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Isabelle/HOL at Work

We have seen how the mechanism of conservative extensions
works in principle.

For several lectures, we will now look at theories of the
Isabelle/HOL library, all built by conservative extensions and
modelling significant portions of mathematics.
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Sets: The Basis of Principia Mathematica

Discoveries in mathematics:

e 17th century: geometry can be reduced to numbers
(Descartes, Leibniz, . . .)

e 10th century: numbers can be reduced to sets
(Cantor, Peano, Frege [Fre93, Fre03], .. .)

e 20th century: sets can be represented in logics
(Zermelo/Frankel, Russel/Whitehead [WR25],

Godel /Bernays, . . . )
As a collection of formalized theories, we call this the
Principia Mathematica Structure [WR25].
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Interesting: The libraries of modern theorem provers follow
this structure . . .
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The Roadmap
e Orders
e Sets
e Functions
e (Least) fixpoints and induction
e (Well-founded) recursion
e Arithmetic
e Datatypes
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Orders
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The Roadmap

We are looking at how the different parts of mathematics are
encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes
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Three Order Classes

We first define a syntactic class ord. It is the class of types
for which symbols < and < exist.

We then define two axiomatic classes order and linorder for
which < and < are required to have certain properties, that
of being a partial order, or a linear order, resp.
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Orders (in HOL. thy)

axclass
ord < type
consts
"op <" :: ['a:iord, 'a] = bool
"op <" :: ["a:ord, 'a] = bool
constdefs
min :: "['a:ord, 'a] = 'a"
"min a b =(if a <b then a else b)"
max :: "['a:ord, "a] = 'a"

"max a b =(if a <b then b else a)”

Recall constdefs syntax and note two uses of <.
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Orders in HOL.thy (Cont.)

axclass order < ord
order refl "x <X"
order trans "[x <y; y <z|] = x <"
order_antisym "[x <y; y <x|] =x =y"
order less le "x <y = (x <y Ax "=y)"

axclass linorder < order
linorder_linear "x <y Vy <x"
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Least Elements
In HOL .thy, least elements used to be defined as:

Least :: "('a::ord = bool) = "a"
Least def "Least P =THE x. P(x) A
(V' y. P(y) =x <y)’
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Monotonicity

In HOL.thy, monotonicity used to

be defined as:
= bool

mono : ['azzord = 'b:irord
mono_def "mono(f) =
(VA B. A <B =f(A

) <f(B))
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Some Theorems about Orders

monol (NABA<B=— fA< fB)
—> mono f

monoD lmono f; A< B|=— fAL B

order_eq_refl rT=yYy—>x <Y

order_less_irrefl <X

order_le_less (x<y)=(r<yVza=y)

linorder_less_linear z<yVoe=yVvVy<zx

linorder_neq_iff (x#y) =(r<yVy<zx

min_same MmiNTr==x

le_min_iff_conj (z<minzy)=(z<xANz<y)
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Discussion of Orders

Type classes are a structuring mechanism in Isabelle:

e Syntactic classes (e.g. t :: o :: ord as in Haskell
[HHPW96]): merely a mechanism to structure visibility of
operations.

e Axiomatic classes (e.g. t :: « :: order): a mechanism for
structuring semantic knowledge in types (foundation to be
discussed later).
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Sets
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The Roadmap

We are still looking at how the different parts of
mathematics are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes
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Set.thy

theory Set = HOL:
typedecl 'a set
instance set :: (type) ord
consts

T w Taset (M{)7)

UNIV 1 "a set

Collect :: ('a = bool) = "a set
"op: & "'a= 'aset = bool"

Note that Collect and “:" (alias: €) correspond to Abs.
and Repg.:.
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Set. thy More Constant Declarations

insert 'a, 'a set] = 'a set
U, N 'a set, 'a set] = 'a set
Ball, Bex 1 ['a set, "a = bool|] = bool
UNION, INTER:: ['a set, 'a = 'b set] = 'b set
SHA 2 (("a set) set) = 'a set
There Is the equivalent syntax:
{x,y, 2} for insert z (insert y (insert z {}))
Vao:A Sx for Ball A S
dx:A.Sr for Bex A S
U..q-Sz for UNION A S
N,eq-Sz for INTER A S
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Set.thy: Constant Definitions

empty_def: "{} ={x. False}"

UNIV def: "UNIV ={x. True}"

Un def: "A UB ={x. x€A vxeB}"

Int def : "A NB ={x. x€A AxeB}”
insert def : " insert a B ={x. x=a} UB"
Ball def : "Ball AP =V x. xeA —P(x)"
Bex def: "Bex A P =dx. xeA AP(x)"
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Set.thy: Constant Definitions (2)

subset def: "A <B =V x€A. xeB”

Compl def:  "— A ={x. =x€A}"

set_diff def : "A — B ={x. xeA A—xeB}"

UNION def:  "UNION A B ={y. dx€A. ye B(x)}"
INTER def: "INTER A B ={y. Vx€A. yeB(x)}"

Note use of < instead of ClI
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Set.thy: Constant Definitions (3)

Union def: ") S =(lJ x&S. x)"

Inter def : "] S =(INT xeS. x)"

Pow_def: "Pow A ={B. B <A}"

image def: A ={y. dxeA.y =1(x)}"
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Some Theorems in Set.thy

CollectI Pa=—ae€{z.Px}

CollectD a € {rx.Px} = Pa

set_ext (ANx.(r€eA)=(xreB)— A=01B
subsetI (ANewce A=—xeB)— ACB
eqset_imp_iff A=B = (x € A) = (x € B)
UNIV_I xr € UNIV

subset_UNIV A C UNIV

empty_subsetI {} C A

Pow_iff (A € PowB) = (A C B)
IntI lce A;ce Bl=—=ce ANB
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More Theorems in Set.thy

insert_iff (a € insertbA) =(a=bVaec A)
image_Un f(AUB)=f‘AU f‘B
Inter_lower BeA=(1ACB

Inter_greatest (NX.XeA=CCX)=CCA4A
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Discussion of Sets

Rich and powerful set theory available in HOL.:
e No problems with consistency

e \Weaker than ZF (since typed set-theory:) there is no
“union of sets”; but: complement-closed

e Good mechanical support for many set tautologies (both
for classical reasoning as well as simplification)

e Powerful basis for many problems in modeling.
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Functions
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The Roadmap

We are still looking at how the different parts of
mathematics are encoded in the Isabelle/HOL library.

e Orders

e Sets

e Functions

e (Least) fixpoints and induction
e (Well-founded) recursion

e Arithmetic

e Datatypes
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Fun.thy

The theory Fun.thy defines some important notions on
functions, such as concatenation, the identity function, the
image of a function, etc.

We look at it briefly.
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Two Extracts from Fun.thy

Composition and the identity function:

constdefs
d :: "'a = "3a"
Id =\ x. X'

comp: "['b="c, 'a="b, 'a] = "
"fog=Ax. f(g(x))"
There are also definitions for function update, function
override and theorems for concepts such as injectivity,
surjectivity and bijectivity.

Compare the syntax for constdefs.
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Instantiating an Axiomatic Class

Sets are partial orders: set is an instance of the axiomatic
class order.

instance set :: (type) order
apply (auto) done

e Axiomatic classes result in proof obligations.

e [hese are discharged whenever instance Is stated.

e [ype-checking has access to the established properties.
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Conclusion of Orders, Sets, and Functions

® conservative extensions can be used to build consistent
libraries.

e Sets as one important package of Isabelle/HOL library:
o Set theory is typed, but very rich and powerfully supported.

o Sets are instance of ord and order type class, demonstrates type
classes as structuring mechanism in Isabelle.
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More Detailed Explanations
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Different uses of <
Note: the < may occur in different lexical categories, e.g.:
axclass order < ord

in the theory file states that order is a subclass of ord.

Compare to the declaration
"op <" i ['auord, 'a] = bool ("(. < )" [50, 51] 50)

where a constant < with a certain type is introduced.
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Semantic Classes for Semantic Knowledge

The Isabelle type system records for any type variable what class
constraints there are for this type variable. These class constraints may
arise from the types of the constants used in an expression, or they may
be given explicitly by the user in a goal. E.g. one might type

lemma " (x::'a::order)<y =x<y";

to specify that x must be of a type in the type class order.

The axioms of an axiomatic class can only be applied if any constant
declared in the axiomatic class (or a syntactic superclass) is applied to
arguments of a type in the axiomatic class. E.g. order_refl can only be
used to prove y <y if the type of y is in the type class order.

In this sense the type information (y is of type in class order) is semantic
knowledge (y <y holds).
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< instead of C

Sets are an instance of the type class ord, where the generic constant <
Is the subset relation in this particular case.

In fact, the subset relation is reflexive, transitive and anti-symmetric, and
so sets are an instance of the axiomatic class order. This is non-obvious
and must be proven as part of the instance statement.
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Union of Arbitrary Sets?

In typed set theory (what we have here in HOL), it is not possible to
form the union of two sets of different type. This is in contrast to ZF.
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Typed Sets Are Complement-Closed

The complement of a typed set A, i.e.

|z ¢ A}

IS again a set, whose type is the same as the type of A. In ZF, the
complement construction is not generally allowed since it opens the door
to Russell’'s Paradox.
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Proof Obligations

To claim that a type is an instance of an axiomatic class, it has to be
proven that the axioms (in the case pf order: order refl , order trans,
order_antisym, and order_less le are indeed fulfilled by that type.

Wolff: HOL: Basic Library; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 781

Discharge Obligations

The Isabelle mechanism is such that the line

instance set :: (type) order
apply(auto) done

Instructs Isabelle to prove the axioms using the previously proven
theorems subset refl , subset trans, subset antisym, and psubset eq.
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