
Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and

Burkhart Wolff

April 2005
http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Logic:
Well-Founded Recursion

Burkhart Wolff

Higher-Order Logic: Well-Founded Recursion 845

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion(Well-founded) recursion

• Arithmetic

• Datatypes

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Motivation 846

Motivation

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Motivation 847

Motivation(1)
After least fixpoints, well-founded recursion is our second

concept of recursion represented by another fixpoint

combinator.

Idea: Modeling “terminating” recursive functions,

i.e. recursive definitions that use “smaller” arguments for the

recursive call.

Claim: An axiom like:

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

is no problem since “it terminates” !

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Motivation 848

Motivation(2)
However: Logic talks about validity, not execution !

Moreover: is this true? What does this mean precisely ?

1. Consider: fac :: int → int !

2. Consider:

fac = (λn. if n = 0 then 1 else n ∗ fac(n + 1))

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Motivation 849

Motivation(3)
1) shows that arguments must be ordered wrt. to a

well-founded (“terminating”) ordering,

2) shows that the context of the recursive call (“the function

body”) must be coherent, i.e. it must supply only

arguments to the recursive call which are lesser w.r.t. this

ordering.

How can this be modeled?

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Motivation 850

Motivation(4)
One aspect of the problem: In HOL we can represent the

“context of a recursive call”. Reconsider:

fac = (λn. if n = 0 then 1 else n ∗ fac(n− 1))

Abstracting the recursive call yields:

Fac = (λf. λn. if n = 0 then 1 else n ∗ f(n− 1))

We say: Fac is the body of fac.

Recall that a general fixpoint combinator can define fac by

its body by Y Fac and thus solve fac = Fac fac.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Motivation 851

In the sequel, we will define and explore the

• concept of well-founded ordering

• concept of coherence of a body

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Prerequisite: Relations 852

Prerequisite: Relations

We need some standard operations on binary relations (sets

of pairs), such as converse, composition, image of a set and

a relation, the identity relation, . . .

These are provided by Relation.thy.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Relation.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Prerequisite: Relations 853

Relation.thy (Fragment)
constdefs

converse :: (’a×’b)set ⇒ (’b×’a) set (”(ˆ−1)” ..)

rˆ−1 ≡{(y, x). (x, y) ∈ r}
rel comp :: [(’ b×’c)set, (’a×’b)set] ⇒ (’a×’c)set

(”(O)” ..)

r O s ≡{(x,z). ∃ y. (x, y)∈s ∧ (y, z)∈r}
Image :: [(’ a×’b)set, ’a set] ⇒ ’b set (”(“)” ..)

r “ s ≡{y. ∃ x∈s. (x,y)∈r}
Id :: (’a×’a) set

Id ≡{p. ∃ x. p = (x,x)}

As can be expected, these notions are similar to Fun.thy.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Relation.html
http://isabelle.in.tum.de/library/HOL/Fun.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Prerequisite: Closures 854

Prerequisite: Closures

We need the transitive, as well as the reflexive transitive

closure of a relation.

These are provided by Transitive Closure.thy.

How would you define those inductively

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Transitive_Closure.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Prerequisite: Closures 855

Transitive Closure.thy (Fragment)
consts
rtrancl :: (’a × ’a) set ⇒ (’a × ’a) set

(”(ˆ∗)” ..)

inductive ”rˆ∗”
intros

rtrancl refl [...]:

(a, a) ∈ rˆ∗
rtrancl into rtrancl [...]:

[[(a, b) ∈ rˆ∗; (b, c) ∈ r]]=⇒ (a, c) ∈ rˆ∗

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Transitive_Closure.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Prerequisite: Closures 856

Transitive Closure.thy (Fragment Cont.)
consts
trancl :: (’a × ’a) set ⇒ (’a × ’a) set (”(ˆ+)” ..)

inductive ”rˆ+”

intros
r into trancl [...]:

(a, b) ∈ r =⇒ (a, b) ∈ rˆ+

trancl into trancl [...]:

(a, b) ∈ rˆ+ =⇒(b, c) ∈ r =⇒ (a,c) ∈ rˆ+

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Transitive_Closure.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 857

Well-Founded Orderings

Defined in Wellfounded Recursion.thy.

Wellfounded Recursion = Transitive Closure +

constdefs
wf :: (’a × ’a) set ⇒ bool

wf(r) ≡ (∀ P. (∀ x. (∀ y. (y,x)∈r −→P(y))

−→P(x)) −→ (∀ x. P(x)))

In other words . . . A relation r is well-founded iff

well-founded (Noetherian) induction based on r is a valid

proof scheme. This is conservative, fine. But does it meet

our intuition of “termination”?

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Wellfounded_Recursion.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 858

Gaining Intuition of Well-Foundedness
A first reality-check: Is ∅ well-founded?

The definition of wf is:

Let’s instantiate r to ∅.

wf (r∅) ≡ ∀P.True(∀x.(∀y.TrueFalse(y, x) ∈ r∅ → P (y)) → P (x)) → (∀x.P (x))

So the empty set is well-founded.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 859

Gaining Intuition of Well-Foundedness
Intuition of wf : All descending chains are finite.

But: concept of “finite chain” is difficult to express; we

therefore look for for alternatives.

• Not symmetric: (x, y) ∈ r → (y, x) /∈ r?

• No cycles: (x, x) /∈ r+?

• r has minimal element: ∃x.∀y.(y, x) /∈ r?

Note: Trivial for r = ∅.
• Any subrelation must have minimal element:

∀p.p ⊆ r → ∃x.∀y.(y, x) /∈ p? “Minimal

element” badly formalized (already in previous

point).

• - •

6

•

?

•�

•
•
•
•
•
•
•
•
•
•

?

?

?

?

?

?

?

?

?

...

•
•
•
•
•
•

?

?

?

?

?

��	 @@R

•
•
•
•

?

?

?

•

...

•
•
•
•
•
•

?

?

?

?

?

��	

•
•
•
•

?

?

?

•

...
Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 860

The Characterisation
All these attempts are just necessary but not sufficient

conditions for well-foundedness.

Here is a characterization:

wf r = ∀r′. r′ 6= {}∧r′ ⊆ r −→ (∃x ∈ Domain r′.∀y.(y, x) /∈ r′)

Here is an alternative characterization:

wf r = (∀Qx. x ∈ Q −→ (∃x ∈ Q. ∀y.(y, x) ∈ r −→ y /∈ Q))

Let’s see some theorems to confirm our intuition, including

the statements just shown.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 861

A Theorem for Induction
By massage of the definition of well-foundedness

∀P.(∀x.(∀y.(y, x) ∈ r −→ P y) −→ P x) −→ (∀x.P x)

one obtains the theorem wf\ induct

[[wf r;
∧

x.∀y.(y, x) ∈ r −→ P y =⇒ P x]] =⇒ P a.

This is a form suitable for doing induction proofs in Isabelle.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 862

Induction Theorem as Proof Rule
The Isabelle theorem wf induct

[[wf r;
∧

x.∀y.(y, x) ∈ r −→ P y =⇒ P x]] =⇒ P a.

as proof rule:

wf r

[∀y.(y, x) ∈ r −→ P y]
....

P x

P a
wf induct

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 863

A Theorem on Antisymmetry
wf not sym: \<lbrakk wf r ; (a, x) \in r]] =⇒ (x, a) ∈ r

Proof sketch:

wf r

[∀y.(y, x) ∈ r → (∀z.(y, z) ∈ r → (z, y) /∈ r)]
....

∀z.(x, z) ∈ r → (z, x) /∈ r

∀z.(a, z) ∈ r → (z, a) /∈ r
wf induct

Rest routine though not so trivial (needs classical reasoning).

A variation will be done as exercise.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 864

Theorems on Absence of Cycles

wf not refl : wf r =⇒ (a, a) /∈ r

wf trancl : wf r =⇒ wf (rˆ+)

wf acyclic : wf r =⇒ acyclic r

(where acyclic r ≡ ∀x.(x, x) /∈ r+)

Proof sketch:
wf not refl : Corollary of wf not sym.

wf trancl : Uses induction.

wf acyclic : Apply wf not refl and wf trancl .

Ergo: Definition of wf meets our intuition of “no cycles”.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 865

Another Theorem (“Exists Minimal Element”)
wf minimal: wf r =⇒∃ x. ∀ y. (y,x) /∈ rˆ+

Proof sketch, abbreviating φ ≡ (∃x.∀y.(y, x) /∈ r+):

wf(r)

wf(r+)
•

φ ∨ ¬φ
•

[φ]2

[¬φ]2

∀x.∃y.(y, x) ∈ r+
. . .

[¬φ]2 [
∀w.(w, v)
∈ r+ → φ

]1

∃w.(w, v) /∈ r+
•

False
. . .

φ
FalseE

φ
disjE2

φ
wf minimalwf induct1

This is what we must construct.Note “special case”: w and v do not occur in φ!This is wf trancl .We now try a proof by case distinction on φ.Classical reasoning.Using some elementary equivalences.This step works for any φ. Think semantically or check!It is routine to derive False.This completes the proof by case distinction and the proof by induction.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 866

A Characterization of wf
The theorem wf eq minimal is characterization of

well-foundedness.:

wf r = (∀Qx.x ∈ Q −→ (∃z ∈ Q.∀y.(y, z) ∈ r −→ y /∈ Q))

Proof uses iffI =, use wf def, rest routine.

Ergo: Definition of wf meets textbook definitions “every

non-empty set Q has a minimal element in r” (more or less

standard textbook).

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 867

A Theorem on Subsets
wf subset [[wf r; p ⊆ r]] =⇒ wf p

Proof sketch:

wf subset: simplification tactic using wf eq minimal.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Well-Founded Orderings 868

A Theorem on Subrelations
wf r =⇒∀ p. p ⊆ r −→∃ x. ∀ y. (y,x) /∈ pˆ+

Proof sketch: Combine wf minimal and wf subset.

This implies wf r =⇒ ∀p.p ⊆ r → ∃x.∀y.(x, y) /∈ p.

Ergo: wf fulfills the conditions of second attempt of charac-

terizing well-foundedness using minimal elements.

Note this is not a characterization: The subrelation must

be non-empty, and minimum must be in the domain of p

in order to rule out an isolated element, unrelated to the

subrelation. (see characterizations)

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 869

Defining Recursive Functions

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 870

Coherent Function Bodies
A function body H is coherent w.r.t. < if all recursive calls

are supplied with arguments “smaller” than the original

argument.

This means that Hfa and Hf ′a are equal provided that

that fx = f ′x for all x < a.

This allows us to use an approximation f ′ instead of a

“perfect” f when recursively defining a function.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 871

Using Approximating f ’s
Let f |<a be a function that is like f on all values < a, and

arbitrary elsewhere. f |<a is an approximation, a “bad” f .

Now we can define coherence of H by:

H f a = H (f |<a) a. (1)

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 872

Approximating f ’s: Example
Consider fac. On the right-hand side, we show one

possibility for fac|<4):

- -

6 6

•••

•

•

fac

•••

•

fac|<4

••••••••••••••••••••

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 873

cut (in Wellfounded Recursion.thy)
Technically, the function f |<x is defined as follows:

constdefs
cut :: (’a ⇒ ’b) ⇒ (’a × ’a)set ⇒ ’a ⇒ ’a ⇒ ’b

cut f r x ≡ λy. if (y,x)∈r then f y else arbitrary

The unspecified constant arbitrary is declared in HOL.thy.

The function cut f r x is therefore unspecified for

arguments y where (y,x)/∈ r, but for each such argument,

(cut f r x) y must be the same in any particular model.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Wellfounded_Recursion.html
http://isabelle.in.tum.de/library/HOL/HOL.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 874

Theorems Involving cut

Properties of cut:

cuts eq (cut f r x = cut g x) =

(∀ y. (y,x)∈r −→ f y = g y)

cut apply (x,a)∈r =⇒ cut f r a x = f x

Or, using the previous textbook notation:
cuts eq (f |<x = g|<x) = (∀y.y < x −→ f y = g y)
cut apply x < a =⇒ f |<a x = f x

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 875

wfrec rel (in Wellfounded Recursion.thy)

construction: “approximate” f by a relation wfrec rel R F.

wfrec rel :: (’a × ’a) set ⇒
((’ a ⇒ ’b) ⇒ ’a ⇒ ’b) ⇒ (’a × ’b) set

inductive ” wfrec rel R F”

intrs

wfrecI ∀ z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

=⇒ (x, F g x) ∈ wfrec rel R F

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Wellfounded_Recursion.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 876

More on wfrec rel

Assume the ordering on natural numbers pred nat and

assume wf pred nat.

Question: Which elements do we have in

wfrec rel pred nat Fac ?

(0, Fac g 0) ∈ wfrec rel pred nat Fac

(1, Fac (Fac g) 1) ∈ wfrec rel pred nat Fac

(2, Fac (Fac (Fac g)) 2) ∈ wfrec rel pred nat Fac

. . .

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 877

wfrec (in Wellfounded Recursion.thy)
Now we turn the relation wfrec rel into a function:

wfrec :: (’a × ’a) set ⇒
((’ a ⇒ ’b) ⇒ ’a ⇒ ’b) ⇒ ’a ⇒ ’b

wfrec R F ≡ λx. THE y.

(x, y) ∈ wfrec rel R (λf x. F(cut f R x)x)

Note that the type of wfrec R is again an instance of the

type of the Y -combinator (similar lfp).

THE x. P x picks the unique a such that P a holds, if it

exists. Otherwise (see HOL.thy) it is arbitrary.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Wellfounded_Recursion.html
http://isabelle.in.tum.de/library/HOL/HOL.html
http://www.infsec.ethz.ch/education/permanent/csmr/

Defining Recursive Functions 878

The Fixpoint Theorem
Theorem: wfrec satisfies the fixpoint property:

wfrec: wf r =⇒wfrec r H a = H (cut wfrec r H r a) a

Note that wfrec is used here both as a name of a constant

(defined above) and a theorem. So if R is well-founded and

the body H is coherent, we have

wfrec r H a = H (wfrec r H) a

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Example for wfrec: Natural Numbers 879

Example for wfrec: Natural Numbers

The constant wfrec provides the mechanism/support for

defining recursive functions. We illustrate this using nat, the

type of natural numbers.

wfrec is applied to a well-founded order and a body to define

a function.

First, define predecessor relation:

constdefs
pred nat :: (nat ×nat) set

pred nat ≡{(m,n). n = Suc m}

How would you define addition or subtraction?

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Example for wfrec: Natural Numbers 880

Defining Division and Modulus
div :: [’ a :: div , ’a] ⇒ ’a (infixl 70)

m div n ≡wfrec (pred natˆ+)

(λf j . if j<n ∨n=0 then 0

else Suc (f (j−n))) m

mod :: [’ a :: div , ’a] ⇒ ’a (infixl 70)

m mod n ≡wfrec (pred natˆ+)

(λf j . if j<n ∨n=0 then j

else f (j−n)) m

Here, div is a syntactic class for which division is defined.

We assume a definition for −(subtract).

The functions are recursive in one argument (just like add).

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Example for wfrec: Natural Numbers 881

Theorems of the Example
wf pred nat : wf pred nat

m mod n = if m < n then m else (m − n) mod n

m div n = if m < n then 0 else Suc((m − n) div n)

This is very similar to functional programming code and

hence lends itself to real computations (rewriting), as

opposed to only doing proofs.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Package for Primitive Recursion 882

Package for Primitive Recursion

For primitive recursion, finding a well-founded ordering is

simple enough for automation!

Examples (use nat and case-syntax): . . .

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Package for Primitive Recursion 883

Recursion and Arithmetic
Isabelle provides a syntactic front-end for defining an

important subclass of well-founded recursions, namely

primitive recursive functions:

primrec
add 0: 0 + n = n

add Suc: Suc m + n = Suc (m + n)

primrec
diff 0 : m − 0 = m

diff Suc : m − Suc n = (case m − n of
0 => 0

| Suc k => k)

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Package for Primitive Recursion 884

Recursion and Arithmetic
recdef statement is more general and requires a

mesure-function (involving a proof of well-foundedness

potentially requiring user interaction).

Example:

consts posDivAlg :: ”int∗ int => int∗int”

recdef posDivAlg ”inv image less than

(λ(a,b). nat(a − b + 1))”

”posDivAlg (a,b) = (if (a<b | b≤0) then (0,a)

else adjust b (posDivAlg(a, 2∗b)))”

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Conclusion 885

Conclusion

• We can model recursively defined functions conservatively!

• Together with the theory of least fixpoints, we can avoid a

general fixpoint combinator Y .

• There is a further powerful induction principle wf induct.

• The methodological overhead can be faced by powerful

mechanical support.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 886

More Detailed Explanations

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 887

Bad Formalization of “Minimal Element”
In this attempt, we formalized the “minimal element in p” as an x such

that there is no y with (x, y) ∈ p. But this is a bad formalization since

an isolated element, i.e., one that is completely unrelated to p, or even

to r, would meet the definition.

In fact, this problem was already present for the previous attempt where

we just required ∃x.∀y.(y, x) /∈ r (i.e., r has a minimal element).

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 888

No Infinite Descending Chains
The final condition

(∀Qx.x ∈ Q −→ (∃z ∈ Q.∀y.(y, z) ∈ r −→ y /∈ Q))

expresses the absence of infinite descending chains without explicitly

using the concept of infinity.

It is a characterization of well-foundedness. One could say that the above

formula expresses what well-foundedness is, while the “offical” definition

is somewhat indirect since it defines well-foundedness by an induction

principle. As we have seen, both repesentations are equivalent.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 889

induct wf
As far as the induction principle is concerned, induct wf states the

same as the very definition of wf. All that happens is that some explicit

universal object-level quantifiers are removed and the according variables

are (implicitly) universally quantified on the meta-level, and some shifting

from object-level implications to meta-level implications using mp. This is

why we dare say “logical massage”. See Wellfounded Recursion.ML.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 890

Elementary Equivalences
For example ¬∀x.φ = ∃x.¬φ or ¬¬φ = φ, which hold because our

reasoning is classical.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 891

¬∃w.(w, v) ∈ r+ in Detail

In the proof of ∃x.∀y.(y, x) /∈ r+ we had the sub-proof

¬φ ∀w.(w, v) ∈ r+ → φ

¬∃w.(w, v) ∈ r+

This sub-proof does not actually depend on φ, it would hold no matter

what φ is (unlike the entire proof)

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 892

In detail, the sub-proof looks as follows:

¬φ

[∃w.(w, v) ∈ r+]1
[(w, v) ∈ r+]2

∀w.(w, v) ∈ r+ → φ

(w, v) ∈ r+ → φ
spec

φ
mp

φ
exE2

False
notE

¬∃w.(w, v) ∈ r+
notI1

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 893

Appoximating Functions by cut?
For the construction we have in mind, it would be fine that f |<a be a

function that is like f on all values < a, and arbitrary elsewhere. E.g.,

fac|<4 could be

- -

6 6

•••

•

•

fac

•••

•

fac|<4

•

•

••

•

••

•

However, such a fac|<4 could not be in a model for HOL. Since

arbitrary is an uninterpreted constant declared in HOL.thy, it turns out

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/HOL.html
http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 894

that in any model and for each type, there must be one specific element

in the semantic domain for it. Since the value of fac|<4 is “arbitrary” for

all arguments ≥ 4, this means that in each model, this value must be the

same for all arguments ≥ 4.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 895

Relation is a Function
When we say that a binary relation r : τ × σ is in fact a function, we

mean that for t : τ , there is exactly one s : σ such that (t, s) ∈ r.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 896

Define Addition and Subtraction

add :: [nat, nat] ⇒ nat (infixl 70)

m add n ≡wfrec (pred natˆ+)

(λ f j . if j=0 then n

else Suc(f(pred j))) m

Here we suppose that we have a predecessor function pred (which can

be defined using the Hilbert-operator).

Note that add is a function of type nat → nat → nat (written infix),

but it is only recursive in one argument, namely the first one.

You may be confused about this and wonder: how do I know that it is

the first? Is this some Isabelle mechanism saying that it is always the

first? The answer is: no. You must look at the two sides in isolation. On

the right-hand side, we have

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 897

wfrec (pred natˆ+)

(λ f j . if j=0 then n else Suc(f(pred j)))

By the definitions (of wfrec most importantly), this expression is a

function of type nat → nat , namely the function that adds n (which is

not known looking at this expression alone; it occurs on the left-hand

side) to its argument. The function is recursive in its argument (and

hence not in n). Now, this function is applied to m. Therefore we say

that the final function add is recursive in m but not in n.

Now look at subtraction:

subtract :: [nat, nat] ⇒ nat (infixl 70)

m subtract n ≡wfrec (pred natˆ+)

(λf j . if j=0 then m else pred (f (pred j))) n

Note that subtract is recursive in its second argument, simply because

the right-hand side of the defining equation was constructed in a

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 898

different way that for add.

Similar considerations apply for other binary functions defined by

recursion in one argument.

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 899

Primitive Recursion
A function is primitive recursive if the recursion is based on the

immediate predecessor w.r.t. the well-founded order used (e.g., the

predecessor on the natural numbers, as opposed to any arbitrary smaller

numbers).

This is not the same concept as used in the context of computation

theory, where primitive recursive is in contrast to µ-recursive [LP81].

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 900

Automated Support of Recursive Functions
The primrec syntax provides a convenient front-end for defining

primitive recursive functions.

Isabelle will guess a well-founded ordering to use. E.g. for functions on

the natural numbers, it will use the usual < ordering. The ordering is

limited, but the proof will be automatic.

recdef statement is more general and requires a mesure-function

(involving a proof of well-foundedness potentially requiring user

interaction). Example:

consts posDivAlg :: ”int∗ int => int∗int”

recdef posDivAlg ”inv image less than (λ(a,b). nat(a − b + 1))”

”posDivAlg (a,b) = (if (a<b | b≤ 0) then (0,a)

else adjust b (posDivAlg(a, 2∗b)))”

Wolff: HOL: Wellfounded Recursion; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[LP81] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of
Computation. Prentice-Hall, 1981.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16812)

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Part IV:The Semantic Approach (HOL)
	Higher-Order Logic: Well-Founded Recursion
	Motivation
	Prerequisite: Relations
	Prerequisite: Closures
	Well-Founded Orderings
	Defining Recursive Functions
	Example for wfrec: Natural Numbers
	Package for Primitive Recursion
	Conclusion
	More Detailed Explanations

	Part V:Applications
	References
	References

