Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and
Burkhart Wolff

April 2005

http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Logic:
Conservative Extensions

Burkhart Wolff

Higher-Order Logic: Conservative Extensions 690

Outline

In the previous lecture, we have derived all well-known
inference rules. There is now the need to scale up. Today we
look at conservative theory extensions, an important method
for this purpose.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Logic: Conservative Extensions 690

Outline

In the previous lecture, we have derived all well-known
inference rules. There is now the need to scale up. Today we
look at conservative theory extensions, an important method
for this purpose.

In the weeks to come, we will look at how mathematics is
encoded in the Isabelle/HOL library.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 691

Conservative Theory Extensions: Basics

Basic definitions (c.f. [GM93]):

Definition 1 (theory):

A (syntactic) theory T is a triple (x, >, A), where x is a type
signature, X a signature and A and a set of axioms.
Definition 2 (theory extension):

A theory T" = (X', X', A’) is an extension of a theory
T=(x,2,A)iff xyCx'and X C ¥ and A C A’

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 692

Definitions (Cont.)
Definition 3 (conservative extension):

A theory extension T" = (', X', A") of a theory
T = (x, 2, A) is conservative iff for the set of provable

formulas Th we have
Th(T) = Th(T’) 5

where |y; filters away all formulas not belonging to ..

Counterexample:

Victa=a Y f=f(Yf)

fix

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 693

Consistency Preserved

Corollary 1 (consistency):
If 7" is a conservative extension of 1', then

False ¢ Th(T) = False ¢ Th(T").

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conservative Theory Extensions: Basics 694

Syntactic Schemata for Conservative
Extensions
e Constant definition
e Type definition
e Constant specification
e Type specification

Will look at first two schemata now.
For the other two see [GM93].

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 695

Constant Definition

Definition 4 (constant definition):

A theory extension T" = (', X', A") of a theory
T = (x, 2, A) is a constant definition, iff

e \'=xand X' =X U{c:: 7}, where c ¢ dom(>);
e A'=AU{c=F};
e F/ does not contain ¢ and is closed:

e no subterm of E/ has a type containing a type variable that
Is not contained in the type of c.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 696

Constant Definitions Are Conservative

Lemma 1 (constant definitions):

Constant definitions are conservative.

Proof Sketch:

o Th(T) C Th(T") |y : trivial.

e Th(T) D Th(T") |y : let ' be a proof for ¢ € Th(T") |s.
We unfold any subterm in '’ that contains cviac=F
into 7. Then m must be a proof in T', implying ¢ € Th(T).

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 697

Side Conditions
Where are those side conditions needed? What goes wrong?

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 697

Side Conditions

Where are those side conditions needed? What goes wrong?
Very simple example: Let £ =dz :: ay :: a. z # y and
suppose o Is a type inhabited by only one term, and 7 is a
type inhabited by at least two terms. Then we would have:

c=c holds by refl
— (ruoyuorFy)=Fx:Ty:T.2FY)
—> False =True
—> False

This explains definition of T'rue. Other (standard) example
later.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition

698

Constant Definition: Examples

Definitions of True, False, N\, V, ¥V revisited.

True def:
All def :
Ex def:
False def :
not_def:
and_def:
or _def:

If def :

True = ((Ax::bool. x) = (Ax. x))
All(P) =(P = (Ax. True))

Ex(P) =V Q. (Vx. P x—Q) —Q
False =(VP. P)

- P =P—False

PAQ =VR. (P >Q >R) —R

PvQ =VR. (P—R) —(Q—R) —R

If Pxy =THE z::"a. (P=True —z=x) A
(P=False —z=y)

Recall that All(P) is syntactically equivalent to V x. P x,
Ex(P) equivalent to 4 x. P x.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Constant Definition 699

More Constant Definitions in Isabelle
let —in—, if —then—else, unique existence:

consts

Let : ['a, 'a= 'b] = 'b
If .. [bool, "a, 'a] = 'a
defs

Let def "Let s f =f(s)"

if def " If Pxy =THE z::'a.(P=True=z=x) A
(P=False=z=y)"

Ex1 def "Ex1(P) =3x. P(x) A (Vy. P(y) = y=x)"

Recall: = is function type arrow; also recall syntax for
..] = ..

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 200

Type Definitions

Type definitions, explained intuitively: we have
e an existing type R;

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 700

Type Definitions

Type definitions, explained intuitively: we have
e an existing type R;

e a predicate S : R = bool, defining a non-empty “subset”
of R;

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 700

Type Definitions

Type definitions, explained intuitively: we have
e an existing type R;

e a predicate S : R = bool, defining a non-empty “subset”
of R;

e axioms stating an isomorphism between S and the new
type 1.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 701

Type Definition: Definition
Definition 5 (type definition):
Assume a theory Th = (x,2, A) and a type R and a term S
such that X 5 : R = bool.

A theory extension Th' = (x', ¥/, A") of Th is a type
definition for type T' (where T' fresh), iff

X' = x W {T}
>/ > U {Absy: R=T,Repr:T = R}
A’ A U {Vx.Absp(Reprx) = x,
Vr.Sx = Repr(Absrz) = x}
Proof obligation dx. S « can be proven inside HOL!

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 702

Type Definitions Are Conservative
Lemma 2 (type definitions):

Type definitions are conservative.
Proof see [GM93, pp.230].

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 703

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale
applications?

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 703

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale
applications?

But in fact, due to ind and =, the types in HOL are already
very rich.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 703

HOL Is Rich Enough!

This may seem fishy: if a new type is always isomorphic to a
subset of an existing type, how is this construction going to
lead to a “rich” collection of types for large-scale
applications?

But in fact, due to ind and =, the types in HOL are already
very rich.

We now give three examples revealing the power of type
definitions.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 704

Example: Typed Sets

General scheme,

X' = x W AT },
Z/:ZU{AIDST:R = T :
Repr : T =R }

A = A U {Vz.Absy (Repr =) = «,
Vr.Sx = Repr (Absy =) =z}

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 704

Example: Typed Sets

General scheme, substituting R = o = bool (« is any type
variable),

X' = x v {T }

) > U {Absp :(a= bool) =T |
Repr : T = (a= bool)}

A = A U {Vz.Absy (Repr =) = «,
Vr.Sx = Repr (Absy =) =z}

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 704

Example: Typed Sets

General scheme, substituting R = o = bool (« is any type
variable), T = « set (or set),

X' = x W {set},

> Y U {AbSs : (= bool) = « set,
Repset : avset = (a = bool) }

A = A U {Vr.Abssu(Repser) = ,
Vr.Sx = Repse(Absgy) = x}

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 704

Example: Typed Sets

General scheme, substituting R = o = bool (« is any type
variable), T = « set (or set), S = Ax :: a = bool. True

X' = x W {set},

> Y U {AbSs : (= bool) = « set,
Repset : avset = (a = bool) }

A = A U {Vr.Abssu(Repser) = ,
Ve True = Repse(Absgy) = x}

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 704

Example: Typed Sets

General scheme, substituting R = o = bool (« is any type
variable), T = « set (or set), S = Ax :: a = bool. True

X' = x W {set},

> Y U {AbSs : (= bool) = « set,
Repset : avset = (a = bool) }

A = A U {Vr.Abssu(Repser) = ,
V. Repsei(Absges) = x}

Simplification since S = Ax. T'rue. Proof obligation:
(dz. S x) trivial since (dz.True) = True. Inhabitation is
cruciall

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 705

Sets: Remarks

Any function r : 7 = bool can be interpreted as a set of 7; r
Is called characteristic function. That's what Abs,.; r does;
Abs,.; Is a wrapper saying “interpret r as set’ .

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 705

Sets: Remarks

Any function r : 7 = bool can be interpreted as a set of 7; r
Is called characteristic function. That's what Abs,.; r does;
Abs,.; Is a wrapper saying “interpret r as set’ .

S = \x.True and so S is trivial in this case.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 706

More Constants for Sets

For convenient use of sets, we define more constants:

{x| fa} = Collect f = Absger f
reA = (Repse A)
AUB = {x|xe€ AVx e B}

Consistent set theory adequate for most of mathematics and
computer science |

Here, sets are just an example to demonstrate type
definitions. Later we study them for their own sake.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 707

Example: Pairs

Consider type a = 3 = bool. We can regard a term

f:a = [= bool as a representation of the pair (a,b),
where a :: o and b :: 3, iff f xy is true exactly for x = a and
y = b. Observe:

e For given a and b, there is exactly one such f (namely,
Ax ay:Bax=aNy=D).

e Some functions of type a = (3 = bool represent pairs and
others don't (e.g., the function Axy. True does not
represent a pair). The ones that do are exactly the ones
that have the form Az :: ay :: B.x = a Ay = b, for some
a and b.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 708

Type Definition for Pairs

This gives rise to a type definition where S is non-trivial:

R = a= 3= bool
S = AN ta= (3= bool.
Jab. f = ray:B.rxr=aANy=>0
T = axp (x infix)

It is convenient to define a constant Pair_Rep (not to be
confused with Repy) as follows: Then
Pair Rep a b = Ax::"a y::'b. x=a Ay=b.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 709

Implementation in Isabelle

Isabelle provides a special syntax for type definitions:

typedef (T)
(typevars) T ="{x. A(x)}"
How is this linked to our scheme:
e the new type is called T7;
e R is the type of = (inferred);
e Sis \x. Ax;
e constants Abs_T' and Rep_T' are automatically generated.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 710

Isabelle Syntax for Pair Example

constdefs
Pair Rep :: ['a, 'b] = ['a, 'b] = bool
"Pair Rep =(Aa b. Axy. x=a Ay=b)"
typedef (Prod)
("a, 'b) "«" (infixr 20) =
"{f.d ab. f=Pair Rep(a::"a)(b::"b)}"
"he keyword constdefs introduces a constant definition.

"he definition and use of Pair_Rep is for convenience. There
are "two names’ x and Prod.

See Product_Type.thy.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Product_Type.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 711

Example: Sums

An element of («, 3) sum is either Inl a::"aor Inr b::'b.

Consider type o = (3 = bool = bool. We can regard
f:a= B = bool = bool as a

representation of . .. [iff fxy1 is true for . ..
Inl a x = a, y arbitrary, and 1 = True
Inr b x arbitrary, y = b, and 1 = Flalse.

Similar to pairs.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 712

Isabelle Syntax for Sum Example

constdefs

nl Rep :: ['a, 'a, 'b, bool] = bool
nl_ Rep =(Xa. Axy p. x=a Ap)"
nr Rep :: ['b, 'a, 'b, bool] = bool
"Inr_Rep _()\b AXy p. y=b A—p)”
typedef (Sum)

(‘a,’b)"+" =

"{f. (3 a. f = Inl Rep(a::'a)) Vv

(3 b. f = Inr Rep(b::'b))}"

See Sum_Type.thy.

Exercise: How would you define a type even based on nat?

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Sum_Type.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 713

Summary

e We have introduced a method to safely build up larger
theories

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 713

Summary

e We have introduced a method to safely build up larger
theories

e . . . and built sums and products

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Type Definitions 713

Summary

e We have introduced a method to safely build up larger
theories

e . . . and built sums and products

e ...and sets!
(i.e. we have a method to overcome
the problem of inconsistencies for
the crucial problems !)

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 714

More Detailed Explanations

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 715

Axioms or Rules

Inside Isabelle, axioms are thm's, and they may include Isabelle’s
metalevel implication =-. For this reason, it is not required to mention
rules explicitly.

But speaking more generally about HOL, not just its Isabelle
Implementation, one should better say “rules” here, i.e., objects with a
horizontal line and zero or more formulas above the line and one formula
below the line.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 716

Provable Formulas

The provable formulas are terms of type bool derivable using the
inference rules of HOL and the empty assumption list. We write Th(T)
for the derivable formulas of a theory T'.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 717

Closed Terms

A term is closed or ground if it does not contain any free variables.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 718

Definition of True Is Type-Closed

True is defined as Ax :: bool.x = \x.x and not \x :: a.x = Ax.x. The
definition must be type-closed.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 719

Fixpoint Combinator

Given a function f : o = «, a fixpoint of f is a term ¢ such that ft =1¢.
Now Y is supposed to be a fixpoint combinator, i.e., for any function f,
the term Y f should be a fixpoint of f. This is what the rule

fix

Victa=aY f=f(Yf)

says. Consider the example f = —. Then the axiom allows us to infer
Y (=) =—=(Y(—)), and it is easy to derive False from this. This axiom is
a standard example of a non-conservative extension of a theory.

This inconsistency is not surprising: Not every function has a fixpoint, so
there cannot be a combinator returning a fixpoint of any function.

Nevertheless, fixpoints are important and must be realized in some way,
as we will see later.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 720

Side Conditions

By side conditions we mean
e [does not contain ¢ and is closed:

e no subterm of E has a type containing a type variable that is not
contained in the type of ¢;

in the definition.

The second condition also has a name: one says that the definition must

be type-closed.

The notion of having a type is defined by the type assignment calculus.

Since FE is required to be closed, all variables occurring in £/ must be

A-bound, and so the type of those variables is given by the type

superscripts.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 721

Domains of >, I’

The domain of ¥, denoted dom(X), is {c | (c:: A) € X for some A}.
Likewise, the domain of I', denoted dom(T'), is

{x|(zx:: A) €T for some A}

Note the slight abuse of notation.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 722

constdefs

In Isabelle theory files, consts is the keyword preceding a sequence of
constant declarations (i.e., this is where the X is defined), and defs is
the keyword preceding the constant definitions defining these constants
(i.e., this is where the A is defined.

constdefs combines the two, i.e. it allows for a sequence of both
constant declarations and definitions, and the theorem identifier c_def is
generated automatically. E.g.

constdefs
d : "'a = '3ad"
Id =\ x. X'

will bind id_def to 7d = \x.x.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 723

S

Here, S is any “predicate”, i.e., term of type R = bool, not necessarily a
constant.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 724

Fresh T

The type constructor 1" must not occur in Y.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 725

What Is 17

We use the letter x to denote the set of type constructors (where the
arity and fixity is indicated in some way). So since T € x’, we have that
T" should be a type constructor. However, we abuse notation and also
use 1T’ for the type obtained by applying the type constructor 1" to a
vector of different type variables (as many as T requires).

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 726

W,
The symbol W denotes disjoint union, so the expression AW B is
well-formed only when A and B have no elements in common.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 727

What Are Absr and Repr?

Of course we are giving a schematic definition here, so any letters we use
are meta-notation.

Notice that Absr and Repr stand for new constants. For any new type
I" to be defined, two such constants must be added to the signature to
provide a generic way of obtaining terms of the new type. Since the new
type is isomorphic to the “subset” .S, whose members are of type R, one

can say that Absr and Repr provide a type conversion between (the
subset S of) R and T.

So we have a new type T', and we can obtain members of the new type
by applying Abst to a term ¢ of type R for which St holds.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 728

Isomorphism

The formulas
Va.Absp(Reprx) = x

V.S x = Repr(Absrx) =
state that the “set” S and the new type 1’ are isomorphic. Note that
Abst should not be applied to a term not in “set” S. Therefore we have
the premise S = in the above equation.

Note also that S could be the “trivial filter” Ax.True. In this case,
Abst and Repr would provide an isomorphism between the entire type
R and the new type T'.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 729

Proof Obligation

We have said previously that S should be a non-empty “subset” of T'.
Therefore it must be proven that dx. S . This is related to the
semantics.

Whenever a type definition is introduced in Isabelle, the proof obligation
must be shown inside Isabelle/HOL. Isabelle provides the typedef
syntax for type definitions, as we will see later.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 730

Inhabitation in the set Example

We have S = Az :: a = bool. True, and so in (dx.Sx), the variable x
has type o = bool. The proposition (dz.5x) is true since the type

a = bool is inhabited, e.g. by the term A\x :: a. T'rue or A\x :: a.. False.
Beware of a confusion: This does not mean that the new type « set,
defined by this construction, is the type of non-empty sets. There is a
term for the empty set: The empty set is the term Abs,; (Ax. False).

Recall a previous argument for the importance of inhabitation.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 731

Trivial S

We said that in the general formalism for defining a new type, there is a
term S of type R = bool that defines a “subset” of a type R. In other
words, it filters some terms from type R. Thus the idea that a predicate
can be interpreted as a set is present in the general formalism for
defining a new type.

Now we are talking about a particular example, the type a set. Having
the idea “predicates are sets’ in mind, one is tempted to think that in
the particular example, S will take the role of defining particular sets,
l.e., terms of type a set. This is not the case!

Rather, S is Ax.T'rue and hence trivial in this example. Moreover, in the
example, R is a = bool, and any term r of type R defines a set whose
elements are of type «; Abs,. r is that set.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 732

Collect

We have seen Collect before in the theory file exercise_03 (naive set
theory).

Clollect f is the set whose characteristic function is f. The usual
concrete syntax is {x | f x}. The construct is called set comprehension.
Note also that Clollect is the same as Abs,.; here, so there is no need to

have them as separate constants, and for this reason Isabelle theory file
Set.thy only provides Collect.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/ws0405/csmr/material/exercise_03.pdf
http://isabelle.in.tum.de/library/HOL/Set.html
http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 733

The &-Sign

We define

re€A = (Repsyr A) x
Since Repg.; has type a set = (a = bool), this means that x is of type
a and A is of type (a = bool). Therefore € is of type
a = (a set) = bool (but written infix).
In the the Isabelle theory Set.thy, you will indeed find that the constant
op : (Isabelle syntax for €) has type [a, a set] = bool. However, you will
not find anything directly corresponding to Repge:.

One can see that this setup is equivalent to the one we have here (which
was presented like that for the sake of generality). There are two axioms
in Set.thy:

mem _Collect eq [iff |: "(a : {x. P(x)}) = P(a)"

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Set.html
http://isabelle.in.tum.de/library/HOL/Set.html
http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 734

Collect mem eq [simp]: "{x. x:A} = A"

These axioms can be translated into definitions as follows:

a€{xr|Px}=Pa~

a € (Collect P) = Pa ~

a € (Absser P) = Pa ~~

Repset(Absger P)a = P a ~ Repget(Absser P) = P

The last step uses extensionality.
Now the second one:

{x|xe A} = A~
{x | (RepsetA) x} = A ~
Collect(RepsetA) = A

lgnoring some universal quantifications (these are implicit in Isabelle),

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 735

these are the isomorphy axioms for set.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 736

Consistent Set Theory

Typed set theory is a conservative extension of HOL and hence
consistent.

Recall the problems with untyped set theory.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 737

“Exactly one” Term

When we say that there is “exactly one” f, this is meant modulo equality
in HOL. This means that e.g. Ax :: ay :: B.y =bAx = a is also such a

term since (Ax s ay = fr=aNy=b)=Ar:ay:[f.y=bAx=a)
is derivable in HOL.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 738

Rep

Rep, would be the generic name for one of the two
iIsomorphism-defining functions.

Since Rep, can not be represented directly for lexical reasons, type
definitions in Isabelle provide two names for a type, one if the type is

used as such, and one for the purpose of generating the names of the
iIsomorphism-defining functions.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 739

Iteration of \'s
We write Aa :: ab:: 8. Ax ::ay :: 8. x = a Ay = b rather than
Aaab:fxay: f.x=a/y=>btoemphasize the idea that one
first applies Pair_Rep to a and b, and the result is a function
representing a pair, wich can then be applied to and .

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 740

Sum Types

ldea of sum or union type: ¢ is in the sum of 7 and o if t is either in 7 or
in 0. To do this formally in our type system, and also in the type system
of functional programming languages like ML, ¢ must be wrapped to
signal if it is of type 7 or of type o.

For example, in ML one could define
datatype (o,) sum = Inl o | Inr 3

So an element of («, 3) sum is either Inl a where a :: a or Inr b where

b:: .

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 741

Defining even

Suppose we have a type nat and a constant + with the expected
meaning. We want to define a type even of even numbers. What is an
even number?

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 741

Defining even

Suppose we have a type nat and a constant + with the expected
meaning. We want to define a type even of even numbers. What is an
even number?

The following choice of S is adequate:
S=X .dn.x=n+n

Using the Isabelle scheme, this would be
typedef (Even)
even = "{x. 3 y.x=y+y}"
We could then go on by defining an operation PLUS on even, say as
follows:

constdefs

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 742

PLUS::[even,even] — even (56)
PLUS def "op PLUS =Axy. Abs Even(Rep_Even(x)+Rep_Even(x))"

Note that we chose to use names even and Even, but we could have
used the same name twice as well.

Wolff: HOL: Conservative Extensions; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[GMO93] Michael J. C. Gordon and Tom F. Melham, editors. Introduction to HOL.
Cambridge University Press, 1993.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http . //WWW .1nfsec.e

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Part IV:The Semantic Approach (HOL)
	Higher-Order Logic: Conservative Extensions
	Conservative Theory Extensions: Basics
	Constant Definition
	Type Definitions
	More Detailed Explanations

	Part V:Applications
	References
	References

