γ ` C

impE

It essentially “fuses” contraposNP, which can not be applied “blindly”

due to non-termination, with →-I.

This is a standard technique in Isabelle called swapping. In generally, if

we have a formula ¬(A ◦B) in the premises, where ◦ is some binary

connective, swapping will put (A ◦B) in the conclusion and put the old

conclusion into the premises after negating it. Afterwards, an

introduction rule for ◦ will be used [Pau03, Section 11.2].

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 550

Duplicating Rules
You should recall that elimination rules are used in combination with

erule/etac. Using allE will eliminate the quantifier.

You should try a proof of the formula (∀x.P (x)) → (P (a) ∧ P (b)) in

Isabelle to convince yourself that this is a problem since the quantified

formula ∀x.P (x) is needed twice as an assumption, with two different

instantiations of x.

The duplicating rule ∀-dupE has the effect that the universally quantified

formula will still remain as an assumption.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 551

Proof Procedures

Tactics in Isabelle are performed in order:

1.

DEPTHSOLVE(REPEAT(rtac safe I rules ORELSE etac safe E rules));

2. canonize: propagate “x = t” . . . throughout subgoal;

3. rtac unsafe I rules ORELSE etac unsafe E rules;

4. atac.

One elementary proof step consists of trying a safe introduction rule with

rtac, or, if that is not possible, a safe elimination rule with etac. This

will be repeated as long as possible.

Then in the current subgoal, any assumption of the form x = t (where x

is a metavariable) will be propagated throughout the subgoal, i.e., all

occurrences of x wil be replaced by t.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 552

Then Isabelle will try one application of an unsafe introduction rule with

rtac, or, if that is not possible, an unsafe elimination rule with etac.

Finally, she will use assumption/atac. Note that assumption/atac is

unsafe. In general, there are several premises in a subgoal and atac may

unify the conclusion of the subgoal with the wrong premise. Different

search strategies were applied.

Wolff: Isabelle: Automation by Proof Search; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[Pau03] Lawrence C. Paulson. The Isabelle Reference Manual. Computer Laboratory,
University of Cambridge, March 2003.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16812)

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Isabelle: Automation by Proof Search
	Proof Search and Backtracking
	Making Calculi more Deterministic
	Proof Procedures (Simplified)
	Summary on Automated Proof Search
	More Detailed Explanations

	Part IV:The Semantic Approach (HOL)
	Part V:Applications
	References
	References

