
Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and

Burkhart Wolff

April 2005
http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Isabelle: Term Rewriting

Burkhart Wolff

Isabelle: Term Rewriting 555

Outline of this Part
• Higher-order rewriting

• Extensions: Ordered, pattern, congruence, splitting

rewriting

• Organizing simplification rules

In this context, a term is a λ-term, since we use the

λ-calculus to encode object logics.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 556

Higher-Order Rewriting

Motivation:
• Simplification is a very important part of deduction, e.g.:

0 + (x+ 0) = x

[a, b, d] @ [a, b] = [a, b, d, a, b]

• Based on rewrite rules as in functional programming:

x+ 0 = x, 0 + x = x

[] @X = X, (x :: X) @ Y = x :: (X @ Y)

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 557

Term Rewriting: Foundation
• Recall: An equational theory consists of rules

x = x
refl

x = y

y = x
sym

x = y y = z

x = z
trans

x = y P (x)

P (y)
subst

• plus additional (possibly conditional) rules of the form

φ1 = ψ1, . . . , φn = ψn ⇒ φ = ψ.

The additional rules can be interpreted as rewrite rules,

i.e. they are applied from left to right.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 558

Algorithm simplifyR
• We assume a rule set R

• An equation is solved if it has the form e = e

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 558

Algorithm simplifyR
• We assume a rule set R

• An equation is solved if it has the form e = e

• An equation is simplified by:

simplifyR(e = e′) =>
repeat
(a) pick terms h and t such that (e = e′) ≡ h(t)

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 558

Algorithm simplifyR
• We assume a rule set R

• An equation is solved if it has the form e = e

• An equation is simplified by:

simplifyR(e = e′) =>
repeat
(a) pick terms h and t such that (e = e′) ≡ h(t)

(b) pick a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ from R,

match (unify) φ against t , i.e., find θ such that φθ = t

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 558

Algorithm simplifyR
• We assume a rule set R

• An equation is solved if it has the form e = e

• An equation is simplified by:

simplifyR(e = e′) =>
repeat
(a) pick terms h and t such that (e = e′) ≡ h(t)

(b) pick a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ from R,

match (unify) φ against t , i.e., find θ such that φθ = t

(c) replace e = e′ by h(ψθ) provided all simplify((φi = ψi)θ) are

solved for all i ∈ {1..n}

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 558

Algorithm simplifyR
• We assume a rule set R

• An equation is solved if it has the form e = e

• An equation is simplified by:

simplifyR(e = e′) =>
repeat
(a) pick terms h and t such that (e = e′) ≡ h(t)

(b) pick a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ from R,

match (unify) φ against t , i.e., find θ such that φθ = t

(c) replace e = e′ by h(ψθ) provided all simplify((φi = ψi)θ) are

solved for all i ∈ {1..n}

until no replacement possible, return current e = e′

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 558

Algorithm simplifyR
• We assume a rule set R

• An equation is solved if it has the form e = e

• An equation is simplified by:

simplifyR(e = e′) =>
repeat
(a) pick terms h and t such that (e = e′) ≡ h(t)

(b) pick a rewrite rule φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ from R,

match (unify) φ against t , i.e., find θ such that φθ = t

(c) replace e = e′ by h(ψθ) provided all simplify((φi = ψi)θ) are

solved for all i ∈ {1..n}

until no replacement possible, return current e = e′

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 559

Problems with simplify

• This algorithm may fail because:
◦ it diverges (the rules are not terminating), e.g. x+ y = y + x or

x = y =⇒ x = y;

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://rewriting.loria.fr/rta/
http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 559

Problems with simplify

• This algorithm may fail because:
◦ it diverges (the rules are not terminating), e.g. x+ y = y + x or

x = y =⇒ x = y;

◦ rewriting does not yield a unique normal form (the rules are not

confluent), e.g. rules a = b, a = c.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://rewriting.loria.fr/rta/
http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Rewriting 559

Problems with simplify

• This algorithm may fail because:
◦ it diverges (the rules are not terminating), e.g. x+ y = y + x or

x = y =⇒ x = y;

◦ rewriting does not yield a unique normal form (the rules are not

confluent), e.g. rules a = b, a = c.

• Providing criteria for terminating and confluent rule sets R

is an active research area (see [BN98, Klo93], RTA, . . .).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://rewriting.loria.fr/rta/
http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 560

Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:

(x+ y) + z = x+ (y + z) (A)

x+ y = y + x (C)

x+ x = x (I)

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 560

Extensions of Rewriting

• Symmetric rules are problematic, e.g. ACI:

(x+ y) + z = x+ (y + z) (A)

x+ y = y + x (C)

x+ x = x (I)

• Idea: apply only if replaced term gets smaller w.r.t. some

term ordering. In example, if y+ xθ is smaller than x+ yθ.

• Ordered rewriting solves rewriting modulo ACI, using

derived rules (exercise).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 561

Extension: HO-Pattern Rewriting
Rules such as F (Gc) = . . . lead to highly ambiguous

matching and hence inefficiency.

Solution: restrict l.h.s. of a rule to higher-order patterns.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 561

Extension: HO-Pattern Rewriting
Rules such as F (Gc) = . . . lead to highly ambiguous

matching and hence inefficiency.

Solution: restrict l.h.s. of a rule to higher-order patterns.

A term t is a HO-pattern if

• it is in β-normal form; and

• any free F in t occurs in a subterm F x1 . . . xn where the

xi are η-equivalent to distinct bound variables.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 561

Extension: HO-Pattern Rewriting
Rules such as F (Gc) = . . . lead to highly ambiguous

matching and hence inefficiency.

Solution: restrict l.h.s. of a rule to higher-order patterns.

A term t is a HO-pattern if

• it is in β-normal form; and

• any free F in t occurs in a subterm F x1 . . . xn where the

xi are η-equivalent to distinct bound variables.

Matching (unification) is decidable, unitary (’unique’) and

efficient algorithms exist.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 562

HO-Pattern Rewriting (Cont.)
A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• the left-hand side φ is a HO-pattern;

• all free variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant, m ≥ 0, n ≥ 0).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 562

HO-Pattern Rewriting (Cont.)
A rule . . .⇒ φ = ψ is a HO-pattern rule if:

• the left-hand side φ is a HO-pattern;

• all free variables in ψ occur also in φ; and

• φ is constant-head, i.e. of the form λx1..xm.c p1 . . . pn
(where c is a constant, m ≥ 0, n ≥ 0).

Example: (∀x.Px ∧Qx) = (∀x.Px) ∧ (∀x.Qx)
Result: HO-pattern allows for very effective quantifier

reasoning.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 563

Extension: Congruence Rewriting
Problem :

ifA thenP elseQ = ifA thenP ′ elseQ
where P = P ′ under condition A

is not a rule.

Solution in Isabelle: explicitely admit this extra class of rules

(congruence rules)

[[A =⇒ P = P ′]] =⇒
ifA thenP elseQ = ifA thenP ′ elseQ

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Extensions of Rewriting 564

Extension: Splitting Rewriting
Problem:

P (ifA thenx else y) = ((A =⇒ P x) ∧ (¬A =⇒ P y))

is not a HO-pattern rule (since it is not constant-head).

Similar problems arise in connection with data types and

their resulting case match statements (to be discussed later).

Solution in Isabelle: explicitely admit this extra class of

(splitting rules).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Organizing Simplification Rules 565

Organizing Simplification Rules

• Standard (HO-pattern conditional ordered rewrite) rules;

• congruence rules;

• splitting rules.

In the Isabelle kernel, on the SML level, the data structure

simpset is provided. Some operations:

• addsimps : simpset ∗ thm list→ simpset

• delsimps : simpset ∗ thm list→ simpset

• addcongs : simpset ∗ thm list→ simpset

• addsplits : simpset ∗ thm list→ simpset

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Organizing Simplification Rules 566

Commutativity can be added without losing termination.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Organizing Simplification Rules 567

How to Apply the Simplifier?
Several versions of the simplifier in the Isabelle engine

(ML-level):

• simp tac : simpset→ int→ tactic

• asm simp tac : simpset→ int→ tactic
(includes assumptions into simpset)

• asm full simp tac : simpset→ int→ tactic
(rewrites assumptions, and includes them into simpset)

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Organizing Simplification Rules 568

How to Apply the Simplifier?
On the ISAR level, these tactics are accessible as ISAR

methods and have the following syntax:

CHAPTER 4. GENERIC TOOLS AND PACKAGES 65

thin tac ϕ deletes the specified assumption from a subgoal; note that ϕ may
contain schematic variables. See also thin_tac in [10, §3].

subgoal tac ϕ adds ϕ as an assumption to a subgoal. See also subgoal_tac

and subgoals_tac in [10, §3].

rename tac x renames parameters of a goal according to the list x , which
refers to the suffix of variables.

rotate tac n rotates the assumptions of a goal by n positions: from right to
left if n is positive, and from left to right if n is negative; the default
value is 1. See also rotate_tac in [10, §3].

tactic text produces a proof method from any ML text of type tactic. Apart
from the usual ML environment and the current implicit theory context,
the ML code may refer to the following locally bound values:

val ctxt : Proof.context
val facts : thm list
val thm : string -> thm
val thms : string -> thm list

Here ctxt refers to the current proof context, facts indicates any
current facts for forward-chaining, and thm / thms retrieve named facts
(including global theorems) from the context.

4.3.3 The Simplifier

Simplification methods

simp : method
simp all : method

simp
²
±

¯
°¯

±simp all
²
±

¯
°

²

°

¯

± !
²
±

¯
°

²

°

¯

±opt

²

°

²

± simpmod

¯

°

opt

(
²
±

¯
° no asm

²
±

¯
°¯

±no asm simp
²
±

¯
°

±no asm use
²
±

¯
°

±asm lr
²
±

¯
°

²

°

°

°

)
²
±

¯
°

CHAPTER 4. GENERIC TOOLS AND PACKAGES 66

simpmod

add
²
±

¯
°¯

±del
²
±

¯
°

±only
²
±

¯
°

±cong
²
±

¯
°̄

±add
²
±

¯
°

±del
²
±

¯
°

²

°

°

±split
²
±

¯
°̄

±add
²
±

¯
°

±del
²
±

¯
°

²

°

°

²

°

°

°

°

:
²
±

¯
°thmrefs

simp invokes Isabelle’s simplifier, after declaring additional rules according
to the arguments given. Note that the only modifier first removes all
other rewrite rules, congruences, and looper tactics (including splits),
and then behaves like add.

The cong modifiers add or delete Simplifier congruence rules (see also
[10]), the default is to add.

The split modifiers add or delete rules for the Splitter (see also [10]),
the default is to add. This works only if the Simplifier method has been
properly setup to include the Splitter (all major object logics such HOL,
HOLCF, FOL, ZF do this already).

simp all is similar to simp, but acts on all goals (backwards from the last
to the first one).

By default the Simplifier methods take local assumptions fully into ac-
count, using equational assumptions in the subsequent normalization process,
or simplifying assumptions themselves (cf. asm_full_simp_tac in [10, §10]).
In structured proofs this is usually quite well behaved in practice: just the lo-
cal premises of the actual goal are involved, additional facts may be inserted
via explicit forward-chaining (using then, from etc.). The full context of as-
sumptions is only included if the “!” (bang) argument is given, which should
be used with some care, though.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Summary on the Simplifier and Term Rewriting 569

Summary on the Simplifier and Term
Rewriting

Simplifier is a powerful proof tool for

• conditional equational formulas

• ACI-rewriting

• quantifier reasoning

• congruence rules

• automatic proofs by case split rules

Fortunately, failure is quite easy to interpret since even

intermediate results were computed and the solving process

can be traced.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Summary on Last Three Sections 570

Summary on Last Three Sections

• Although Isabelle is an interactive proof construction, it is

a flexible environment with powerful automated proof

procedures.

• For classical logic and set theory, tableau-like procedures

like blast tac and fast tac decide many tautologies.

• For equational theories (datatypes, evaluating functional

programs, but also higher-order logic) simp tac decides

many tautologies (and is fairly easy to control).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 571

More Detailed Explanations

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 572

0 + (x+ 0) = x
Simplifying 0 + (x+ 0) to x is something you have learned in school. It

is justified by the usual semantics of arithmetic expressions. Here,

however, we want to see more formally how such simplification works,

rather than why it is justified.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 573

Lists
Lists are a common datatype in functional programming. [a, b, d, a, b] is

a list. Actually, this notation is syntactic sugar for

a :: (b :: (d :: (a :: (b :: [])))). Here, [] is the empty list and :: is a term

constructor taking an alement and a list and returning a list. @ stands

for list concatenation.

Intuitively, it is clear that [a, b, d] concatenated with [a, b] yields

[a, b, d, a, b].
Term constructor is usual terminology in functional programming. In

first-order logic, we would speak of a function symbol. In the λ-calculus,

we would speak of a (special kind of) constant (this will become clear

later).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 574

Functional Programming
For example, the lines

[] @X = X

(x :: X) @ Y = x :: (X @ Y)

define the list concatenation function @.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 575

Rewrite Rules
An equational theory is a formalism based on equational rules of the

form φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ.

A term rewriting system (to be defined shortly) is another formalism,

based of rewrite rules. They also have the form

φ1 = ψ1, . . . , φn = ψn =⇒ φ = ψ, but they have a different flavor in

that = must be interpreted as a directed symbol. One could also write

 instead of = to emphasize this.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 576

Matching
Given two terms s and t, a unifier is a substitution θ such that sθ = tθ.

A match is a substitution which only instantiates one of s or t, so sθ = t

or s = tθ (one should usually clarify in the given context which of the

terms is instantiated).

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 577

a = b, a = c
For a rewriting system consisting of rules a = b, a = c, one cannot

rewrite b = c to prove the equality, although it holds:

a = b
b = a

sym

a = c

b = c
trans

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 578

Term Ordering
The biggest problem for term rewriting is (non-)termination. For some

crucial rules, this problem is solved by ordered term rewriting. A term

ordering is any partial order between ground (i.e., not containing free

variables) terms.

One can define a term ordering by giving some function, called norm,

from ground terms to natural numbers. Then a term is smaller than

another term if the number assigned to the first term is smaller that the

number assigned to the second term.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 579

How Ordered Rewriting Solves ACI
Consider an equational theory consisting only of those rules (apart from

refl, sym, trans, subst). Apart from that, the language may contain

arbitrary other constant symbols. For such a language, it is possible to

give a term ordering that will assign more weight to the same term on

the left-hand-side of a + than on the right-hand side. We can base such

a term ordering on a norm. For example, the inductive definition of a

norm | | might include the line:

|s+ t| := 2|s|+ |t|

This means that if |s| > |t|, then |s+ t| = 2|s|+ |t| > 2|t|+ |s| = |t+ s|.
This has two effects:

• Applications of (A) or (I) always decrease the weight of a term

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 580

(provided the weight of s is > 0):

|(s+ t) + r| = 2|s+ t|+ |r| = 4|s|+ 2|t|+ |r| >

2|s|+ 2|t|+ |r| = 2|s|+ |t+ r| = |s+ (t+ r)|.

• Applications of (C) are only possible if the left-hand side is heavier

than the right-hand side.

Isabelle internally provides a term order, and the simplifier will use this in

order to avoid non-termination for commutativity and similar rules.

Now, the question arises how ACI normal forms can be computed if

commutativity is now longer a problem. The problem is that

commutativity and idempotence patterns overlap and for the overlapping

cases:

x + (x + y) = x + y

y + (x + z) = x + y + z

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 581

own rules must be derived. By Isabelle convention, these finitely many

rules were stored in own rule sets such as Un ac which can be accessed

in ISAR.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 582

Ambiguous Matching
For higher-order rewriting, it is very problematic to have rules containing

terms of the form F (Gc) on the left-hand side, where F and G are free

variables and c is a constant or bound variable. The reason can be seen

in an example: Suppose you want to rewrite the term f(g(h(i c))) where

f , g, h, i are all constants. There are four unifiers of F (Gc) and

f(g(h(i c))):
{f/F, (λx.g(h(i x)))/G},
{(λx.f(g x))/F, (λx.h(i x))/G},
{(λx.f(g(hx)))/F, (λx.i x)/G},
{(λx.f(g(h(i x))))/F, (λx.x)/G}.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 583

∀,∃ is a Constant

Further examples:

• (∃x.Px ∨Qx) = (∃x.Px) ∨ (∃x.Qx)
• (∃x.P → Qx) = P → (∃x.Qx)
• (∃x.Px→ Q) = (∀x.Px) → Q

In these examples, you may assume that first-order logic is our object

logic.

On the metalevel, and hence also for the sake of term rewriting, ∀,∃ are

constants.

In the notation (∀x.Px ∧Qx), the symbols P and Q are variables.

The principle was explained thoroughly before.

Wolff: Isabelle: Term Rewriting; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proofs. Academic Press, 1986.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[GM93] Michael J. C. Gordon and Tom F. Melham, editors. Introduction to HOL.
Cambridge University Press, 1993.

[Klo93] Jan Willem Klop. Handbook of Logic in Computer Science, chapter ”Term
Rewriting Systems”. Oxford: Clarendon Press, 1993.

[Pau03] Lawrence C. Paulson. The Isabelle Reference Manual. Computer Laboratory,
University of Cambridge, March 2003.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16812)

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Isabelle: Term Rewriting
	Higher-Order Rewriting
	Extensions of Rewriting
	Organizing Simplification Rules
	Summary on the Simplifier and Term Rewriting
	Summary on Last Three Sections
	More Detailed Explanations

	Part IV:The Semantic Approach (HOL)
	Part V:Applications
	References
	References

