
Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and

Burkhart Wolff

April 2005
http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Logic:
Conservative Extensions

Burkhart Wolff

Higher-Order Logic: Conservative Extensions 690

Outline
In the previous lecture, we have derived all well-known

inference rules. There is now the need to scale up. Today we

look at conservative theory extensions, an important method

for this purpose.

In the weeks to come, we will look at how mathematics is

encoded in the Isabelle/HOL library.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 691

Conservative Theory Extensions: Basics

Basic definitions (c.f. [GM93]):

Definition 1 (theory):

A (syntactic) theory T is a triple (χ,Σ, A), where χ is a type

signature, Σ a signature and A and a set of axioms.

Definition 2 (theory extension):

A theory T ′ = (χ′,Σ′, A′) is an extension of a theory

T = (χ,Σ, A) iff χ ⊆ χ′ and Σ ⊆ Σ′ and A ⊆ A′.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 692

Definitions (Cont.)
Definition 3 (conservative extension):

A theory extension T ′ = (χ′,Σ′, A′) of a theory

T = (χ,Σ, A) is conservative iff for the set of provable

formulas Th we have

Th(T) = Th(T ′) |Σ,

where |Σ filters away all formulas not belonging to Σ.

Counterexample:

∀f :: α ⇒ α. Y f = f (Y f)
fix

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 693

Consistency Preserved
Corollary 1 (consistency):

If T ′ is a conservative extension of T , then

False /∈ Th(T) ⇒ False /∈ Th(T ′).

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 694

Syntactic Schemata for Conservative
Extensions

• Constant definition

• Type definition

• Constant specification

• Type specification

Will look at first two schemata now.

For the other two see [GM93].

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 695

Constant Definition

Definition 4 (constant definition):

A theory extension T ′ = (χ′,Σ′, A′) of a theory

T = (χ,Σ, A) is a constant definition, iff

• χ′ = χ and Σ′ = Σ ∪ {c :: τ}, where c /∈ dom(Σ);
• A′ = A ∪ {c = E};
• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that

is not contained in the type of c.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 696

Constant Definitions Are Conservative
Lemma 1 (constant definitions):

Constant definitions are conservative.

Proof Sketch:

• Th(T) ⊆ Th(T ′) |Σ : trivial.

• Th(T) ⊇ Th(T ′) |Σ : let π′ be a proof for φ ∈ Th(T ′) |Σ.

We unfold any subterm in π′ that contains c via c = E

into π. Then π must be a proof in T , implying φ ∈ Th(T).

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 697

Side Conditions
Where are those side conditions needed? What goes wrong?

Very simple example: Let E ≡ ∃x :: αy :: α. x 6= y and

suppose σ is a type inhabited by only one term, and τ is a

type inhabited by at least two terms. Then we would have:

c = c holds by refl

=⇒ (∃x :: σ y :: σ. x 6= y) = (∃x :: τ y :: τ. x 6= y)
=⇒ False = True

=⇒ False

This explains definition of True. Other (standard) example

later.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 698

Constant Definition: Examples
Definitions of True, False, ∧, ∨, ∀ revisited.

True def : True ≡ ((λx::bool. x) = (λx. x))

All def : All (P) ≡ (P = (λx. True))

Ex def: Ex(P) ≡∀Q. (∀ x. P x−→Q) −→Q

False def : False ≡ (∀P. P)

not def : ¬ P ≡P−→False

and def: P ∧Q ≡∀R. (P−→Q−→R) −→R

or def : P ∨Q ≡∀R. (P−→R) −→(Q−→R) −→R

if def : If P x y ≡THE z::’a. (P=True −→z=x) ∧
(P=False −→z=y)

Recall that All (P) is syntactically equivalent to ∀ x. P x,

Ex(P) equivalent to ∃ x. P x.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 699

More Constant Definitions in Isabelle
let−in−, if−then−else, unique existence:

consts
Let :: [’ a, ’a ⇒ ’b] ⇒ ’b

If :: [bool, ’a, ’a] ⇒ ’a

defs
Let def ”Let s f ≡ f(s)”

if def ” If P x y ≡THE z::’a.(P=True⇒z=x) ∧
(P=False⇒z=y)”

Ex1 def ”Ex1(P) ≡∃ x. P(x) ∧ (∀ y. P(y) ⇒ y=x)”

Recall: ⇒ is function type arrow; also recall syntax for

[...] ⇒

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 700

Type Definitions

Type definitions, explained intuitively: we have

• an existing type R;

• a predicate S : R ⇒ bool , defining a non-empty “subset”

of R;

• axioms stating an isomorphism between S and the new

type T .
...

...........................
.

.........................
...

.........................
....
........................
....
......................
.....
.......................
.....
........................
....
.........................
....
..........................
..

...........................
............................
...........................
..........................
...........................
............................
............................
............................
............................
...........................
............................
............................
.............................

............................
............................

..........................
..........................

...........................
..R

..
..............
...............
..............
..............
..............
..............
...............
...............
............................

...S
...............
...............
...............
..............
..............
..............
...............
...............
............................

...T.
..

...
..

...
..

...
...

.
..

.........
..

................
s

AbsT : R ⇒ T

.
..

................
..

.........
...

.
...

..
...

..
...

..k

RepT : T ⇒ R

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 701

Type Definition: Definition
Definition 5 (type definition):

Assume a theory Th = (χ,Σ, A) and a type R and a term S

such that Σ `S : R ⇒ bool .
A theory extension Th′ = (χ′,Σ′, A′) of Th is a type

definition for type T (where T fresh), iff

χ′ = χ] {T},
Σ′ = Σ ∪ {AbsT : R ⇒ T,RepT : T ⇒ R}
A′ = A ∪ {∀x.AbsT(RepT x) = x,

∀x.S x ⇒ RepT(AbsT x) = x}
Proof obligation ∃x. S x can be proven inside HOL!

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 702

Type Definitions Are Conservative
Lemma 2 (type definitions):

Type definitions are conservative.

Proof see [GM93, pp.230].

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 703

HOL Is Rich Enough!
This may seem fishy: if a new type is always isomorphic to a

subset of an existing type, how is this construction going to

lead to a “rich” collection of types for large-scale

applications?

But in fact, due to ind and ⇒, the types in HOL are already

very rich.

We now give three examples revealing the power of type

definitions.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 704

Example: Typed Sets
General scheme, substituting R ≡ α ⇒ bool (α is any type

variable), T ≡ α set (or set), S ≡ λx :: α ⇒ bool . T rue

χ′ = χ] {Tset},
Σ′ = Σ ∪ {AbsTset : R(α ⇒ bool) ⇒ Tα set ,

RepTset : Tα set ⇒ R(α ⇒ bool)}
A′ = A ∪ {∀x.AbsTset(RepTset x) = x,

∀x.S xTrue ⇒ RepTset(AbsTset x) = x}

Simplification since S ≡ λx. True. Proof obligation:

(∃x. S x) trivial since (∃x. True) = True. Inhabitation is

crucial!

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 705

Sets: Remarks
Any function r : τ ⇒ bool can be interpreted as a set of τ ; r

is called characteristic function. That’s what Absset r does;

Absset is a wrapper saying “interpret r as set”.

S ≡ λx.True and so S is trivial in this case.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 706

More Constants for Sets
For convenient use of sets, we define more constants:

{x | f x} ∼= Collect f = Absset f

x ∈ A = (Repset A) x

A ∪B = {x | x ∈ A ∨ x ∈ B}
...

Consistent set theory adequate for most of mathematics and

computer science !

Here, sets are just an example to demonstrate type

definitions. Later we study them for their own sake.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 707

Example: Pairs
Consider type α ⇒ β ⇒ bool . We can regard a term

f : α ⇒ β ⇒ bool as a representation of the pair (a, b),
where a :: α and b :: β, iff f x y is true exactly for x = a and

y = b. Observe:

• For given a and b, there is exactly one such f (namely,

λx :: α y :: β.x = a ∧ y = b).

• Some functions of type α ⇒ β ⇒ bool represent pairs and

others don’t (e.g., the function λxy. True does not

represent a pair). The ones that do are exactly the ones

that have the form λx :: α y :: β. x = a ∧ y = b, for some

a and b.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 708

Type Definition for Pairs
This gives rise to a type definition where S is non-trivial:

R ≡ α ⇒ β ⇒ bool
S ≡ λf :: α ⇒ β ⇒ bool .

∃ab. f = λx :: α y :: β.x = a ∧ y = b

T ≡ α× β (× infix)

It is convenient to define a constant Pair Rep (not to be

confused with Rep×) as follows: Then

Pair Rep a b = λx ::’ a y ::’ b. x=a ∧y=b.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 709

Implementation in Isabelle
Isabelle provides a special syntax for type definitions:

typedef (T)

(typevars) T’ = ”{x. A(x)}”
How is this linked to our scheme:

• the new type is called T ′;

• R is the type of x (inferred);

• S is λx.A x;

• constants Abs T and Rep T are automatically generated.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 710

Isabelle Syntax for Pair Example
constdefs
Pair Rep :: [’ a, ’b] ⇒ [’ a, ’b] ⇒ bool

”Pair Rep ≡ (λ a b. λ x y. x=a ∧y=b)”

typedef (Prod)

(’a, ’b) ”∗” (infixr 20) =

”{f .∃ a b. f=Pair Rep(a::’a)(b ::’ b)}”
The keyword constdefs introduces a constant definition.

The definition and use of Pair Rep is for convenience. There

are “two names” ∗ and Prod.

See Product Type.thy.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Product_Type.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 711

Example: Sums
An element of (α, β) sum is either Inl a ::’ a or Inr b ::’ b.

Consider type α ⇒ β ⇒ bool ⇒ bool . We can regard

f : α ⇒ β ⇒ bool ⇒ bool as a
representation of . . . iff f x y i is true for . . .

Inl a x = a, y arbitrary, and i = True

Inr b x arbitrary, y = b, and i = False.
Similar to pairs.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 712

Isabelle Syntax for Sum Example
constdefs

Inl Rep :: [’ a, ’a, ’b, bool] ⇒ bool

”Inl Rep ≡ (λa. λx y p. x=a ∧p)”

Inr Rep :: [’ b, ’a, ’b, bool] ⇒ bool

”Inr Rep ≡ (λb. λx y p. y=b ∧¬p)”

typedef (Sum)

(’a ,’ b)”+” =

”{f . (∃ a. f = Inl Rep(a ::’ a)) ∨
(∃ b. f = Inr Rep(b ::’ b))}”

See Sum Type.thy.

Exercise: How would you define a type even based on nat?

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Sum_Type.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 713

Summary
• We have introduced a method to safely build up larger

theories

• . . . and built sums and products

• . . . and sets !

(i.e. we have a method to overcome

the problem of inconsistencies for

the crucial problems !)

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 714

More Detailed Explanations

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 715

Axioms or Rules
Inside Isabelle, axioms are thm’s, and they may include Isabelle’s

metalevel implication =⇒. For this reason, it is not required to mention

rules explicitly.

But speaking more generally about HOL, not just its Isabelle

implementation, one should better say “rules” here, i.e., objects with a

horizontal line and zero or more formulas above the line and one formula

below the line.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 716

Provable Formulas
The provable formulas are terms of type bool derivable using the

inference rules of HOL and the empty assumption list. We write Th(T)
for the derivable formulas of a theory T .

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 717

Closed Terms
A term is closed or ground if it does not contain any free variables.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 718

Definition of True Is Type-Closed
True is defined as λx :: bool . x = λx. x and not λx :: α.x = λx. x. The

definition must be type-closed.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 719

Fixpoint Combinator
Given a function f : α ⇒ α, a fixpoint of f is a term t such that f t = t.

Now Y is supposed to be a fixpoint combinator, i.e., for any function f ,

the term Y f should be a fixpoint of f . This is what the rule

∀f :: α ⇒ α.Y f = f (Y f)
fix

says. Consider the example f ≡ ¬. Then the axiom allows us to infer

Y (¬) = ¬(Y (¬)), and it is easy to derive False from this. This axiom is

a standard example of a non-conservative extension of a theory.

This inconsistency is not surprising: Not every function has a fixpoint, so

there cannot be a combinator returning a fixpoint of any function.

Nevertheless, fixpoints are important and must be realized in some way,

as we will see later.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 720

Side Conditions
By side conditions we mean

• E does not contain c and is closed;

• no subterm of E has a type containing a type variable that is not

contained in the type of c;

in the definition.

The second condition also has a name: one says that the definition must

be type-closed.

The notion of having a type is defined by the type assignment calculus.

Since E is required to be closed, all variables occurring in E must be

λ-bound, and so the type of those variables is given by the type

superscripts.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 721

Domains of Σ, Γ
The domain of Σ, denoted dom(Σ), is {c | (c :: A) ∈ Σ for some A}.
Likewise, the domain of Γ, denoted dom(Γ), is

{x | (x :: A) ∈ Γ for some A}.
Note the slight abuse of notation.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 722

constdefs
In Isabelle theory files, consts is the keyword preceding a sequence of

constant declarations (i.e., this is where the Σ is defined), and defs is

the keyword preceding the constant definitions defining these constants

(i.e., this is where the A is defined.

constdefs combines the two, i.e. it allows for a sequence of both

constant declarations and definitions, and the theorem identifier c def is

generated automatically. E.g.

constdefs
id :: ”’a ⇒ ’a”

”id ≡λ x. x”

will bind id def to id ≡ λx.x.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 723

S
Here, S is any “predicate”, i.e., term of type R ⇒ bool , not necessarily a

constant.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 724

Fresh T
The type constructor T must not occur in χ.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 725

What Is T?
We use the letter χ to denote the set of type constructors (where the

arity and fixity is indicated in some way). So since T ∈ χ′, we have that

T should be a type constructor. However, we abuse notation and also

use T for the type obtained by applying the type constructor T to a

vector of different type variables (as many as T requires).

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 726

]
The symbol] denotes disjoint union, so the expression A]B is

well-formed only when A and B have no elements in common.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 727

What Are AbsT and RepT?
Of course we are giving a schematic definition here, so any letters we use

are meta-notation.

Notice that AbsT and RepT stand for new constants. For any new type

T to be defined, two such constants must be added to the signature to

provide a generic way of obtaining terms of the new type. Since the new

type is isomorphic to the “subset” S, whose members are of type R, one

can say that AbsT and RepT provide a type conversion between (the

subset S of) R and T .

So we have a new type T , and we can obtain members of the new type

by applying AbsT to a term t of type R for which S t holds.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 728

Isomorphism
The formulas

∀x.AbsT (RepT x) = x

∀x.S x ⇒ RepT (AbsT x) = x

state that the “set” S and the new type T are isomorphic. Note that

AbsT should not be applied to a term not in “set” S. Therefore we have

the premise S x in the above equation.

Note also that S could be the “trivial filter” λx. True. In this case,

AbsT and RepT would provide an isomorphism between the entire type

R and the new type T .

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 729

Proof Obligation
We have said previously that S should be a non-empty “subset” of T .

Therefore it must be proven that ∃x. S x. This is related to the

semantics.

Whenever a type definition is introduced in Isabelle, the proof obligation

must be shown inside Isabelle/HOL. Isabelle provides the typedef
syntax for type definitions, as we will see later.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 730

Inhabitation in the set Example
We have S ≡ λx :: α ⇒ bool . T rue, and so in (∃x.Sx), the variable x

has type α ⇒ bool . The proposition (∃x.Sx) is true since the type

α ⇒ bool is inhabited, e.g. by the term λx :: α. True or λx :: α. False.

Beware of a confusion: This does not mean that the new type α set,

defined by this construction, is the type of non-empty sets. There is a

term for the empty set: The empty set is the term Absset (λx. False).
Recall a previous argument for the importance of inhabitation.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 731

Trivial S
We said that in the general formalism for defining a new type, there is a

term S of type R ⇒ bool that defines a “subset” of a type R. In other

words, it filters some terms from type R. Thus the idea that a predicate

can be interpreted as a set is present in the general formalism for

defining a new type.

Now we are talking about a particular example, the type α set. Having

the idea “predicates are sets” in mind, one is tempted to think that in

the particular example, S will take the role of defining particular sets,

i.e., terms of type α set. This is not the case!

Rather, S is λx.True and hence trivial in this example. Moreover, in the

example, R is α ⇒ bool , and any term r of type R defines a set whose

elements are of type α; Absset r is that set.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 732

Collect
We have seen Collect before in the theory file exercise 03 (näıve set

theory).

Collect f is the set whose characteristic function is f . The usual

concrete syntax is {x | f x}. The construct is called set comprehension.

Note also that Collect is the same as Absset here, so there is no need to

have them as separate constants, and for this reason Isabelle theory file

Set.thy only provides Collect.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/ws0405/csmr/material/exercise_03.pdf
http://isabelle.in.tum.de/library/HOL/Set.html
http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 733

The ∈-Sign
We define

x ∈ A = (Repset A) x

Since Repset has type α set ⇒ (α ⇒ bool), this means that x is of type

α and A is of type (α ⇒ bool). Therefore ∈ is of type

α ⇒ (α set) ⇒ bool (but written infix).

In the the Isabelle theory Set.thy, you will indeed find that the constant

op : (Isabelle syntax for ∈) has type [α, α set] ⇒ bool . However, you will

not find anything directly corresponding to Repset.

One can see that this setup is equivalent to the one we have here (which

was presented like that for the sake of generality). There are two axioms

in Set.thy:

axioms
mem Collect eq [iff]: ”(a : {x. P(x)}) = P(a)”

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Set.html
http://isabelle.in.tum.de/library/HOL/Set.html
http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 734

Collect mem eq [simp]: ”{x. x:A} = A”

These axioms can be translated into definitions as follows:

a ∈ {x | P x} = P a
a ∈ (Collect P) = P a
a ∈ (Absset P) = P a
Repset(Absset P) a = P a Repset(Absset P) = P

The last step uses extensionality.

Now the second one:

{x | x ∈ A} = A
{x | (RepsetA) x} = A
Collect(RepsetA) = A

Ignoring some universal quantifications (these are implicit in Isabelle),

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 735

these are the isomorphy axioms for set.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 736

Consistent Set Theory
Typed set theory is a conservative extension of HOL and hence

consistent.

Recall the problems with untyped set theory.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 737

“Exactly one” Term
When we say that there is “exactly one” f , this is meant modulo equality

in HOL. This means that e.g. λx :: α y :: β.y = b ∧ x = a is also such a

term since (λx :: α y :: β.x = a ∧ y = b) = (λx :: αy :: β. y = b ∧ x = a)
is derivable in HOL.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 738

Rep×
Rep× would be the generic name for one of the two

isomorphism-defining functions.

Since Rep× can not be represented directly for lexical reasons, type

definitions in Isabelle provide two names for a type, one if the type is

used as such, and one for the purpose of generating the names of the

isomorphism-defining functions.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 739

Iteration of λ’s
We write λa :: α b :: β. λx :: α y :: β. x = a ∧ y = b rather than

λa :: α b :: β x :: α y :: β.x = a ∧ y = b to emphasize the idea that one

first applies Pair Rep to a and b, and the result is a function

representing a pair, wich can then be applied to x and y.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 740

Sum Types
Idea of sum or union type: t is in the sum of τ and σ if t is either in τ or

in σ. To do this formally in our type system, and also in the type system

of functional programming languages like ML, t must be wrapped to

signal if it is of type τ or of type σ.

For example, in ML one could define

datatype (α, β) sum = Inl α | Inr β

So an element of (α, β) sum is either Inl a where a :: α or Inr b where

b :: β.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 741

Defining even
Suppose we have a type nat and a constant + with the expected

meaning. We want to define a type even of even numbers. What is an

even number?

The following choice of S is adequate:

S ≡ λx.∃n. x = n + n

Using the Isabelle scheme, this would be

typedef (Even)

even = ”{x. ∃ y.x=y+y}”
We could then go on by defining an operation PLUS on even, say as

follows:

constdefs

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 742

PLUS::[even,even] → even (infixl 56)

PLUS def ”op PLUS ≡λxy. Abs Even(Rep Even(x)+Rep Even(x))”

Note that we chose to use names even and Even, but we could have

used the same name twice as well.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[GM93] Michael J. C. Gordon and Tom F. Melham, editors. Introduction to HOL.
Cambridge University Press, 1993.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16812)

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Part IV:The Semantic Approach (HOL)
	Higher-Order Logic: Conservative Extensions
	Conservative Theory Extensions: Basics
	Constant Definition
	Type Definitions
	More Detailed Explanations

	Part V:Applications
	References
	References

