Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and
Burkhart Wolff

April 2005

http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Isabelle’s Metalogic and Proof
Objects

Burkhart Wolff

Isabelle’s Metalogic and Proof Objects 584

Overview

This chapter reconsiders again Isabelle as a logical
framework. This involves:

e its version of a typed A-calculus

e its elementary logic called Pure

e a deeper understanding of rule/rtac etc,
e proof objects

® consequences

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus 585

An Extension of the Typed)\-Calculus

Universal representation for object logics in Isabelle: A
Typed A-calculus extended by (parametric) polymorphism
and type classes.

Historically, polymorphism in logics — although already used
in the principia mathematica on the meta-level — is a fairly
recent discovery (around 1975, first implementation:
Edinburgh LCF). The consequences for Conservative
Definitions have been sorted out in the early 80ies.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus 586

Polymorphism: Intuition

As in functional programming, the function _ = _ should be
available on any type. This can be expressed by giving _ = _
the type |a, a] = bool with a an explicit type variable as
part of the type expression language.

Adding type classes (“sorts of types”) helps to separate
universes of types from each other. |« :: term, a| = bool,
for example, can be used to express that o may range over
all types with individuals, but not predicates (i.e. bool as in
FOL).

Adding type constructors allows the introduction of bool, but
also concepts such as « set.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus 587

We present a simplification of [NP95]. More formally, we
have:

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus 588

Syntax: Classes, Types, and Terms
Type classes (exemplary)
k = ord | order | lattice | ...

Type constructors (exemplary)

X == bool | _— _ | ind | _list | _set...
Polymorphic types

T = a:{k,....k} | (1,..,7)x (« is type variable)
Raw terms (as before)

e »= x | Tx | c| (ee) | (A\x".¢€)

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus 589

ClaPolymorphic Type Inferences (1)

Prerequisites:
e a partial order < on classes,

e . . . implying an equivalence on type class sets,

e a constant environment 2., a variable environment 1" and a
type environment & assigning to type variables (finite) sets
of type classes,

e a type instance relation A assigning (k..x)x to K

e Type instances (denoted ©) extend type environments to
substitutions of types in terms,

e and two judgements X, F 7 {k..k} and X, I, e: T

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus 590

Polymorphic Type Inferences (2)

c:teX {a1:S51...an: St etve(r) (X,&FT7:85:);

CONST
C'Fe:Tlag i =71,...,01 := Ty
ASM ASM
Y. Fa:T(x) X, U 22 T'(7x)
Y.I'te:o—71 X T'ke:o Y, llr:o]lFe:T
APP ABS
Y.I'Fee :r Z,F")\QEU.GZO—>7'B

tvc computes an assignment of all type variables occurring
in 7 to the set of all constraints associated to it in 7.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

An Extension of the Typed A-Calculus

591

Polymorphic Type Inferences (3)

The second judgement X, & F 7 : {k..k} infers if a type is
admissible to a class k:

(E,€|_T : K'i)iE{l...n} Z,fl‘T : {/ﬁll,...,lin} 1 € {1n}
Y €T AR, ...k} Y EF T R

(la) =8 (K1, kp)X > €A (B,6F Tt Ki)icf1..m)
Y.éFa: S (X, 6 (T1,...,Th)X K
Y, EFT k1 K1 < Ko
2, EF T 1 Ko

Note that there are constraints for A which are ommitted
here (see [NP95]| for details).

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 592

The Logic Pure

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 593

Tactics = Programs building Meta-Theorems

When constructing proofs, there are
e logic specific aspects (its rules)

e |logic independent aspects such as:
o binding and substitution

o typing
o managing side-conditions

o managing assumptions and their discharge

In textbooks, the focus is typically on the former and the
latter were only described in informal “provisos”.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 594

e Using a metalogic Pure has two benefits:
o shared implementations for the logic independent aspects, and

o potential for “generic” proof procedures built on top of it.

Built on top of the syntactic language of the extended type
class A-calculus, Isabelle’s meta-language Pure is
implemented.

At least one type classes are assumed: logic € k. Moreover,
at least two type constructors are assumed: prop,_- = _ € Y.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 595

Logic Based on A\~
Then the signature X of Pure is defined as follows:
® _—> _:prop — prop — prop € 2,
e _=_a — o — prop € ., and
e _:(a— prop) — prop € X.
The _-notation is used to indicate infixes.

‘erms of type bool as in HOL, for example, were represented
by a special constant Trueprop :: bool = prop. Trueprop ¢
corresponds to the pr-operator in the “Propositional Logic
in LF" encoding or the textbook notation "+ ¢".

(Trueprop is usually supressed syntactically.)

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 596

The Format of thm

Isabelle’s Pure is

e implemented in the style of the LCF system: meta-level
rules are SML functions on thm, possibly raising
exceptions,

e uses natural deduction:
each thm may depend on meta-level assumptions:

olo, ..., 9]

e each thm has a signature (X, x, s, A).

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 597

Asumption and Rules for =

Manipulating meta-level assumptions:
o)
R

assume -/

B[] b= "

-E

Note that =--/ is now understood fully operationally: ¢ is
erased from the meta-level assumption list of the premise of

=-.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure

598

Rules:

Rules for =: Equivalence Relation

b=Y p=o

¢ =1
=-refl
a=a
a=>b =
=-trans

—1I

-
Il

Il
|
&

P
P

Q
il
S

=-symm

S
]
Q

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure

599

Rules for =:)\ (i.e., a, 3,n) Conversions

Compare to =, 3.

(Az.a) = (Ay.alx — y])) (Az.a)b = (a[z < b)) i
I=9
fex=gx

Side condition *: ¥ is not free in a.

Side condition *x: x is not free in f, g and the meta-level
asumptions.

Conversion is built into the proof system, and Isabelle

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 600

routinely computes terms in «, 3, n-normal-forms.
Note: These side conditions are directly implemented in the

SML code; in a way, this implemements similar
side-conditions of object-logics once and for all.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 601

Rules for =: Abstraction, Combination

Rules

=-abstr* =-comb

b f=g a=b
()\a;a = (Ax.b) fa=gb

Side condition *: x is not free in the meta-level assumptions.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 602

Manipulating Meta-Variables

Rules:

¢

¢[?£IZ1 .= tl, e ooy ?ZEn = tn]

instantiate

instantiate can in fact also handle instantiations of
type-meta variables, which we ignore throughout this
presentation.

A somewhat exotic axiom scheme — traditionally treated as
outside the core of Pure — introduces axiomatic type class

invariants into the core logic:

class_triv

OFCLASS(« :: ¢, c_class)

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 603

Rules for A

Meta-quantification is formalized in higher-order abstract
syntax: we write /\ z.¢ for A\ x.(Az.¢).

Rules:
o Nz
-1 N-E
Nz.¢ dlv b

Side condition *: x is not free in meta-level assumptions. x
may be a free variable or a meta-variable.

Note that combinations of A-I" and A-E may therefore
achieve the effect of replacing free variables by
meta-variables.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

The Logic Pure 604

What's different from HOL?

e no Falsum L,

e no classical :

Pure is an intuitionistic fragment of HOL
e . . . what would be the consequences otherwise ?
e processes done by rtac/ rule like:

o lifting over assumptions

o lifting over parameters

are ‘rule schemes” implemented as tactical programs over
Pure

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 605

Proof Objects

Although LCF-style systems were originally designed to avoid
the construction of explicit proof-objects (as seen in LF),
Isabelle has meanwhile a mechanism to “log” them during
proof.

This has the following consequences:
e external proof-procedures can be used and recorded,

e proof-objects from extern provers may be imported,

e proof-objects of Isabelle can be checked externally.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 606

How to generate Proof-Objects? (1)

theory ProofTest = Main:
ML{x* proofs := 2 x}

lemma al : " a —a" by(auto)
ML{x* ProofSyntax.print proof of false (thm ”al”); x}

lemma a2 : " a —b — 3" by(auto)
ML{x* ProofSyntax.print proof of true (thm ”a2”); x}

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 607

How to generate Proof-Objects? (2)

equal_elim - _ - _ >
(symmetric - _ - _ >
(combination - Trueprop - _ - _-_+>(reflexive - _)->
(transitive - - - >
(? +> (reflexive -) >
(AH: _.
equal_elm - _ - _ >
(symmetric - _ - _ >
(combination - _ - _ - _ >
(combination - op =-_-_-_->(reflexive - _)->

(Eq Truel - = -> H)) ->
(reflexive - _))) >
(reflexive - _))) ->

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 608

) >
Truel

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 609

How to generate Proof-Objects? (3)

equal_elim - _ - _ >
(symmetric - _ - _ >
(combination - Trueprop - _ - _ - _ > (reflexive -) ->
(transitive - - - >
(? +> (reflexive -) >
(A H: _.
equal_elm - _ - _ >
(symmetric - _ - _ >
(combination - _ - _ - _ - _ >
(combination - op=-_-_-_->(reflexive - _)->
(transitive - - - >
(7 -> (reflexive -) ->
(A Ha: .

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 610

equal_elm - _ - _ >
(symmetric -~ - _ >
(combination - _ - _ - _ - _ >
(combination - op=-_-_ - _+>
(reflexive -) ->

(Eq Truel - > H)) ->
(reflexive - _))) >
(reflexive - _))) >
7)) >
(reflexive - _))) ->
(reflexive -))) >

7)) >
Truel

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Proof Objects 611

How to generate Proof-Objects
The proof-checker:

ProofChecker.thm _of proof thy prf

returns a thm for a valid proof!

It consists of 100 lines of code (although reusing ca. 1000
lines of kernel code).

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conclusion on Isabelle’'s Metalogic 612

Conclusion on Isabelle’s Metalogic

e [he logic Pure and its proof system are small,

e Even resolution, and d-resolution are not built-in; they are
tactics over Pure,

e Isabelle can log proofs in proof objects,

e If you don't trust Isabelle, check proof-objects !!!

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 613

More Detailed Explanations

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 614

The names of =, =, and

e —> is called meta-implication,
e = is called meta-equality, and

e /\ is called meta-universal-quantification.

Wolff: Isabelle’s Metalogic; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[INPO5] Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201-224, 1995.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http . //WWW .1nfsec.e

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Isabelle's Metalogic and Proof Objects
	An Extension of the Typed -Calculus
	The Logic [style=ISAR,breaklines=true,breakatwhitespace=true]+Pure+
	Proof Objects
	Conclusion on Isabelle's Metalogic
	More Detailed Explanations

	Part IV:The Semantic Approach (HOL)
	Part V:Applications
	References
	References

